
1/26

Robert Falcone April 27, 2017

OilRig Actors Provide a Glimpse into Development and
Testing Efforts

unit42.paloaltonetworks.com/unit42-oilrig-actors-provide-glimpse-development-testing-efforts/

By Robert Falcone

April 27, 2017 at 1:00 PM

Category: Unit 42

Tags: Clayside, Helminth, OilRig, OilRig attacks

This post is also available in: 日本語 (Japanese)

Throughout an attack campaign, actors will continue to develop their tools in an attempt to
remain undetected and to carry out multiple attacks without having to completely retool. In
regard to the attack lifecycle, development of tools occurs in the weaponization/staging
phase that precedes the delivery phase, of which is typically the first opportunity we see the
actors’ activities as they interact directly with their target. We have been presented with a
rare opportunity to see some development activities from the actors associated with the
OilRig attack campaign, a campaign Unit 42 has been following since May 2016. Recently
we were able to observe these actors making modifications to their ClaySlide delivery
documents in an attempt to evade antivirus detection.

https://unit42.paloaltonetworks.com/unit42-oilrig-actors-provide-glimpse-development-testing-efforts/
https://unit42.paloaltonetworks.com/author/robertfalcone/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/clayside/
https://unit42.paloaltonetworks.com/tag/helminth/
https://unit42.paloaltonetworks.com/tag/oilrig/
https://unit42.paloaltonetworks.com/tag/oilrig-attacks/
https://unit42.paloaltonetworks.jp/unit42-oilrig-actors-provide-glimpse-development-testing-efforts/
https://blog.paloaltonetworks.com/tag/oilrig-attacks/
https://blog.paloaltonetworks.com/tag/clayside/


2/26

We have identified two separate testing efforts carried out by the OilRig actors, one occurring
in June and one in November of 2016. The sample set associated with each of these testing
activities is rather small, but the changes made to each of the files give us a chance to
understand what modifications the actor performs in an attempt to evade detection. This
testing activity also suggests that the threat group responsible for the OilRig attack campaign
have an organized, professional operations model that includes a testing component to the
development of their tools.

Testing Activity, Analysis, and Methodology

We collected two sets of ClaySlide samples that appear to be created during the OilRig
actor’s development phase of their attack lifecycle. The threat actor uploaded each of these
files to a popular antivirus testing website to find out which vendors detected the file. The
actor then made subtle modifications to the file and uploaded the newly created file to the
same popular antivirus testing website in order to determine how to evade detection. The
flowchart in Figure 1explains the process in which the threat actors followed during their
testing activities.



3/26

Figure 1 Flowchart describing the testing process carried out by OilRig actor

Lucky for us, the threat actors do not modify the metadata within their delivery documents,
which allows us to determine when the actor last modified each Word document. These
untainted timestamps allow us to create a timeline that we can use to order the files as they
were created by the actor. Our analysis methodology involves iteratively comparing each file
with the next file in the timeline to determine the changes the actor made to the first file that
resulted in the creation of the second file.

The first testing activity we observed began with an initial sample created on June 13, 2016
with 17 subsequent files created for testing purposes that the actor created in a two-hour
period on June 15, 2016. Table 1shows the samples we observed associated with the June
2016 testing activity, including the iteration, the last modified timestamp, the hash, the
filename, and the antivirus detection rate of the newly created file. The first “ttt.xls” file and
the files with incrementing filenames have the same decoy contents, which is the reason we

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_1.png


4/26

initially included this sample with this group despite the difference in naming. Also, the
filename “ttt.xls” contains the acronym for “to the top”, which is common usage in Internet
forums and could depict the actor starting testing activities.

