
1/20

christophetd 5 June 2017

Set up your own malware analysis lab with VirtualBox,
INetSim and Burp

blog.christophetd.fr/malware-analysis-lab-with-virtualbox-inetsim-and-burp/

In this post we will set up a virtual lab for malware analysis. We’ll create an isolated
virtual network separated from the host OS and from the Internet, in which we’ll setup two
victim virtual machines (Ubuntu and Windows 7) as well as an analysis server to mimic
common Internet services like HTTP or DNS. Then, we’ll be able to log and analyze the
network communications of any Linux or Windows malware, which will unknowingly connect
to our server instead of the Internet. We demonstrate the setup with a real life use
case where we analyze the traffic of the infamous TeslaCrypt ransomware, a now defunct
ransomware which infected a large number of systems from 2015 to mid-2016.

Diagram of our future setup. Note that the machines in the virtual network will be isolated
from the host OS and will not be able to connect to the Internet.
This guide includes quite a lot of material, so here’s a table of contents to give you an
overview of what we’ll cover and let you jump directly to a section if you’d like.

1. Creating the virtual machines

Here are two links you can use to download Ubuntu and Windows 7 virtual machine images.

Ubuntu (victim machine 1 and analysis machine): download Ubuntu 16.10 64 bits
from OsBoxes (direct link)
Windows 7 (victim machine 2): download from the Microsoft Developer
Website (select IE 11 on Win 7 (x86) and VirtualBox)

Tip: if you already have an Ubuntu virtual machine you’re not using, you can simply clone it
and reuse it in the next steps (right click > Clone).

https://blog.christophetd.fr/malware-analysis-lab-with-virtualbox-inetsim-and-burp/
https://en.wikipedia.org/wiki/TeslaCrypt
https://www.osboxes.org/ubuntu/
https://drive.google.com/file/d/0B_HAFnYs6Ur-TVdfcHBrUVRWQk0/view?usp=sharing
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

2/20

Before starting, make sure you have enough disk space available (I’d recommend at least
10-20 GB).

Base Ubuntu machine

OsBoxes provides us with a ready-to-go virtual disk that we can simply plug on a VM and
start using right away. Start by extracting the archive you just downloaded.

$ 7za e Ubuntu_16.10_Yakkety-VB-64bit.7z

You’ll be provided with a VDI file representing the virtual disk of the machine. We’ll start by
setting up the base Ubuntu image, which we will then clone to have our two Ubuntu VMs.

In VirtualBox, create a new machine (New button), and call it Ubuntu analysis. Then,
select how much RAM you want to give it. At this point, VirtualBox will ask you if you wish to
create a new virtual hard disk or use an already exiting one. Select Use an existing virtual
hard disk file, click on the directory icon at the right of the dropdown list, and select the VDI
file.

You can then power up the machine. The default password is osboxes.org.

Basic setup

The default keyboard uses the QWERTY layout. If like me you’re not familiar with it, start by
changing it (Settings > Text Entry).

Optionally, you can also change the default password using:

$ passwd osboxes

It can also be a good idea to update your packages.

$ sudo apt-get update
$ sudo apt-get upgrade

Install the guest additions

Select Devices > Insert guest additions CD image in the menu of the window in which the
VM runs. You will then be asked if you want to run the installer; answer yes, and enter the
default password (by default osboxes.org). Once the installation is complete, power off the
VM.

Cloning

Now that you have a basic Ubuntu VM ready to go, clone it (right click on it in the main
VirtualBox interface > Clone). Name the clone Ubuntu victim, and check the checkbox to
reinitialize its MAC address. Select Full clone for the type of clone.

3/20

The two Ubuntu VMs created

Windows 7 machine

The download link I provided earlier points to a ZIP archive containing a OVA file. Unlike a
VDI file it’s not only a virtual disk, but a full description of the virtual machine (including its
virtual disk), so the only thing you need to do to create a virtual machine from it is to
select File > Import Appliance in the main window of VirtualBox. If you can afford it, it’s
probably better to give it at least 1024 MB of RAM.

