
1/17

Behind the CARBANAK Backdoor
fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html

Threat Research

James T. Bennett, Barry Vengerik

Jun 12, 2017

14 mins read

Malware

In this blog, we will take a closer look at the powerful, versatile backdoor known as
CARBANAK (aka Anunak). Specifically, we will focus on the operational details of its use
over the past few years, including its configuration, the minor variations observed from

https://www.fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html

2/17

sample to sample, and its evolution. With these details, we will then draw some conclusions
about the operators of CARBANAK. For some additional background on the CARBANAK
backdoor, see the papers by Kaspersky and Group-IB and Fox-It.

Technical Analysis

Before we dive into the meat of this blog, a brief technical analysis of the backdoor is
necessary to provide some context. CARBANAK is a full-featured backdoor with data-
stealing capabilities and a plugin architecture. Some of its capabilities include key logging,
desktop video capture, VNC, HTTP form grabbing, file system management, file transfer,
TCP tunneling, HTTP proxy, OS destruction, POS and Outlook data theft and reverse shell.
Most of these data-stealing capabilities were present in the oldest variants of CARBANAK
that we have seen and some were added over time.

Monitoring Threads

The backdoor may optionally start one or more threads that perform continuous monitoring
for various purposes, as described in Table 1.

Thread
Name

Description

Key
logger

Logs key strokes for configured processes and sends them to the command
and control (C2) server

Form
grabber

Monitors HTTP traffic for form data and sends it to the C2 server

POS
monitor

Monitors for changes to logs stored in C:\NSB\Coalition\Logs and
nsb.pos.client.log and sends parsed data to the C2 server

PST
monitor

Searches recursively for newly created Outlook personal storage table (PST)
files within user directories and sends them to the C2 server

HTTP
proxy
monitor

Monitors HTTP traffic for requests sent to HTTP proxies, saves the proxy
address and credentials for future use

Table 1: Monitoring threads

Commands

3/17

In addition to its file management capabilities, this data-stealing backdoor supports 34
commands that can be received from the C2 server. After decryption, these 34 commands
are plain text with parameters that are space delimited much like a command line. The
command and parameter names are hashed before being compared by the binary, making it
difficult to recover the original names of commands and parameters. Table 2 lists these
commands.

Command
Hash

Command
Name

Description

0x0AA37987 loadconfig Runs each command specified in the configuration file
(see the Configuration section).

0x007AA8A5 state Updates the state value (see the Configuration section).

0x007CFABF video Desktop video recording

0x06E533C4 download Downloads executable and injects into new process

0x00684509 ammyy Ammyy Admin tool

0x07C6A8A5 update Updates self

0x0B22A5A7 Add/Update klgconfig (analysis incomplete)

0x0B77F949 httpproxy Starts HTTP proxy

0x07203363 killos Renders computer unbootable by wiping the MBR

0x078B9664 reboot Reboots the operating system

0x07BC54BC tunnel Creates a network tunnel

0x07B40571 adminka Adds new C2 server or proxy address for pseudo-HTTP
protocol

0x079C9CC2 server Adds new C2 server for custom binary protocol

4/17

0x0007C9C2 user Creates or deletes Windows user account

0x000078B0 rdp Enables concurrent RDP (analysis incomplete)

0x079BAC85 secure Adds Notification Package (analysis incomplete)

0x00006ABC del Deletes file or service

0x0A89AF94 startcmd Adds command to the configuration file (see the
Configuration section)

0x079C53BD runmem Downloads executable and injects directly into new
process

0x0F4C3903 logonpasswords Send Windows accounts details to the C2 server

0x0BC205E4 screenshot Takes a screenshot of the desktop and sends it to the
C2 server

