Use of DNS Tunneling for C&C Communications

SL securelist.com/use-of-dns-tunneling-for-cc-communications/78203/

Authors

o n Alexey Shulmin

- Expert _Sergey Yunakovsky

— Say my name.
- 127.0.0.1!
— You are goddamn right.

Network communication is a key function for any malicious program. Yes, there are
exceptions, such as cryptors and ransomware Trojans that can do their job just fine without
using the Internet. However, they also require their victims to establish contact with the threat
actor so they can send the ransom and recover their encrypted data. If we omit these two
and have a look at the types of malware that have no communication with a C&C and/or
threat actor, all that remains are a few outdated or extinct families of malware (such as
Trojan-ArcBomb), or irrelevant, crudely made prankware that usually does nothing more than
scare the user with screamers or switches mouse buttons.

1/8

https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/author/alexeyshulmin/
https://securelist.com/author/sergeyyunakovsky/

Malware has come a long way since the Morris worm, and the authors never stop looking for
new ways to maintain communication with their creations. Some create complex, multi-tier
authentication and management protocols that can take weeks or even months for analysists
to decipher. Others go back to the basics and use IRC servers as a management host — as
we saw in the recent case of Mirai and its numerous clones.

Often, virus writers don’t even bother to run encryption or mask their communications:
instructions and related information is sent in plain text, which comes in handy for a
researcher analyzing the bot. This approach is typical of incompetent cybercriminals or even
experienced programmers who don’t have much experience developing malware.

However, you do get the occasional off-the-wall approaches that don’t fall into either of the
above categories. Take, for instance, the case of a Trojan that Kaspersky Lab researchers
discovered in mid-March and which establishes a DNS tunnel for communication with the
C&C server.

The malicious program in question is detected by Kaspersky Lab products as
Backdoor.Win32.Denis. This Trojan enables an intruder to manipulate the file system, run
arbitrary commands and run loadable modules.

Encryption

Just like lots of other Trojans before it, Backdoor.Win32.Denis extracts the addresses of the
functions it needs to operate from loaded DLLs. However, instead of calculating the
checksums of the names in the export table (which is what normally happens), this Trojan
simply compares the names of the API calls against a list. The list of APl names is encrypted
by subtracting 128 from each symbol of the function name.

It should be noted that the bot uses two versions of encryption: for API call names and the
strings required for it to operate, it does the subtraction from every byte; for DLLs, it subtracts
from every other byte. To load DLLs using their names, LoadLibraryW is used, meaning wide
strings are required.

for § i = =u6; =uB; ++uB)
*#*y8 += Bx80u;
*(WORD *)u@ += 128;
uB = (int *)}{{char =)}ud + 2);
e

while { ={ WORD =)uvd };

‘Decrypting’ strings in the Trojan

2/8

https://en.wikipedia.org/wiki/Morris_worm
https://securelist.com/is-mirai-really-as-black-as-its-being-painted/76954/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07175811/backdoor_dns_eng_1.png

mow [ebp+var_ 48], ax

mow [ebp+uvar_14], ; GetlUserHameWSetThreadToken
mow [ebp+var_18],

mow [ebp+var_C],

mou [ebp+var_ 8], bl

mou [ebp+var_34], ; SetThreadToken
mou [ebp+var_38],

mou [ebp+var_2C],

mow [ebp+var_ 28],

mow [ebp+var_26],

mow [ebp+uvar_iai4], : OpenThreadToken
mow [ebp+var_48],

mou [ebp+var_ 3C],

mou [ebp+var_ 38],

mou [ebp+var_24], ; RevertToSelfA
mou [ebp+var_28],

mow [ebp+var_1C],

mow [ebp+var_18],

mow [ebp+uvar_64],

mow [ebp+var_68],

mou [ebp+var 58], ; Advapiz2

mou [ebp+var_ 54],

mou [ebp+var 58],

_uc],

mou [ebp+uar

Names of API functions and libraries in encrypted format

It should also be noted that only some of the functions are decrypted like this. In the body of
the Trojan, references to extracted functions alternate with references to functions received
from the loader.

C&C Communication

The principle behind a DNS tunnel’s operation can be summed up as: “If you don’t know, ask
somebody else”. When a DNS server receives a DNS request with an address to be
resolved, the server starts looking for it in its database. If the record isn’t found, the server
sends a request to the domain stated in the database.