Once the import process is complete (it can take a few minutes), rename the VM Windows
7 victim and power it on.

Install the guest additions

Select Devices > Insert guest additions CD image in the menu of the window in which the
VM runs, and run the installer from the virtual CD which has been inserted. When you’re
done, power off the machine.

2. Setup of the analysis machine: INetSim, Burp

INetSim

INetSim is a very handy and powerful utility that allows to simulate a bunch of standard
Internet services on a machine. By default, it will among others emulate a DNS, HTTP and
SMTP that you can easily tune. Since we’ll later configure our victim machines to have no
Internet access, we will need INetSim to simulate it.

There are several ways to install INetSim. The easiest is to run the following commands (in
the analysis machine).

$ sudo su
$ echo "deb http://www.inetsim.org/debian/ binary/" >
/etc/apt/sources.list.d/inetsim.list
$ wget -O - http://www.inetsim.org/inetsim-archive-signing-key.asc | apt-key add -
$ apt update
$ apt install inetsim

Note: in order to be able to copy-paste those commands in your analysis machine,
select Devices > Shared Clipboard > Bidirectional.

https://blog.christophetd.fr/wp-content/uploads/2017/06/vms.png
http://www.inetsim.org/index.html
http://www.inetsim.org/downloads.html

4/20

We’ll come back later on how to use INetSim.

Burp

Unfortunately, it seems that INetSim’s SSL support is quite limited: it comes with a certificate
for a single host (inetsim.org) and doesn’t support generating SSL certificates on the fly. This
is a problem since most malwares nowadays encrypt their communications with SSL. We’ll
use Burp as a transparent SSL proxy, which will stand in the middle of the victim machines
and INetSim for SSL connections. If you don’t need to intercept SSL traffic for now, you won’t
necessarily need Burp.

Burp supports generating on-the-fly SSL certificates for any our victim machines will connect
to. It also creates a single root CA certificate, that we’ll later import in our victim machines.
This way, we’ll be able to intercept the encrypted communications that our malware sends.

You can download Burp from the official website. The download is a bash installation script,
run it to install Burp:

$ bash ~/Downloads/burpsuite_free_linux_v1_7_23.sh

By default, the Burp executable will be ~/BurpSuiteFree/BurpSuiteFree.

3. Setting up an isolated virtual network

As a reminder, we want to set up an isolated network containing our three VMs. This network
will not be able to access the Internet. Also, we want the analysis machine to act as a
network gateway to the victim machines in order to easily be able to intercept the network
traffic and to simulate various services such as DNS or HTTP.

In order to achieve this, we will use a VirtualBox Internal Network. For those familiar with
VirtualBox, an internal network differs from a host-only network in that an internal network
cannot access the host machine at all.

For each of your three virtual machines, do the following:

Open its settings
Go to the Network section
Change the Attached to field to Internal network
Enter malware-analysis-network as the network name

https://portswigger.net/burp/freedownload/

5/20

Network configuration

Analysis machine

Power on the analysis machine, open a terminal, and run the ifconfig command. You should
have an interface named enp0s3. If the name differs, just adapt it in the instructions to
follow.

Open the file /etc/network/interfaces as root, and add the following at the end:

auto enp0s3
iface enp0s3 inet static
address 10.0.0.1
netmask 255.255.255.0

This will assign the machine the static IP 10.0.0.1 on our virtual network. Now that we have
configured the network interface, we need to start it up using:

$ sudo ifup enp0s3

Ubuntu victim machine

The process is very similar here, except that we’ll assign it the static IP 10.0.0.2, and instruct
it to use 10.0.0.1 as a gateway and as a DNS server. Append the following at the end of the
file /etc/network/interfaces :

auto enp0s3
iface enp0s3 inet static
address 10.0.0.2
gateway 10.0.0.1
netmask 255.255.255.0
dns-nameservers 10.0.0.1

And run:

$ sudo ifup enp0s3
$ sudo service networking restart

You should now be able to ping the analysis machine:

https://blog.christophetd.fr/wp-content/uploads/2017/06/net.png

6/20

$ ping 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.480 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.526 ms

Windows 7 victim machine

Right-click on the network icon in the taskbar (or go to Start Menu > Control Panel >
Network and Internet > Network and Sharing center), click on Local Area Connection 2
> Properties, select on Internet Protocol Version 4, and click on the Properties button.