0x007A2BC0 sleep Backdoor sleeps until specified date

0x0006BC6C dupl Unknown

0x04ACAFC3 Upload files to the C2 server

0x00007D43 vnc Runs VNC plugin

0x09C4D055 runfile Runs specified executable file

0x02032914 killbot Uninstalls backdoor

0x08069613 listprocess Returns list of running processes to the C2 server

0x073BE023 plugins Change C2 protocol used by plugins

0x0B0603B4 Download and execute shellcode from specified
address

5/17

0x0B079F93 killprocess Terminates the first process found specified by name

0x00006A34 cmd Initiates a reverse shell to the C2 server

0x09C573C7 runplug Plugin control

0x08CB69DE autorun Updates backdoor

Table 2: Supported Commands

Configuration

A configuration file resides in a file under the backdoor’s installation directory with the .bin
extension. It contains commands in the same form as those listed in Table 2 that are
automatically executed by the backdoor when it is started. These commands are also
executed when the loadconfig command is issued. This file can be likened to a startup script
for the backdoor. The state command sets a global variable containing a series of Boolean
values represented as ASCII values ‘0’ or ‘1’ and also adds itself to the configuration file.
Some of these values indicate which C2 protocol to use, whether the backdoor has been
installed, and whether the PST monitoring thread is running or not. Other than the state
command, all commands in the configuration file are identified by their hash’s decimal value
instead of their plain text name. Certain commands, when executed, add themselves to the
configuration so they will persist across (or be part of) reboots. The loadconfig and state
commands are executed during initialization, effectively creating the configuration file if it
does not exist and writing the state command to it.

Figure 1 and Figure 2 illustrate some sample, decoded configuration files we have come
across in our investigations.

6/17

Configuration file that adds new C2 server and forces the data-stealing backdoor to
use it

Figure 1: Configuration file that adds new C2 server and forces the data-stealing backdoor to

7/17

use it

Configuration file that adds TCP tunnels and records desktop video

Figure 2: Configuration file that adds TCP tunnels and records desktop video

Command and Control

CARBANAK communicates to its C2 servers via pseudo-HTTP or a custom binary protocol.

Pseudo-HTTP Protocol

Messages for the pseudo-HTTP protocol are delimited with the ‘|’ character. A message
starts with a host ID composed by concatenating a hash value generated from the
computer’s hostname and MAC address to a string likely used as a campaign code. Once
the message has been formatted, it is sandwiched between an additional two fields of
randomly generated strings of upper and lower case alphabet characters. An example of a
command polling message and a response to the listprocess command are given in Figure 3
and Figure 4, respectively.

8/17

Example command polling message

Figure 3: Example command polling message

9/17

Example command response message

Figure 4: Example command response message
Messages are encrypted using Microsoft’s implementation of RC2 in CBC mode with
PKCS#5 padding. The encrypted message is then Base64 encoded, replacing all the ‘/’ and
‘+’ characters with the ‘.’ and ‘-’ characters, respectively. The eight-byte initialization vector
(IV) is a randomly generated string consisting of upper and lower case alphabet characters.
It is prepended to the encrypted and encoded message.

The encoded payload is then made to look like a URI by having a random number of ‘/’
characters inserted at random locations within the encoded payload. The malware then
appends a script extension (php, bml, or cgi) with a random number of random parameters
or a file extension from the following list with no parameters: gif, jpg, png, htm, html, php.

This URI is then used in a GET or POST request. The body of the POST request may
contain files contained in the cabinet format. A sample GET request is shown in Figure 5.

10/17

Sample pseudo-HTTP beacon

Figure 5: Sample pseudo-HTTP beacon
The pseudo-HTTP protocol uses any proxies discovered by the HTTP proxy monitoring
thread or added by the adminka command. The backdoor also searches for proxy
configurations to use in the registry at
HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings and for each profile in
the Mozilla Firefox configuration file at %AppData%\Mozilla\Firefox\<ProfileName>\prefs.js.

Custom Binary Protocol

Figure 6 describes the structure of the malware’s custom binary protocol. If a message is
larger than 150 bytes, it is compressed with an unidentified algorithm. If a message is larger
than 4096 bytes, it is broken into compressed chunks. This protocol has undergone several
changes over the years, each version building upon the previous version in some way.
These changes were likely introduced to render existing network signatures ineffective and
to make signature creation more difficult.

11/17

Binary protocol message format

Figure 6: Binary protocol message format
Version 1

In the earliest version of the binary protocol, we have discovered that the message bodies
that are stored in the <chunkData> field are simply XORed with the host ID. The initial
message is not encrypted and contains the host ID.

Version 2

Rather than using the host ID as the key, this version uses a random XOR key between 32
and 64 bytes in length that is generated for each session. This key is sent in the initial
message.

Version 3

Version 3 adds encryption to the headers. The first 19 bytes of the message headers (up to
the <hdrXORKey2> field) are XORed with a five-byte key that is randomly generated per
message and stored in the <hdrXORKey2> field. If the <flag> field of the message header is

12/17

greater than one, the XOR key used to encrypt message bodies is iterated in reverse when
encrypting and decrypting messages.