Let’'s see how this works when a request arrives with the URL Y3VyaW9zaXR5.example.com
to be resolved. The DNS server receives this request and first attempts to find the domain
extension ‘.com’, then ‘example.com’, but then it fails to find “Y3VyaW9zaXR5.example.com’
in its database. It then forwards the request to example.com and asks it if such a name is
known to it. In response, example.com is expected to return the appropriate IP; however, it
can return an arbitrary string, including C&C instructions.

3/8

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07175807/backdoor_dns_eng_2.png

55 9,281602 16.14.9.2 10.14.8.255 NBNS 92 Name gquery NB WPAD<@@>

56 18.845564 18.14.0.2 10.14.8.255 NENS 92 Name query NB WPAD<B@»

59 18, 509907 10.14.9.2 10.14.8.255 NENS 92 Name query NE WPAD<BG>

1 8.000000 10.14.8.2 google-public-dns-a.google.com DNS 322 Standard query @x8214 NULL 8.z.teriava.com
17@ 106.110691 18.14.98.2 google-public-dns-a.google.com DNS 322 Standard query @x8214 NULL vL®Vug 4 b.z.teriava.com
166 182.163915 18.14.0.2 google-public-dns-a._google.com DNS. 322 Standard query 8x@214 NULL vLBVugAAAAAAAAAAAL AAAAAAAMK .2 . teriava.com
a5 37.486263 10.14.0.2 google-public-dns-a.google.com DNS 322 Standard query @x8214 NULL vLEVugAAAAAAAAAAAAAAAAAAAAAAAANI.Z.teriava.com
168 184.3480853 10.14.0.2 google-public-dns-a.google.com DNs 322 Standard query @x8214 NULL vL8Vug h4.z.teriava.com
97 39.170947 18.14.90.2 google-public-dns-a.google.com DNS 322 Standard query @x8214 NULL vL®Vug 4 .Z.teriava.com
99 48.855848 18.14.9.2 google-public-dns-a.google.com DNS. 322 Standard query @x8214 NULL vLBVugAAAAAAALL A AARAAAABLU. 2 teriava.com
172 187,795578 10.14.8.2 google-public-dns-a.google.com DNS 322 Standard query @x8214 NULL vLEVugAAAAAAAAAAAAAAAAAAAAAAABXW.Z.teriava.com
101 42.634241 18.14.8.2 google-public-dns-a.google.com DNS 322 Standard query @x8214 NULL vL@Vug .z.teriava.com
174 189.527881 18.14.98.2 google-public-dns-a.google.com DNS 322 Standard query @x8214 NULL vL®Vug 4 By@.z.teriava.com
109 47.688669 10.14.8.2 google-public-dns-a.google.com DNS. 322 Standard query @x8214 NULL vLBVugAMAAAAAAL AAAAAAAAARAA 2F.2.teriava.com
183 44,319045 10.14.0.2 google-public-dns-a.google.com DNS 322 Standard query @x8214 NULL vLEVugAAAAAAAAAAAAAAAAAAAAAAACBC.Z.teriava.com
187 46.0803830 18.14.8.2 google-public-dns-a.google.com DNS 322 Standard query @x8214 NULL vL@Vug bw.z.teriava.com
113 49.373387 18.14.98.2 google-public-dns-a.google.com DNS 322 Standard query @x8214 NULL vL®Vug 4 DQa.z.teriava.com

Dump of Backdoor.Win32.Denis traffic

This is what Backdoor.Win32.Denis does. The DNS request is sent first to 8.8.8.8, then
forwarded to z.teriava[.Jcom. Everything that comes before this address is the text of the
request sent to the C&C.

Here is the response:

ac -68 61 68 66-806

L © BE-868 06
BE BB 6B BO-06 BB 0P PO-B6 OB PO BO-B66 BB BB 68
2B 90 09 ©0-10 00 OO ©©-13 ©0 90 BB-78 9C 63 61 4 - I xfca
66 68 D8 B3-57 74 17 83-14 B8 88 18-9B 82 4D D2 “+|Wt¢?ﬂ TEaMT

DNS packet received in response to the first request

Obviously, the request sent to the C&C is encoded with Base64. The original request is a
sequence of zeros and the result of GetTickCount at the end. The bot subsequently receives
its unique ID and uses it for identification at the start of the packet.

The instruction number is sent in the fifth DWORD, if we count from the start of the section
highlighted green in the diagram above. Next comes the size of the data received from C&C.
The data, packed using zlib, begins immediately after that.