We’ll assign the static IP 10.0.0.3 to the machine, and configure the rest similarly to the
Ubuntu victim machine.

Network settings

Make sure to validate the settings (click on OK, Apply, etc. until all the settings windows are
gone). You should now be able to ping the analysis machine:

> ping 10.0.0.1

Pinging 10.0.0.1 with 32 bytes of data:
Reply from 10.0.0.1: bytes=32 time<1ms TTL=64
Reply from 10.0.0.1: bytes=32 time<1ms TTL=64

All set!

https://blog.christophetd.fr/wp-content/uploads/2017/06/netsettings.png

7/20

4. Creating and restoring snapshots

Now that our victim VMs are properly configured and are in a clean state (i.e. not infected by
any kind of malware), we are going to make a snapshot of their current state. This way, we
will be able to easily reset them to this clean state at any point time.

VirtualBox makes this very easy: in the window in which the VM is running, just select
Machine > Take Snapshot. You can name the snapshot Clean state. Make sure to do this
for both your Ubuntu and Windows 7 victim machines. It doesn’t hurt to do it for your analysis
machine as well.

When you’ll want to reset a machine to its clean state, simply power it off and check the
checkbox Restore current snapshot ‘Clean state’.

5. Using INetSim and Burp on the analysis machine to analyze the
network traffic

INetSim

As previously mentioned, INetSim enables us to wide range of standard Internet services
including DNS, HTTP(S), SMTP, etc. It has a default configuration
file /etc/inetsim/inetsim.conf which is very well documented. It also ships with a data
directory (/var/lib/inetsim) containing various default files.

Since you’ll probably want a different INetSim configuration each time you make a new
analysis, I suggest you create a directory analysis which will contain a sub directory for each
analysis.

$ mkdir analysis

We’ll already create a sub directory for the sake of example, and copy the default INetSim
configuration file and data folder in it.

https://blog.christophetd.fr/wp-content/uploads/2017/06/snap.png

8/20

$ mkdir analysis/test-analysis
$ cp /etc/inetsim/inetsim.conf analysis/test-analysis
$ sudo cp -r /var/lib/inetsim analysis/test-analysis/data
$ sudo chmod -R 777 data
$ cd analysis/test-analysis

By default, INetSim listens on the local interface only. To make it available to all the machines
of our virtual network, replace the following line in the configuration file we just copied:

#service_bind_address 10.0.0.1

By:

service_bind_address 0.0.0.0

Now, we need to disable systemd-resolved, which is a local DNS server shipped by default
with Ubuntu and will conflict with INetSim’s DNS server.

$ sudo systemctl disable systemd-resolved.service
$ sudo service systemd-resolved stop

By default, INetSim’s DNS server will resolve all the domain names to 127.0.0.1. We want
any domain name to resolve to 10.0.0.1 (the analysis machine IP) instead; uncomment the
following line:

#dns_default_ip 10.0.0.1

I mentioned earlier that INetSim’s SSL support is not optimal since it only has a single
certificate for a single hostname (inetsim.org) and doesn’t allow to generate per-host
certificates on the fly. To overcome that, we’ll run Burp on port 443 as a transparent proxy in
front of INetSim. Therefore, we need to bind INetSim’s HTTPS server to a different port, say
port 8443. Replace the following line:

#https_bind_port 443

By:

https_bind_port 8443

Now, let’s run INetSim!

9/20

$ sudo inetsim --data data --conf inetsim.conf
INetSim 1.2.6 (2016-08-29) by Matthias Eckert & Thomas Hungenberg
[...]
=== INetSim main process started (PID 3605) ===
Session ID: 3605
Listening on: 0.0.0.0
Real Date/Time: 2017-06-04 12:58:07
Fake Date/Time: 2017-06-04 12:58:07 (Delta: 0 seconds)
Forking services...
* dns_53_tcp_udp - started (PID 3621)
* irc_6667_tcp - started (PID 3631)
* daytime_13_tcp - started (PID 3638)
* discard_9_tcp - started (PID 3642)
* discard_9_udp - started (PID 3643)
* ident_113_tcp - started (PID 3634)
* syslog_514_udp - started (PID 3635)
[...]