Iteration Modified SHA256 Filename AV

Base 2016:06:13 05:28:32 742a52084162d3789e19... ttt.xls 4

1 2016:06:15 05:24:25 f1de7b941817438da2a4... 1.xls 6

2 2016:06:15 05:28:11 b142265bb4b902837d83... 2.xls 0

3 2016:06:15 05:30:45 2e226a0210a123ad8288... 3.xls 2

4 2016:06:15 05:33:11 299bc738d7b0292820d9... 4.xls 4

5 2016:06:15 05:39:55 6e62308b94455569b8a1... 5.xls 2

6 2016:06:15 05:42:20 d64b46cf42ea4a7bf291... 6.xls 1

7 2016:06:15 05:47:09 77f8a267357a8d237e0b... 8.xls 1

8 2016:06:15 05:52:50 92f429b6f9b8031b5fc6... 9.xls 3

9 2016:06:15 05:55:01 c2a386723d8f203e1228... 10.xls 2

10 2016:06:15 05:57:50 2fb6bce8fc2f531de183... 11.xls 2

11 2016:06:15 06:00:24 75b033a40a756e2536d0... 12.xls 2

12 2016:06:15 06:10:46 8bb8f2bada27d14be021... 13.xls 1

13 2016:06:15 06:13:30 3af6dfa4cebd82f48b66... 14.xls 2

14 2016:06:15 06:16:27 82239a4e18a67f7b2ba0... 15.xls 2

15 2016:06:15 06:19:45 938101a1a336ce0fff57... 16.xls 2

16 2016:06:15 07:02:49 5e9ddb25bde3719c392d... ttt.xls 4

17 2016:06:15 07:39:53 4190a8b8e6fa7bc37712... ttt.xls 0

Table 1 Samples associated with the June 2016 testing activities

The second testing activity of ClaySlide delivery documents began with the actor creating a
base sample on November 14, 2016, followed by six subsequent test files created within a
30-minute window on the following day. Table 2 shows the pertinent information related to
the ClaySlide testing activity that occurred in November 2016. Again, there was an obvious
difference in filenames at the beginning of this activity, but we included the first two samples



5/26

in with this group based on the first two files initially sharing decoy contents, but more
importantly sharing the same macro code and payload scripts as the initial testing sample
with the filename of “weak.xls”.

Iteration Modified SHA256 Filename AV

Base 2016:11:14 04:15:57 ae40262d5fad4bc48066... Tables[Update].xls 5

1 2016:11:15 07:53:50 16880db37c35d4b28e68... 33.xls 5

2 2016:11:15 07:56:09 47054a8d380c197a7f32... weak.xls 5

3 2016:11:15 08:05:52 e9ccf7a3c1e24f173ae9... weak.xls 3

4 2016:11:15 08:12:11 e3c6f13dc3079a828386... weak.xls 3

5 2016:11:15 08:14:35 427ce6b04d4319eeb84d... weak.xls 2

6 2016:11:15 08:19:55 18b603495f8344c02468... weak.xls 2

Table 2 Samples associated with the November 2016 testing activity

By analyzing the changes made to the ClaySlide delivery document during these two
separate testing activities we were able to gain insight into the techniques used by the actors
during the testing. Before reviewing the activities performed in the two testing sessions, the
following high level observations can be made:

Patterns in filenames emerge, with testing files having the same word or incrementing
numbers for the filenames, or a set of testing files sharing the same exact filename
Very structured approach, using a baseline test sample followed by small iterative
changes
Actor may also revert back to the baseline test sample and continue testing
Changes made only a few minutes apart and can involve:

Removal or location change of payload
Modified decoy contents and sheet names
Changes to function and variable names
Removal of entire lines of code
Obfuscating strings via concatenation or an alternate encoding (base64 or
hexadecimal)
Reordering of functions in the code

In many cases, testing files are no longer functional due to:
Removal of a required component(s)
Replacement of variables with nonsensical values
Use of encoded strings without ability to decode

Testing activities ceases with a very low antivirus detection rate



6/26

The number of vendors detecting the samples increases and decrease throughout the
testing as the actor attempts to determine what the detection signatures are triggering
on

June 2016 Testing Activity

In June 2016, an actor related to the OilRig campaign began a series of testing activities in
an attempt to determine the portions of the ClaySlide macro code that antivirus vendors were
using for detection purposes. These activities resulted in 17 different iterations of the
ClaySlide delivery document, many of which no longer run properly due to the changes
made within the files. We have included an exhaustive analysis of the June 2016 testing
activity in Appendix A.

In the June testing, the actor started by removing the malicious payload from the Excel
delivery document to focus their testing on the malicious macro. The actor made many
iterative changes during their testing of the macro, however, the actor began these changes
by completely removing a block of the code that was responsible for saving the payload to
the system and for creating the scheduled task to run the payload. The removal of this code
brought the detection rate to 0, which told the actor that the antivirus detection rules were
detecting these files based on these lines of code. The actor spent most of their subsequent
efforts modifying portions of this code.