Version 4

This version adds a bit more complexity to the header encryption scheme. The headers are
XOR encrypted with <hdrXORKey1> and <hdrXORKey2> combined and reversed.

Version 5

Version 5 is the most sophisticated of the binary protocols we have seen. A 256-bit AES
session key is generated and used to encrypt both message headers and bodies separately.
Initially, the key is sent to the C2 server with the entire message and headers encrypted with
the RSA key exchange algorithm. All subsequent messages are encrypted with AES in CBC
mode. The use of public key cryptography makes decryption of the session key infeasible
without the C2 server’s private key.

The Roundup

We have rounded up 220 samples of the CARBANAK backdoor and compiled a table that
highlights some interesting details that we were able to extract. It should be noted that in
most of these cases the backdoor was embedded as a packed payload in another
executable or in a weaponized document file of some kind. The MD5 hash is for the original
executable file that eventually launches CARBANAK, but the details of each sample were
extracted from memory during execution. This data provides us with a unique insight into the
operational aspect of CARBANAK and can be downloaded here.

Protocol Evolution

As described earlier, CARBANAK’s binary protocol has undergone several significant
changes over the years. Figure 7 illustrates a rough timeline of this evolution based on the
compile times of samples we have in our collection. This may not be entirely accurate
because our visibility is not complete, but it gives us a general idea as to when the changes
occurred. It has been observed that some builds of this data-stealing backdoor use outdated
versions of the protocol. This may suggest multiple groups of operators compiling their own
builds of this data-stealing backdoor independently.

https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/carbanak-report.xlsx

13/17

Timeline of binary protocol versions

Figure 7: Timeline of binary protocol versions
*It is likely that we are missing an earlier build that utilized version 3.

Build Tool

Most of CARBANAK’s strings are encrypted in order to make analysis more difficult. We
have observed that the key and the cipher texts for all the encrypted strings are changed for
each sample that we have encountered, even amongst samples with the same compile time.
The RC2 key used for the HTTP protocol has also been observed to change among samples
with the same compile time. These observations paired with the use of campaign codes that
must be configured denote the likely existence of a build tool.

Rapid Builds

Despite the likelihood of a build tool, we have found 57 unique compile times in our sample
set, with some of the compile times being quite close in proximity. For example, on May 20,
2014, two builds were compiled approximately four hours apart and were configured to use

14/17

the same C2 servers. Again, on July 30, 2015, two builds were compiled approximately 12
hours apart.

What changes in the code can we see in such short time intervals that would not be present
in a build tool? In one case, one build was programmed to execute the runmem command for
a file named wi.exe while the other was not. This command downloads an executable from
the C2 and directly runs it in memory. In another case, one build was programmed to check
for the existence of the domain blizko.net in the trusted sites list for Internet Explorer while
the other was not. Blizko is an online money transfer service. We have also seen that
different monitoring threads from Table 1 are enabled from build to build. These minor
changes suggest that the code is quickly modified and compiled to adapt to the needs of the
operator for particular targets.

Campaign Code and Compile Time Correlation

In some cases, there is a close proximity of the compile time of a CARBANAK sample to the
month specified in a particular campaign code. Figure 8 shows some of the relationships that
can be observed in our data set.

Campaign Code Compile Date

Aug 7/30/15

dec 12/8/14

julyc 7/2/16

jun 5/9/15

june 5/25/14

june 6/7/14

junevnc 6/20/14

juspam 7/13/14

juupd 7/13/14

may 5/20/14

15/17

may 5/19/15

ndjun 6/7/16

SeP 9/12/14

spamaug 8/1/14

spaug 8/1/14

Figure 8: Campaign code to compile time relationships

Recent Updates

Recently, 64 bit variants of the backdoor have been discovered. We shared details about
such variants in a recent blog post. Some of these variants are programmed to sleep until a
configured activation date when they will become active.

History

The “Carbanak Group”

Much of the publicly released reporting surrounding the CARBANAK malware refers to a
corresponding “Carbanak Group”, who appears to be behind the malicious activity
associated with this data-stealing backdoor. FireEye iSIGHT Intelligence has tracked several
separate overarching campaigns employing the CARBANAK tool and other associated
backdoors, such as DRIFTPIN (aka Toshliph). With the data available at this time, it is
unclear how interconnected these campaigns are – if they are all directly orchestrated by the
same criminal group, or if these campaigns were perpetrated by loosely affiliated actors
sharing malware and techniques.

