
1/15

May 3, 2017

Deep Analysis of New Emotet Variant – Part 1
blog.fortinet.com/2017/05/03/deep-analysis-of-new-emotet-variant-part-1

Threat Research

By Xiaopeng Zhang | May 03, 2017

Background

Last week, FortiGuard Labs captured a JS file that functions as a malware downloader to
spread a new variant of the Emotet Trojan. Its original file name is
Invoice__779__Apr___25___2017___lang___gb___GB779.js. A JS file, as you may be
aware, is a JavaScript file that can be executed by a Window Script Host (wscript.exe) simply
by double-clicking on it. In this blog we will analyze how this new malware works by walking
through it step by step in chronological order.

A JS file used to spread malware

The original JS code is obfuscated, and therefore hard to understand. Based on my analysis,
its task is to generate a new JS code into an array and execute it. The new code is easier to
understand, as you can see in the code snippet in Figure 1. As I mentioned, it’s a
downloader tool that tries to download malware from five URLs onto the affected device.
Once one download is finished, the malware is saved to the system temporary folder as
“random name.exe” and executed.

http://blog.fortinet.com/2017/05/03/deep-analysis-of-new-emotet-variant-part-1
http://blog.fortinet.com/blog/search?author=Xiaopeng+Zhang

2/15

Figure 1. Snippet of the generated JS code

Running the downloaded exe file

While the downloaded exe file is executed, it moves itself to “%LocalAppData%\random
name\random name.exe” . A random name for the file is generated using local file names.
You can treat it as any random name, however, in my environment, the name is
“LatnParams.exe”.

To protect itself, once LatnParams.exe is executed it extracts code from itself, inserts it into a
newly-created LatnParams.exe by calling the CreateProcessW function with a
CREATE_SUSPENDED flag, and then restores the second process to run. Once that is
complete, the first process exits. Later, the LatnParams.exe’s lnk file is created inside the
Startup folder in the system Start Menu so it can automatically run whenever the system
starts. See Figure 2.

3/15

Figure 2. Malware in Startup folder

The main function of the second process

Next, we’ll look to see how the code works inside the second process that is created. There
is a hidden window created for the second process. Its WindowProc function is to handle all
windows messages for the window. This malware uses a WM_TIMER message to initiate it.
Calling the SetTimer function can generate such a message.

Once this window is created, a WM_CREATE message is sent to the WindowProc function,
where it calls the SetTimer function to keep the system posting WM_TIMER messages every
200ms and then callback the window’s WindowProc function.

4/15

Figure 3. Call SetTimer Function

Next, we will examine this WindowProc function. Figure 4 is the structure of this function in
pseudo code.

5/15

Figure 4. WindowProc Function

Case 6 Code Branch

In the case 6 code branch, the malware collects system information from the affected device,
including computer name, country name, the names of all running programs, and content
about whether or not MS Office Outlook is installed. It then puts all the collected data
together into a memory buffer and encrypts it. Figure 5 shows the data ready for encryption.

6/15

Figure 5. Collected data from the victim’s system

As you can see, the first part is the computer name. Following “16 00 01 00” is the CPU
information. The next part is the running process names, followed by the string “Microsoft
Outlook,” which means that MS Office Outlook is installed on this machine. You may also
notice that the debugger name “OllyDBG.exe” is also in the process name list. Through my
analysis I found that the C&C server checks the process names. If it learns that a debugging-
related tool (such as OllyDbg, WinDbg, IDA Pro, etc.) is being running on the victim’s
machine, a different response is returned. In this case, it replies with a new version of itself,
causing itself to upgrade again and again until those tools exit.

After encryption, it copies the encrypted data, the encryption key, and the hash value
together into a new buffer. It then sets the next case number to 7 and exits the case 6
branch.

Case 7 Code Branch

In the case 7 code branch the main function is to connect to the C&C server and send
collected data to the server. It also receives data from the C&C server. We’ll take a look at
how it works here.

7/15

The C&C server’s IP and port are hard-coded. In this version there are eleven, as shown
below:

004175D0 ; DATA XREF: WindowProc+257r

004175D0 ;sub_403AE0+Co

004175D0 dd 0D453A62Dh ;212.83.166.45

004175D4 dd 1F90h ;8080

004175D8 dd 0ADE68843h ;173.230.136.67

004175DC dd 1BBh ;443

004175E0 dd 0ADE0DA19h ;173.224.218.25

004175E4 dd 1BBh ;443

004175E8 dd 68E38922h ;104.227.137.34

004175EC dd 1BA8h ;7080

004175F0 dd 894AFE40h ;137.74.254.64

004175F4 dd 1F90h ;8080

004175F8 dd 0BCA5DCD6h ;188.165.220.214

004175FC dd 1F90h ;8080

00417600 dd 558FDDB4h ;85.143.221.180

00417604 dd 1BA8h ;7080

00417608 dd 77521BF6h ;119.82.27.246

0041760C dd 1F90h ;8080

00417610 dd 0C258F607h ;194.88.246.7

00417614 dd 1F90h ;8080

00417618 dd 0CED6DC4Fh ;206.214.220.79

0041761C dd 1F90h ;8080

00417620 dd 68EC02FDh ;104.236.2.253

00417624 dd 1BBh ;443

It gets the data generated in the case 6 branch and encodes it using base64. It then sends
the base64-encoded data as a Cookie value to the C&C server. Figure 6 shows the data in
Wireshark.