The unpacked C&C response

The first four bytes are the data size. All that comes next is the data, which may vary
depending on the type of instruction. In this case, it's the unique ID of the bot, as mentioned
earlier. We should point out that the data in the packet is in big-endian format.

4/8

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07175803/backdoor_dns_eng_3.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07175759/backdoor_dns_eng_4.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07175754/backdoor_dns_eng_5.png

5Ta
Input e

leng

v LEVUEAAAAAALAAALANAAAAAAAALAATEW

start: 1e _ time: ©ms
Output end: 21 length: 147] save

length: 11 lines: 2

00000000 [JELESERE 00 90 @0 @0 20 09 0O 00 00 00 80 88 |MM.2............ |
PBeceals 0P BB 8B @0 e 88 21 38 eeennn. 8|

The bot ID (highlighted) is stated at the beginning of each request sent to the C&C

C&C Instructions

Altogether, there are 16 instructions the Trojan can handle, although the number of the last
instruction is 20. Most of the instructions concern interaction with the file system of the
attacked computer. Also, there are capabilities to gain info about open windows, call an
arbitrary API or obtain brief info about the system. Let us look into the last of these in more
detail, as this instruction is executed first.

enum CHDS
CHD _API_RUH
CHD FREE LIB
CHD_PROC_START
CHD_READ_FILE
CHD_SHELL_RES
CHD_HOHE
CHD WRITE
CHD_EHUM_WIHDOWS
CHD_SET_REG
CHD REG
CHD_FIHD
CHDS HMOUE
CHD_DELETE
CHD DRUS_TIHF
CHD CREATE_DIR
CHD REHMOUE

Complete list of C&C instructions

5/8

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07175751/backdoor_dns_eng_6.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07175747/backdoor_dns_eng_7.png

length: 123

lines: 1 & Clearlio ||| Resetlayout

Input

vLEVUgQALAAAAAEAAAAAAALAAAAAAHNQ> AAAAADWAAAAZAAAAR I xZcQz ZdNENCGYAgkfTEZrmle TVT LAUGVVY__zHLjbtQen8X0EIMbIyMDIWMTAXWAAEF2EAL

time: 1ms
Output '_?r)g'th: 545) savetoile g Move outputto input Undo | % Max
ines.

60000088 44 41 56 40 44 2d 59 43 99 8@ 00 88 e2 97 bS 41 |DAVID-PC....&.pA|
00200918 6e 74 6Ff Ge 79 9@ 43 22 02 82 08 2 97 b5 76 7a |ntony.C....d.pvz|
Beeeee2e dS 0O @0 90 99 20 90 98 99 O° B2 0O B0 90 @8 80 |5

00000030 60 00 00 dd 00 00 00 PO 02 80 00 5c 8d 7a d5 80 [...V....... v.zO. |
6P06BR40 00 0P @0 06 00 90 00 00 69 00 0O 60 00 00 @D 88 |................ |
00000050 60 dd @0 00 0O 00 0O PO 08 Sc 8d 7a d5 @0 08 80 [.Y....... \azle. |
©PEERA6e B0 5c 1c 1c 96 8@ @0 5c 1c 1c 8@ 80 51 61 58 48 |.\.....QaP@|

Information about the infected computer, sent to the C&C

As can be seen in the screenshot above, the bot sends the computer name and the user
name to the C&C, as well as the info stored in the registry branch
Software\INSUFFICIENT\INSUFFICIENT.INI:

o Time when that specific instruction was last executed. (If executed for the first time,
‘GetSystemTimeAsFileTime' is returned, and the variable BounceTime is set, in which
the result is written);

o UsageCount from the same registry branch.

Information about the operating system and the environment is also sent. This info is
obtained with the help of NetWkstaGetInfo.

The data is packed using zlib.

The DNS response prior to Base64 encoding

The fields in the response are as follows (only the section highlighted in red with data and
size varies depending on the instruction):

e BotID;

o Size of the previous C&C response;

e The third DWORD in the C&C response;
e Always equals 1 for a response;

o GetTickCount();

o Size of data after the specified field;

e Size of response;

6/8

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07175742/backdoor_dns_eng_8.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07175739/backdoor_dns_eng_9.png

¢ Actual response.

After the registration stage is complete, the Trojan begins to query the C&C in an infinite
loop. When no instructions are sent, the communication looks like a series of empty queries
and responses.