FIN7

In all Mandiant investigations to date where the CARBANAK backdoor has been discovered,
the activity has been attributed to the FIN7 threat group. FIN7 has been extremely active
against the U.S. restaurant and hospitality industries since mid-2015.

FIN7 uses CARBANAK as a post-exploitation tool in later phases of an intrusion to cement
their foothold in a network and maintain access, frequently using the video command to
monitor users and learn about the victim network, as well as the tunnel command to proxy
connections into isolated portions of the victim environment. FIN7 has consistently utilized
legally purchased code signing certificates to sign their CARBANAK payloads. Finally, FIN7
has leveraged several new techniques that we have not observed in other CARBANAK
related activity.

https://www.fireeye.com/resources/fin7-shim-databases-persistence

16/17

We have covered recent FIN7 activity in previous public blog posts:

The FireEye iSIGHT Intelligence MySIGHT Portal contains additional information on our
investigations and observations into FIN7 activity.

Widespread Bank Targeting Throughout the U.S., Middle East and Asia

Proofpoint initially reported on a widespread campaign targeting banks and financial
organizations throughout the U.S. and Middle East in early 2016. We identified several
additional organizations in these regions, as well as in Southeast Asia and Southwest Asia
being targeted by the same attackers.

This cluster of activity persisted from late 2014 into early 2016. Most notably, the
infrastructure utilized in this campaign overlapped with LAZIOK, NETWIRE and other
malware targeting similar financial entities in these regions.

DRIFTPIN

DRIFTPIN (aka Spy.Agent.ORM, and Toshliph) has been previously associated with
CARBANAK in various campaigns. We have seen it deployed in initial spear phishing by
FIN7 in the first half of 2016. Also, in late 2015, ESET reported on CARBANAK associated
attacks, detailing a spear phishing campaign targeting Russian and Eastern European banks
using DRIFTPIN as the malicious payload. Cyphort Labs also revealed that variants of
DRIFTPIN associated with this cluster of activity had been deployed via the RIG exploit kit
placed on two compromised Ukrainian banks’ websites.

FireEye iSIGHT Intelligence observed this wave of spear phishing aimed at a large array of
targets, including U.S. financial institutions and companies associated with Bitcoin trading
and mining activities. This cluster of activity continues to be active now to this day, targeting
similar entities. Additional details on this latest activity are available on the FireEye iSIGHT
Intelligence MySIGHT Portal.

Earlier CARBANAK Activity

In December 2014, Group-IB and Fox-IT released a report about an organized criminal
group using malware called "Anunak" that has targeted Eastern European banks, U.S. and
European point-of-sale systems and other entities. Kaspersky released a similar report about
the same group under the name "Carbanak" in February 2015. The name “Carbanak” was
coined by Kaspersky in this report – the malware authors refer to the backdoor as Anunak.

This activity was further linked to the 2014 exploitation of ATMs in Ukraine. Additionally,
some of this early activity shares a similarity with current FIN7 operations – the use of Power
Admin PAExec for lateral movement.

Conclusion

https://www.proofpoint.com/us/threat-insight/post/carbanak-cybercrime-group-targets-executives-of-financial-organizations-in-middle-east
https://www.welivesecurity.com/2015/09/08/carbanak-gang-is-back-and-packing-new-guns/
https://www.cyphort.com/unicredit-compromised/
https://www.fox-it.com/en/files/2014/12/Anunak_APT-against-financial-institutions2.pdf
https://securelist.com/blog/research/68732/the-great-bank-robbery-the-carbanak-apt/

17/17

The details that can be extracted from CARBANAK provide us with a unique insight into the
operational details behind this data-stealing malware. Several inferences can be made when
looking at such data in bulk as we discussed above and are summarized as follows:

1. Based upon the information we have observed, we believe that at least some of the
operators of CARBANAK either have access to the source code directly with
knowledge on how to modify it or have a close relationship to the developer(s).

2. Some of the operators may be compiling their own builds of the backdoor
independently.

3. A build tool is likely being used by these attackers that allows the operator to configure
details such as C2 addresses, C2 encryption keys, and a campaign code. This build
tool encrypts the binary’s strings with a fresh key for each build.

4. Varying campaign codes indicate that independent or loosely affiliated criminal actors
are employing CARBANAK in a wide-range of intrusions that target a variety of
industries but are especially directed at financial institutions across the globe, as well
as the restaurant and hospitality sectors within the U.S.