As you can see, INetSim has launched a bunch of network services. Those are all
configurable and can be disabled in the configuration file. This configuration file is very well
documented and explains all the options of INetSim; I recommend you take a few minutes to
read it.

Now, power on of your victim VM, open a web browser, and browse to any address (e.g.
github.com). You should see the following:

10/20

(Note that this default file corresponds to the HTML file data/http/fakefiles/sample.html.)

Back on the analysis machine, shut down INetSim (CTRL + C).

* dns_53_tcp_udp - stopped (PID 3621)
* irc_6667_tcp - stopped (PID 3631)
* daytime_13_tcp - stopped (PID 3638)
[...]
Simulation stopped.
Report written to '/var/log/inetsim/report/report.3877.txt' (24 lines)

As you can see, INetSim has created a summary report for us. It contains all the interactions
our victim machine had with INetSim services.

https://blog.christophetd.fr/wp-content/uploads/2017/06/vm7.png

11/20

=== Report for session '3877' ===

Real start date : 2017-06-04 13:18:27
Simulated start date : 2017-06-04 13:18:27
Time difference on startup : none

2017-06-04 13:18:38 First simulated date in log file
2017-06-04 13:18:40 DNS connection, type: A, class: IN, requested name: github.com
2017-06-04 13:18:40 HTTP connection, method: GET, URL: http://github.com/, file name:
data/http/fakefiles/sample.html
2017-06-04 13:18:40 HTTP connection, method: GET, URL: http://github.com/favicon.ico,
file name: data/http/fakefiles/sample.html
2017-06-04 13:18:40 Last simulated date in log file

Burp for SSL interception

To be able to analyze the SSL traffic, we also need to run Burp. We’ll run it as a transparent
proxy in front of INetSim. When a victim machine will initiate a SSL connection, it will first go
to Burp, which will then proxy it to INetSim. This section is not mandatory: if you don’t need
to intercept SSL traffic right now, just jump to the next section.

Here’s how it will look like with Burp in the middle:

Start Burp as root:

$ sudo /home/osboxes/BurpSuiteFree/BurpSuiteFree

(We need to run it as root otherwise it won’t be able to bind port 443, which is a privileged
port. There are other ways to do this, but let’s not bother here)

Create a temporary project (you don’t have any other options with the free version anyway),
and go to the Proxy tab, then to the Options sub-tab. You’ll see Burp’s default listener
listening on port 8080.

12/20

Click on the row corresponding to the default listener, and edit it (Edit) button. Configure it as
follows:

Binding tab
Bind to port: 443
Bind to address: all interfaces

Request handling tab:
Redirect to host: localhost
Redirect to port: 8443
Check Support invisible proxying

Validate the settings, and you should get a listener similar to:

By default, Burp intercepts the incoming requests and waits for you to explicitly let them pass
through. To avoid this, go to the Intercept tab and click the button Intercept is on to disable
it.

Since Burp Free doesn’t allow you to save a project, you can export the settings we just
made in order to import them next time you start Burp. To do this, use Burp > Project
options > Save project options.

Let’s make sure our setup if correctly working. Start INetSim, and run:

https://blog.christophetd.fr/wp-content/uploads/2017/06/burp.png
https://blog.christophetd.fr/wp-content/uploads/2017/06/burp2.png

13/20

$ curl --insecure https://localhost

You should get:

<html>
<head>
<title>INetSim default HTML page</title>
</head>
<body>
<p></p>
<p align="center">This is the default HTML page for INetSim HTTP server fake mode.
</p>
<p align="center">This file is an HTML document.</p>
</body>
</html>

Importing Burp’s CA certificate on our victim machines

Power on your Windows 7 victim machine, and try to browse to a HTTPS URL (e.g.
https://github.com), you’ll see a warning similar to:

This is because Burp generates a SSL certificate signed by its own CA certificate, which our
victim machine doesn’t trust for now.