8/15

Figure 6. Send collected system information to C&C server

In Figure 6, the status of the response from C&C server is “404 Not Found.” This message is
used is to confuse analysts. The body, however, is the encrypted data. After receiving all
data from the server, it sets the next case number to 8 and exits this branch.

Case 8 Code Branch

The only thing done in the case 8 branch is decrypt the data received in case 7. It then exits
this branch and sets the next case number to 9.

Case 9 Code Branch

The case 9 branch is used to process the data decrypted in case 8. Figure 7 is a part of the
pseudo code of case 9.

9/15

Figure 7. Pseudo code of case 9

There are some sub-cases in the case 9 branch. The case number “v8” comes from
decrypted data. Following are two examples of the decrypted data.

In Figure 8, “08 01” is about a sub-case. “08” is a kind of flag or C&C command, and “01”
refers to sub-case number 1. As you may know, the following data is an .exe file. In the sub-
case 1 branch, this file is executed to upgrade the Emotet malware. Usually, it receives an
upgrade command because the C&C server has detected that there is debugging-related
tool in the running program names. It’s a way to both protect itself against debugging and
confuse analysts. In sub-case 1 branch, it saves the .exe file into a system temporary folder
and runs it by calling the ShellExecuteW function. Meanwhile, the parent process exits to
finish the upgrade.

10/15

Figure 8. Sub-case 1 example

11/15

Figure 9. Sub-case 4 example

I manually modified the “OllyDBG.exe” to another program name before encryption (refer
back to Figure 5). Then I was able to get the response shown in Figure 9. The flag changes
to “08 04”, where “04” means sub-case number 4. In my analysis, it contains 3 modules (.dll
files) in the decrypted data. The flags for all of them are “08 04”. Which means the modules
are all processed in the sub-case 4 branch. As you can see in Figure 7, the sub-case 4 calls
the CreateThread function to create threads and run the modules in the ThreadFunction, with
one thread for one module.

12/15

So far, we have only finished the analysis of one of the three Emotet modules. We are still
working on analyzing the others, and will share that analysis in another blog.

So next, let’s take a look at what this module is able to do.

The module loaded in a thread

Based on my analysis, this module steals credential information from a victim’s machine. It
then encrypts that stolen data and sends it to the C&C server.

When this module is loaded in the ThreadFunction, it inserts the code extracted from itself
into a newly-created LathParams.exe process to run. The newly-created process has a
command line parameter like “%temp%\A98b.tmp”. This is a temporary file used to save the
stolen credential information.

It is able to steal credentials for Google accounts, FTP accounts saved in IE, Google Talk,
Office Outlook, IncrediMail, Group Mail, MSN Messenger, Mozilla Thunderbird, and many
others. The following screenshot shows some of them.

Figure 10. Targeted email-related credentials

13/15

For testing purposes, I added a test account into MS Office Outlook to see how it works. The
account profile is shown here in Figure 11:

Figure 11. Test account added into Outlook

The stolen credential data is saved in the temporary file specified in the command line
parameter, where it will be encrypted and sent to the C&C server in the ThreadFunction. In
the following several figures you can see the stolen credential information in the temporary
file, the data in memory before encryption, and the data sent to the C&C server.

14/15

Figure 12. Stolen credential

Figure 13. Before encryption

15/15

Figure 14. Data sent to the C&C server

Solution

The original JS file has been detected as JS/Nemucod.F436!tr and the downloaded Emotet
exe has been detected as W32/GenKryptik.ADJR!tr by the FortiGuard Antivirus service.

IoC

URL:

"hxxp://willemberg.co.za/TwnZ36149pKUsr/"

"hxxp://meanconsulting.com/K44975X/"

"hxxp://microtecno.com/i17281nfryG/"

"hxxp://thefake.com/Y96158yeXR/"

"hxxp://cdoprojectgraduation.com/eaSz15612O/"

Sample SHA256:

Invoice__779__Apr___25___2017___lang___gb___GB779.js

B392E93A5753601DB564E6F2DC6A945AAC3861BC31E2C1E5E7F3CD4E5BB150A4

Related Posts

Copyright © 2022 Fortinet, Inc. All Rights Reserved

Terms of ServicesPrivacy Policy
| Cookie Settings

https://www.fortinet.com/corporate/about-us/legal.html
https://www.fortinet.com/corporate/about-us/privacy.html