Now that the actor knew the portion of the code that caused antivirus detection, the actor
added that portion of the code back to the macro and made changes in attempt to determine
the exact line of code that was detected. This process involved changing the commands
used to create the payload and the scheduled task. The changes made to these two
commands involved their complete removal, their replacement with non-functioning strings
such as keyboard mashing and their equivalent strings in a variety of different encodings,
including base64 and hexadecimal representation. The actor also changed the way these
commands were executed as well, specifically by either using the WScript.Shell object
directly or the object stored in a variable. The actor also uses intentional misspelling of
commands, such as “poawearshell” and “scshtassks”, as well as variations to the filenames
for the payloads, such as “firaeeye.vbs” instead of “fireeye.vbs”.

After making changes to the commands above, the actor shifted their focus onto changing
the function names within the macro, which did not result in any change in the detection rate.
After a 40-minute break, it appears the actor reverts to the base macro instead of modifying
the previously created test file. Again, the actor modifies the code in the base macro
responsible for saving and running the payload, but this time the actor changes the folder
names it creates for the payload to store its generated files. Also, the two files generated
during these activities that occurred after the actor reverted back to the base macro had
keyboard-mashed strings for their decoy contents, which differed dramatically from the
previous test files. During the entirety of this testing activity, the antivirus detection rate
reached a high of 6 but ended with a zero vendors detecting the sample when the actor



7/26

ceased testing activities, which suggests that the actor was satisfied with this result.
However, we do not see conclusive evidence to suggest that the actor was attempting to
evade a specific antivirus vendor.

November 2016 Testing Activity

On November 15, 2016, an actor related to the OilRig campaign began testing the ClaySlide
delivery documents. While the testing activities in June began with the removal of the
payloads from the delivery document, the files generated during the November testing all
retained their Helminth payloads, all of which were the same payload that use the C2 domain
of “updateorg[.]com”. We have included an exhaustive analysis of the November 2016
testing activity in Appendix B.

In the November testing, the actor appears to initially focus on making modifications to the
Excel worksheet that contains the decoy contents. The changes made to the worksheet
involved adding random strings to cells within the decoy, to changing the names of the
worksheets themselves. Eventually, the actor completely changes the contents of the decoy
to a different theme entirely, from a decoy containing routing settings to a list of weak
passwords.

In addition to making changes to the Excel worksheets that contain the decoy content, the
actor also made changes to the worksheet that is initially displayed to the user. Taking a step
back, as discussed in the Appendix in our initial OilRig blog, ClaySlide delivery documents
initially open with a worksheet named “Incompatible” that displays content that instructs the
user to “Enable Content” to see the contents of the document, which in fact runs the
malicious macro and compromises the system. When the macro runs, it hides the
“Incompatible” worksheet and displays the worksheet that contains the decoy document. The
actor modified the “Incompatible” worksheet to include random strings, which appears to be
an attempt to see if detection rules are using the hash of this sheet for detection purposes.

Meanwhile, during these changes to the “Incompatible” worksheet, the actor is also making
changes to the malicious macro as well. The actor began changing the function names in the
malicious macro from “Doom_Init” and “Doom_ShowHideSheets” to “Doon_Init” and
“Doon_SHSheet” to “Ini” and “SHSheet”. At one point, the actor changed the order of the
functions in the macro to see if it was the cause of detection. The actor also changed the
variable name used to store the VB script used to run the Helminth payload from
“BackupVbs” to “Backup_Vbs”.

Another change made during these testing activities involved the actor splitting the command
needed to create the scheduled task in several strings and concatenating them back
together. This technique is interesting, as the resulting command is still functional which
differs dramatically from the modifications seen in the June testing where the commands
were changed to a point where they were no longer operational.

https://blog.paloaltonetworks.com/2016/05/the-oilrig-campaign-attacks-on-saudi-arabian-organizations-deliver-helminth-backdoor/


8/26

The last change made to the malicious macro is the locations in which the macro obtains the
payload. In all ClaySlide delivery documents, the macro obtains scripts related to the
Helminth Trojan from specific cells within the “Incompatible” worksheet. By changing the cells
containing the scripts, the actor is checking to see if detection rules are looking for scripts at
these specific locations. By the time the threat actor ceased this testing activity, the actor had
lowered the detection rate of the ClaySlide delivery document to 2, suggesting this was a
satisfactory result. Like the June testing activity, we do not see conclusive evidence of the
threat actor attempting to evade a specific antivirus vendor in the November testing.

Conclusion

The threat actors involved with the OilRig attack campaign have shown part of their playbook
that involves testing and modifying their delivery documents prior to use in attacks. The
purpose of these modifications is to evade detection from security products to extend the
usage of their ClaySlide delivery documents. By analyzing these testing activities, we gain
some helpful insight into the OilRig actors, specifically that this threat group is fairly mature
from an operational standpoint and the fact that they hope to use their delivery documents as
long as possible.