81 25.708193 10.14.8.2 8.8.5.8 ons
B2 25675838 8.8.5.8 10.14.8.2 s . com
83 27.377428 10.14.8.2 8.8.8.8 s 322 st
84 27.558399 B.8.8.8 10.14.8.2 ons 138 Standar . com
85 29062226 18.14.9.2 8.8.8.8 S 322 Standar
86 29, 226077 8.8.8.8 10.14.0.2 s 138 standar . com
87 30,746982 18.14.8.2 8.8.8.8 s 322 Standare
8B 38.528358 B.5.5.8 10.14.8.2 ons 138 Standar con
69 32,431753 18.14.8.2 8.8.8.8 ons 322 Standare
28 32.603353 B8.5.8.8 10.14.8.2 s 138 Standa . com
91 34.116537 18.14.8.2 B.8.5.8 ons 322 Standare
92 32287321 8.8.85.8 10.12.8.2 s 138 standa . com
a3 35, Ba1482 10.14.8.2 B.8.8.8 ons 322 Stan
34 35972048 B.5.5.8 10.14.8.2 ows 138 Standa con
95 37486263 10.14.8.2 B.8.5.8 ons 322 Stam
96 37658632 8.5.5.8 10.14.8.2 oS 138 Standard query response BxBIl4 NULL wLBVUBAAMAAAMAARAAAARAAARAARA Y LL YLOVUBAMAAAAAAAAAAAAARAAARAAAS . 2 . Erdava, con
47 39.170547 18.14.8.2 8.8.8.8 ons 322 Standard query G214 MILL wLSVUBAAAAAAMAAL A . 7. &

98 39, 344424 8.8.5.8 10.14.8.2 ons 138 Standard query response SxBZ14 MULL wUBVUBAAAAAAMAAMAAAAAMARMAASAAY AVUBAAAAAARAAAAAAAAAMAANAARALA, . con
39 28.655848 10.14.8.2 B.8.8.8 ons 322 Standard query BxB214 NULL wLEVUBAAMALAAMAAAAAAAAAAAAASSABL
108 41.128042 B8.5.5.8 18.14.8.2 s 138 Standard query response BxBlld MILL wLBVUBAAAAAAAAAAAARARAAARAAAN ILL VLBVUBARAAAAAARARARAAARAARRARSILLL. 7 . ter i ava. con

101 52.639241 10.14.8.2 B.8.8.8 s 322 standard query BXBILS MULL VLEVUBAAAAAAAARAAMAAASARAARAAEIH
102 42, 58BEET 8.8.8.8 10.14.8.2 ons 138 Standard query response SxB214 MULL wLBVUBAMMAAAAMAAAMALAAAMAAM - VLIV AAAAAAMAAAAMAMAMAAAAAABH, 2 . ter Lava, con

183 44,319845 19.14.8.2 8.8.8.8 s 322 Standard query BxB214 MULL vLVUBAMAMAARAAAANAAAAAARANAATEC . b
104 44, 498963 6.8.5.5 10.14.8.2 RS 138 Standard query response Sx@Zlé MILL wLBVUBAMARAAMAMAAAAAAAAMAMCEE , 2. teriave.com HULL vLIVUBAAARMARMAAMAAAAMIARACEE, 2 . ter Lave, con

Sequence of empty queries sent to the C&C

Conclusion

The use of a DNS tunneling for communication, as used by Backdoor.Win32.Denis, is a very
rare occurrence, albeit not unique. A similar technique was previously used in some POS
Trojans and in some APTs (e.g. Backdoor.Win32.Gulpix in the PlugX family). However, this
use of the DNS protocol is new on PCs. We presume this method is likely to become
increasingly popular with malware writers. We’ll keep an eye on how this method is
implemented in malicious programs in future.

MD5

facec411b6d6aa23ff80d1366633ea7a
018433e8e815d9d2065e57b759202edc
1a4d58e281103fea2a4ccbfab93f74d2
5394b09cf2a0b3d1caaecc46c0e502e3
5421781c2c05e64ef20be54e2ee32e37

o Backdoor

 DNS

o Malware Descriptions
o Malware Technologies
e Trojan

Authors

o n Alexey Shulmin

7/8

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/04/07175734/backdoor_dns_eng_10.png
https://securelist.com/blog/research/66960/winnti-returns-with-plugx/
https://securelist.com/tag/backdoor/
https://securelist.com/tag/dns/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/trojan/
https://securelist.com/author/alexeyshulmin/

Sergey_Yunakovsky

Use of DNS Tunneling for C&C Communications

Your email address will not be published. Required fields are marked *

8/8

https://securelist.com/author/sergeyyunakovsky/