In Burp, add a new proxy listener on port 8080, listening on all interfaces (tab Proxy >
Options > button Add):

https://blog.christophetd.fr/wp-content/uploads/2017/06/sslwarn.png
https://blog.christophetd.fr/wp-content/uploads/2017/06/burp3.png

14/20

Then, from the victim machine, browse to http://10.0.0.1:8080.

Click on CA Certificate in the top-right corner to download Burp’s CA certificate.

On the Windows 7 victim machine: open the file, click Install certificate >Next > Place all
certificates in the following store: Trusted Root Certification Authorities > Next

On the Ubuntu victim machine:

Convert the certificate to the appropriate format (.crt) using

$ openssl x509 -in ~/Downloads/cacert.der -inform DER -out burp.crt

Copy it to /usr/local/share/ca-certificates

$ sudo cp burp.crt /usr/local/share/ca-certificates/

Run

$ sudo update-ca-certificates

Firefox by default doesn’t use the system’s certificate store. If you want the SSL
connection to work properly in Firefox as well, go to the Firefox settings
into Advanced > Certificates > Import. Choose burp.crt, check Trust this CA to
identify websites

All set!

https://blog.christophetd.fr/wp-content/uploads/2017/06/burpca.png
https://blog.christophetd.fr/wp-content/uploads/2017/06/sslok.png

15/20

Once you imported Burp’s CA certificate in the victim machines, make sure to create a new
snapshot (e.g. Clean state with Burp’s CA certificate installed).

6. Setting up a shared folder between the analysis machine and the host OS

At some point, you’ll obviously want to transfer some files to the analysis machine or to one
of the victim machine; we’ll set up a file share to achieve it.

In the VirtualBox running the analysis machine, go to Devices > Shared Folders > Shared
folders settings. Create a new shared folder, choose the local folder of your host OS it
should be mapped to, and choose a name. Check the checkbox to make it permanent.

Now on the analysis machine, mount the shared folder:

$ mkdir ~/malware-analysis-share
$ sudo mount -t vboxsf -o uid=$UID,gid=$(id -g) malware-analysis-share ~/malware-
analysis-share

And you’re good to go. In my case, all the files of my host machine located in
/home/christophetd/malware-analysis-share will also end up in ~/malware-analysis-share in
the analysis machine.

Transferring files to a victim machine

At some point, you’ll most probably need to transfer some files (e.g. malware samples) to
one of the victim machines. Setting up a file share for them is a bad idea, because it means
the victim machine (and by extent, the malware sample you’re running on it) have access to
it.

The simplest way to achieve a file transfer to the Ubuntu victim machine is to use netcat.
Here’s a quick example.

https://blog.christophetd.fr/wp-content/uploads/2017/06/share.png

16/20

Receiving machine having IP 10.0.0.2
$ nc -lvp 4444 > file.exe

Analysis machine (sender)
$ cat file_to_transfer.exe | nc 10.0.0.2 4444

For a Window victim, we unfortunately don’t have netcat available. Alternatives might exist,
but they probably don’t ship by default. One option is to use INetSim to serve your file to the
victim machine.

inetsim.conf

Remove the default line: http_fakefile exe sample_gui.exe x-msdos-
program
Replace it by
http_fakefile exe file_to_transfer.exe x-msdos-program

And put file_to_transfer.exe in ./data/http/fakefiles

With this of configuration, just browse any URL ending with a ‘.exe’ (e.g.
http://github.com/file.exe).