We were already aware of this threat group making modifications to their ClaySlide delivery
document that we discussed in our previous blog. Now we know that there is an organized
process involved that results in these changes, rather than the threat actor arbitrarily making
changes to parts of the delivery documents, such as filenames and payload behavior. This
realization suggests that the OilRig threat group will continue to use their delivery documents
for extended periods with subtle modifications to remain effective.

Appendix A

This appendix contains an in-depth analysis of each iteration of testing activity carried out by
the OilRig actors in June 2016. We provide screenshots and diffs between files (when
available) to visualize the modifications made during the iteration.

Iteration 1

The actor removed all but three bytes from the VBS and PowerShell scripts, while the macro
itself remains unchanged. This suggests that the delivery document no longer contains the
malicious payload (Helminth scripts) used to infect the system. By removing the payload
from the delivery document, the actor can isolate antivirus detection results based on the
delivery document itself. Also, without the payload the samples no longer have some
attributes and entities that security researchers typically use to correlate samples to a
specific threat group, such as the C2 server of “update-kernal[.]net” that was in the payload
in the base sample.

https://blog.paloaltonetworks.com/2016/10/unit42-oilrig-malware-campaign-updates-toolset-and-expands-targets/


9/26

With the payload removed, the actor focuses their efforts in subsequent iterations on
modifying the macro within the delivery document.

Iteration 2

The actor completely removed code that is responsible for a majority of the functionality
within the macro. The code removed, as seen in Figure 2, is responsible for the following:

1. Creating folders
1. \Libraries\up
2. \Libraries\dn
3. \Libraries\tp

2. Running a PowerShell command to create
1. PowerShell script
2. VB script

3. Running a command to create a scheduled task to run the VB script

Figure 2 Changes made in Iteration 2

Iteration 3

The actor adds the content removed in the previous iteration. However, the line of code
responsible for running the command to create the scheduled task to run the VB script was
omitted. This suggests the threat actor was testing to see if vendors were detecting
ClaySlide samples based on this line within the macro.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_2.png


10/26

Figure 3 Changes made in Iteration 3

Iteration 4

The actor adds the line of code omitted from the previous iteration, suggesting this specific
code was not used for detection purposes. The actor also changed the method in which it
calls the PowerShell script in the “cmd” variable, by using a “WScript.Shell” object stored in
the “wss” variable instead of creating a new “WScript.Shell” object.

Figure 4 Changes made in Iteration 4

Iteration 5

The actor base64 encoded the contents of the ‘cmd’ variable that stored a command to
invoke a PowerShell script that would save the payload to the filesystem. Also, the actor
changed the command to create the scheduled task to be base64 encoded as well. These
alterations do not come with a base64 decoding routine, suggesting that the sample
generated in this iteration would result in an error. The lack of a decoding routine suggests
that the actor does not waste time making sure the code actually works, as they could add
code to support these changes.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_3.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_4.png


11/26

Figure 5 Changes made in Iteration 5

Iteration 6

The actor tests to see if the base64 encoded strings added in the previous iteration were
detected by removing these strings and leaving the two command strings empty.

Figure 6 Changes made in Iteration 6

Iteration 7

The actor adds the base64 encoded string for “powershell.exe” within the ‘cmd’ variable and
in place of the command to create the scheduled task.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_5.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_6.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_7.png


12/26

Figure 7 Changes made in Iteration 7

Iteration 8

The actor replaces the first base64 for “powershell.exe” with the base64 encoded string to
run the PowerShell command, but replaces the second “powershell.exe” with the cleartext
string to create the scheduled task. The base64 encoded PowerShell command is similar to
those seen in previous iterations. However, the actor changed one of the filenames used to
save the payload to “firaeeye.vbs” (from “fireeye.vbs”) and references a variable named
“FireeayeVbs” (from “FireeyeVbs”) that does not appear in the code.

Figure 8 Changes made in Iteration 8

Iteration 9

The actor replaces the cleartext string to create the scheduled task with the base64 encoded
version of the string. However, the base64 encoded string changes the name of the created
task from “GoogleUpdatesTaskMachineUI” to “GoosgleUpdatesTaskMachineUI” and the
script name from “fireeye.vbs” to "fireeyse.vbs".

