
1/11

To SDB, Or Not To SDB: FIN7 Leveraging Shim Databases
for Persistence

fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html

Breadcrumb

Threat Research

Matthew McWhirt, Jon Erickson, DJ Palombo

May 03, 2017

4 mins read

In 2017, Mandiant responded to multiple incidents we attribute to FIN7, a financially
motivated threat group associated with malicious operations dating back to 2015.
Throughout the various environments, FIN7 leveraged the CARBANAK backdoor, which this
group has used in previous operations.

https://www.fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html

2/11

A unique aspect of the incidents was how the group installed the CARBANAK backdoor for
persistent access. Mandiant identified that the group leveraged an application shim database
to achieve persistence on systems in multiple environments. The shim injected a malicious
in-memory patch into the Services Control Manager (“services.exe”) process, and then
spawned a CARBANAK backdoor process.

Mandiant identified that FIN7 also used this technique to install a payment card harvesting
utility for persistent access. This was a departure from FIN7’s previous approach of installing
a malicious Windows service for process injection and persistent access.

Application Compatibility Shims Background

According to Microsoft, an application compatibility shim is a small library that transparently
intercepts an API (via hooking), changes the parameters passed, handles the operation
itself, or redirects the operation elsewhere, such as additional code stored on a
system. Today, shims are mainly used for compatibility purposes for legacy applications.
While shims serve a legitimate purpose, they can also be used in a malicious manner.
Mandiant consultants previously discussed shim databases at both BruCon and BlackHat.

Shim Database Registration

There are multiple ways to register a shim database on a system. One technique is to use
the built-in “sdbinst.exe” command line tool. Figure 1 displays the two registry keys created
when a shim is registered with the “sdbinst.exe” utility.

https://technet.microsoft.com/en-us/library/dd837644(v=ws.10).aspx
https://blogs.technet.microsoft.com/askperf/2011/06/17/demystifying-shims-or-using-the-app-compat-toolkit-to-make-your-old-stuff-work-with-your-new-stuff/
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
https://www.blackhat.com/docs/asia-14/materials/Erickson/Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
https://technet.microsoft.com/en-us/library/cc749169(v=ws.10).aspx

3/11

Shim database registry keys

Figure 1: Shim database registry keys
Once a shim database has been registered on a system, the shim database file (“.sdb” file
extension) will be copied to the “C:\Windows\AppPatch\Custom” directory for 32-bit shims or
“C:\Windows\AppPatch\Custom\Custom64” directory for 64-bit shims.

Malicious Shim Database Installation

To install and register the malicious shim database on a system, FIN7 used a custom
Base64 encoded PowerShell script, which ran the “sdbinst.exe” utility to register a custom
shim database file containing a patch onto a system. Figure 2 provides a decoded excerpt
from a recovered FIN7 PowerShell script showing the parameters for this command.

4/11

Excerpt from a FIN7 PowerShell script to install a custom shim

Figure 2: Excerpt from a FIN7 PowerShell script to install a custom shim
FIN7 used various naming conventions for the shim database files that were installed and
registered on systems with the “sdbinst.exe” utility. A common observance was the creation
of a shim database file with a “.tmp” file extension (Figure 3).

5/11

Malicious shim database example

Figure 3: Malicious shim database example
Upon registering the custom shim database on a system, a file named with a random GUID
and an “.sdb” extension was written to the 64-bit shim database default directory, as shown
in Figure 4. The registered shim database file had the same MD5 hash as the file that was
initially created in the “C:\Windows\Temp” directory.

6/11

Shim database after registration

Figure 4: Shim database after registration
In addition, specific registry keys were created that correlated to the shim database
registration. Figure 5 shows the keys and values related to this shim installation.

7/11

Shim database registry keys

Figure 5: Shim database registry keys
The database description used for the shim database registration, “Microsoft KB2832077”
was interesting because this KB number was not a published Microsoft Knowledge Base
patch. This description (shown in Figure 6) appeared in the listing of installed programs
within the Windows Control Panel on the compromised system.

8/11

Shim database as an installed application

Figure 6: Shim database as an installed application

Malicious Shim Database Details

During the investigations, Mandiant observed that FIN7 used a custom shim database to
patch both the 32-bit and 64-bit versions of “services.exe” with their CARBANAK payload.
This occurred when the “services.exe” process executed at startup. The shim database file
contained shellcode for a first stage loader that obtained an additional shellcode payload
stored in a registry key. The second stage shellcode launched the CARBANAK DLL (stored
in a registry key), which spawned an instance of Service Host (“svchost.exe”) and injected
itself into that process.

Figure 7 shows a parsed shim database file that was leveraged by FIN7.

https://github.com/williballenthin/python-sdb

9/11

Parsed shim database file

Figure 7: Parsed shim database file
For the first stage loader, the patch overwrote the “ScRegisterTCPEndpoint” function at
relative virtual address (RVA) “0x0001407c” within the services.exe process with the
malicious shellcode from the shim database file.

The new “ScRegisterTCPEndpoint” function (shellcode) contained a reference to the path of
“\REGISTRY\MACHINE\SOFTWARE\Microsoft\DRM”, which is a registry location where
additional malicious shellcode and the CARBANAK DLL payload was stored on the system.

Figure 8 provides an excerpt of the parsed patch structure within the recovered shim
database file.

10/11

Parsed patch structure from the shim database file

Figure 8: Parsed patch structure from the shim database file
The shellcode stored within the registry path “HKLM\SOFTWARE\Microsoft\DRM” used the
API function “RtlDecompressBuffer” to decompress the payload. It then slept for four minutes
before calling the CARBANAK DLL payload's entry point on the system. Once loaded in
memory, it created a new process named “svchost.exe” that contained the CARBANAK DLL.

Bringing it Together

Figure 9 provides a high-level overview of a shim database being leveraged as a persistent
mechanism for utilizing an in-memory patch, injecting shellcode into the 64-bit version of
“services.exe”.

11/11

Shim database code injection process

Figure 9: Shim database code injection process

Detection

Mandiant recommends the following to detect malicious application shimming in an
environment:

1. Monitor for new shim database files created in the default shim database directories of
“C:\Windows\AppPatch\Custom” and “C:\Windows\AppPatch\Custom\Custom64”

2. Monitor for registry key creation and/or modification events for the keys of
“HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Custom”
and “HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\InstalledSDB”

3. Monitor process execution events and command line arguments for malicious use of
the “sdbinst.exe” utility