7. Demo time: the TeslaCrypt ransomware

Time for a quick demo! I downloaded a sample of the ransomware TeslaCrypt, transferred it
to our Windows 7 victim machine, and executed it. After a few seconds, all the files of the
VM have been encrypted and the following window pops-up.

https://blog.christophetd.fr/wp-content/uploads/2017/06/dlexe.png
https://en.wikipedia.org/wiki/TeslaCrypt

17/20

TeslaCrypt main window (click for full-size image)

https://blog.christophetd.fr/wp-content/uploads/2017/06/tcrypt-1.png

18/20

The machine’s files have been encrypted and replaced by files with the ECC extension
After checking the logs of INetSim, we can see that the ransomware did the following DNS
lookups:

7tno4hib47vlep5o.tor2web.org
7tno4hib47vlep5o.tor2web.blutmagie.de
7tno4hib47vlep5o.tor2web.fi
bitcoin.toshi.io

And sent several HTTP requests to those domains.

https://blog.christophetd.fr/wp-content/uploads/2017/06/randomwarepnwd.png

19/20

HTTPS connection, method: GET, URL: https://7tno4hib47vlep5o.tor2web.org/state.php?
U3ViamVjdD1QaW5nJmtleT0xNUIzOEIxOEFGMjBDMERCMkE3Qzc3MUUwMTQzNjNGMkNCODc4MUIxNTZENTE5Q0

HTTPS connection, method: GET, URL:
https://7tno4hib47vlep5o.tor2web.blutmagie.de/state.php?
U3ViamVjdD1QaW5nJmtleT0xNUIzOEIxOEFGMjBDMERCMkE3Qzc3MUUwMTQzNjNGMkNCODc4MUIxNTZENTE5Q0

HTTPS connection, method: GET, URL: https://7tno4hib47vlep5o.tor2web.fi/state.php?
U3ViamVjdD1QaW5nJmtleT0xNUIzOEIxOEFGMjBDMERCMkE3Qzc3MUUwMTQzNjNGMkNCODc4MUIxNTZENTE5Q0

HTTPS connection, method: GET, URL:
https://bitcoin.toshi.io/api/v0/addresses/1LNUF3BqL3ob1CT2aVp3cW4Nb8zkkViVwT

We see similar requests are made to tor2web.org, tor2web.blutmagie.de and tor2web.fi.
Those services allow to access the Tor network without having to install Tor Browser or a
similar tool.

The malware contacts the Tor hidden service 7tno4hib47vlep5o.onion, which is probably
some kind of C&C server. The payload of the request is a base64 encoded string, which
decodes to:

Subject=Ping
&key=15B38B18AF20C0DB2A7C771E014363F2CB8781B156D519CC5F220335D4714AA3
&addr=1LNUF3BqL3ob1CT2aVp3cW4Nb8zkkViVwT
&files=0
&size=0
&version=0.2.6a
&date=1496648675
&OS=7601
&ID=16
&subid=0
&gate=G1

It also makes an API call to bitcoin.toshio.io (which doesn’t exist anymore), most probably
to check if the ransom has been paid to the bitcoin
address 1LNUF3BqL3ob1CT2aVp3cW4Nb8zkkViVwT. It seems like the malware generates
an unique bitcoin address for each infected computer, since the address didn’t receive or
send out any money.

Conclusion

Hopefully this guide will be helpful and allow you to safely analyze the network interactions of
a malware. Keep in mind that some malwares detect when they are being run in a virtual
machine and might adapt their behavior (e.g. do nothing). Here’s an article from
MalwareBytes on the subject.

Also, remember that while analyzing a malware’s network traffic can be very useful, it’s only
one kind of dynamic analysis. Others include monitoring the register, the system calls, the
files opened / created, etc. Open Security Training offers a full hands-on course on the topic,

https://en.wikipedia.org/wiki/Command_and_control_(malware)
https://blockchain.info/address/1LNUF3BqL3ob1CT2aVp3cW4Nb8zkkViVwT
https://blog.malwarebytes.com/threat-analysis/2014/02/a-look-at-malware-with-virtual-machine-detection/
http://opensecuritytraining.info/MalwareDynamicAnalysis.html

20/20

for free.

Don’t hesitate to leave a comment if you found this guide useful / awesome / too long / too
detailed. A big thank you to lbarman for the proofreading and numerous suggestions.

Stay safe!

Liked this post? Show it by pushing the heart button below! You can also follow me on
Twitter.

Follow @christophetd

https://lbarman.ch/
https://twitter.com/christophetd