Figure 9 Changes made in Iteration 9

Iteration 10

The actor makes changes to the base64 encoded strings that used as a command to use
PowerShell to install the payload and to schedule a task to run the payload. The base64
encoded PowerShell command reintroduces the filename “fireeye.vbs” and the variable

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_8.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_9.png


13/26

name “FireeyeVbs”, both of which were changed in iteration 8; however, the base64 encoded
command uses the string “poawearshell” instead of “powershell”.

As for the base64 string used to create the scheduled task, the actor reintroduced the
scheduled task name of “GoogleUpdatesTaskMachineUI” and script filename of “fireeye.vbs”,
which were changed in iteration 9. However, the actor uses the string “scshtassks” to see if
the “schtasks” string was being detected.

Figure 10 Changes made in Iteration 10

Iteration 11

The actor changed the base64 encoded strings within the ‘cmd’ variable and the string used
to create the scheduled task. Instead of including the base64 encoded string of the
PowerShell and create task command, the actor replaced these strings with the base64
encoded representation of the following string:

1
2

source code from https://www.fireeye.com/blog/threat-
research/2016/05/targeted_attacksaga.htmlsource code from
https://www.fireeye.com/blog/threat-
research/2016/05/targeted_attacksaga.htmlsource code from
https://www.fireeye.com/blog/threat-research/2016/05/targeted_attacksaga.htmlsource
code from https://www.fireeye.com/blog/threat-
research/2016/05/targeted_attacksaga.htmlsource code from
https://www.fireeye.com/blog/threat-research/2016/05/targeted_attacksaga.htmlsource
code from https://www.fireeye.com/blog/threat-
research/2016/05/targeted_attacksaga.htmlsource code from
https://www.fireeye.com/blog/threat-research/2016/05/targeted_attacksaga.html

The string above contains a link to a FireEye blog that provided an analysis of this delivery
document. It should be noted that the following non-encoded string was included in previous
samples as a comment within the macro:

'source code from https://www.fireeye.com/blog/threat-
research/2016/05/tareted_attacksaga.html

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_10.png
https://www.fireeye.com/blog/threat-research/2016/05/targeted_attacksaga.html


14/26

Figure 11 Changes made in Iteration 11

Iteration 12

The actor replaced the base64 strings within the ‘cmd’ variable and the string to create the
scheduled task with randomly typed letters. It appears the actor performed two-handed
keyboard mashing to generate the strings used in these variables.

Figure 12 Changes made in Iteration 12

Iteration 13

The actor changed the randomly typed keys in the ‘cmd’ and the string for creating the
scheduled task with the base64 strings from two iterations back. However, the base64
strings were added between opening and closing brackets.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_11.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_12.png


15/26

Figure 13 Changes made in Iteration 13

Iteration 14

The actor changed the base64 encoded strings used for the PowerShell command and the
command to create a scheduled task from the last iteration to a hexadecimal string. The
string contains the hexadecimal representation of the characters that make up the command
to create the scheduled task, which was last seen in Iteration 4. Again, the script does not
contain decoding functions to decode the hexadecimal values to the correct characters,
therefore this script is not functional.

Figure 14 Changes made in Iteration 14

Iteration 15

The actor changed the two function names that are run when the Excel document is opened.
In all prior iterations, these function names were “fireeye_Init” and
“fireeye_ShowHideSheets”, which are responsible for installing the Trojan and displaying the
decoy contents within the Excel spreadsheet, respectively. The actor changed these two
function names to “fireeye_Init2” and “fireeye_ShowHideSheets3” to determine if the function
names were being detected by antivirus products.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_13.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_14.png


16/26

Figure 15 Changes made in Iteration 15

Iteration 16

This iteration is very interesting, as we believe the actor reverts back to the base document
instead of making changes to the document created in the previous iteration.

The filename changed from an incrementing number to “ttt.xls”, which is the same filename
as the base document. Also, when we compared the sample from the previous iteration,
there were a number of changes seen here:

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_15.png


17/26

Figure 16 Changes made in Iteration 16 if compared with the file in Iteration 15

However, if you compare the file created in this iteration with the base file, the number of and
type of changes seem to align closer to the modifications performed in previous iterations. If
the actor reverted to the base document as we suspect, then modifications were made to the
script filename, the folder names that store files generated by the payload, as well as the
method the script invokes the PowerShell script. The actor changed the script filename from
“fireeye.vbs” to “fireueye.vbs”, changed the “up”, “dn” and “tp” folder names to “uup”, “dgn”
and “tup” and uses the “WScript.Shell” object stored in the “wss” variable instead of creating
a new “WScript.Shell” object to run the command.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_16.png


18/26

Figure 17 Changes made in Iteration 16 if actor reverted to the base file

Iteration 17

In the last iteration of this testing activity, the actor changed some of the modifications made
in the previous iteration back to the values used in the base document, specifically the
filenames and folder names. However, the actor also adds a new variable to store the
“%PUBLIC%” environment variable that the script uses as the path to store the “fireeye.vbs”
script and the folders that the payload would use. This iteration also includes a modified
PowerShell command that attempts to run a command stored in the “fireeye.vbs” file, but
does not include the portion of the command that would write the script to that file. The actor
also removed the line that would run the command to create the scheduled task to run the
VB script.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_17.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_18.png


19/26

Figure 18 Changes made in Iteration 17

Appendix B

This appendix contains an in-depth analysis of each iteration of testing activity carried out by
the OilRig actors in November 2016. We provide screenshots and diffs between files (when
available) to visualize the modifications made during the iteration.

Iteration 1

In the first iteration of this testing, the actor changed the decoy content from the base
sample. At a high level, the decoy contents contained commands to configure a Cisco router
with static routes and other settings. Originally, the base test file used in this testing activity
contained just these configuration settings in an Excel worksheet named “Sheet1”, as seen
in Figure 19.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_19.png


20/26

Figure 19 Original decoy contents found in the base test file

In the first iteration of testing, the actor changed the worksheet name that contains the decoy
content from “Sheet1” to “hgvc” and added a string to the worksheet “jgvchhctf”, as seen in
Figure 20. We believe the threat actor is attempting to determine if the worksheet name or
the hash of the decoy worksheet were causing antivirus detection.

Figure 20 Changes made to the decoy contents in Iteration 1

Iteration 2

The actor then changed the name of the worksheet that contains the decoy content from
“hgcv” to “table” and completely changed the decoy content from the Cisco routing settings
to a list of weak passwords, as seen in Figure 21. We believe this is the threat actor testing
the new decoy content that they will use in an upcoming attack.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_20.png


21/26

Figure 21 New decoy contents introduced in Iteration 2

Iteration 3

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_21.png


22/26

Following the lead of previous iterations, the actor made modifications to the content in the
Excel worksheet; however, in this iteration the changes were not made to the decoy
worksheet, rather the change was made to the initial worksheet called “Incompatible” that
displays the message to instruct the user to enable content to run the macro. As seen in
Figure 22, the actor adds the string “yy” to this worksheet to determine whether antivirus
vendors were detecting Clayslide documents based on this worksheet.

Figure 22 Changes made to the Incompatible worksheet in Iteration 3

The actor also made modifications to the macro in this iteration, specifically by changing
function names and by splitting up strings and concatenating them back together. The
function names in the macro “Doom_Init” and “Doom_ShowHideSheets” were changed to
“Doon_Init” and “Doon_SHSheet” to determine if these function names were causing
detection. Also, the actor split the word “powershell” in the commands within the macro and
concatenated them together to retain functionality.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_22.png


23/26

Figure 23 Changes made to the macro in Iteration 3

Iteration 4

Much like the previous iteration, the threat actor makes changes to the Incompatible
worksheet and the code within the macro. First, the threat actor added the string “hi” to two
cells within the initially displayed Incompatible worksheet, as seen in Figure 24.

Figure 24 Changes made to the Incompatible worksheet in Iteration 4

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_23.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_24.png


24/26

The actor also made modifications to the macro in this iteration, as seen in Figure 25. The
actor changed the two function names from “Doon_Ini” and “Doon_SHSheet” to “Ini” and
“SHSheet” respectively. Also, the actor changed the variable name that stores the VB script
obtained from the spreadsheet from “BackupVbs” to “Backup_Vbs”, and modified the
PowerShell command to use this new variable as well. Lastly, the actor further split the name
of the created task using concatenation to retain functionality.

Figure 25 Changes made to the macro in Iteration 4

Iteration 5

In this iteration, the actor rearranges the order of the functions in the script, specifically
putting the “Ini” function before the “SHSheet” function. Figure 26 shows this function
reordering.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_25.png


25/26

Figure 26 Changes made to the macro within Iteration 5

Iteration 6

In the final iteration of testing, the actor moves the base64 encoded VB Script and the two
base64 encoded PowerShell scripts to three different cells within the Incompatible
worksheet. The actor also changes the macro to access the base64 encoded strings from
these new locations, which retains the functionality of this document.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_26.png


26/26

Figure 27 Changes made to the macro in Iteration 6

Get updates from 
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/oilrig_27.png
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

