
1/18

Josh Grunzweig April 20, 2017

Cardinal RAT Active for Over Two Years
researchcenter.paloaltonetworks.com/2017/04/unit42-cardinal-rat-active-two-years/

By Josh Grunzweig

April 20, 2017 at 5:00 AM

Category: Unit 42

Tags: Cardinal RAT, Carp Downloader, excel, Trojan

Palo Alto Networks has discovered a previously unknown remote access Trojan (RAT) that
has been active for over two years. It has a very low volume in this two-year period, totaling
roughly 27 total samples. The malware is delivered via an innovative and unique technique:
a downloader we are calling Carp uses malicious macros in Microsoft Excel documents to
compile embedded C# (C Sharp) Programming Language source code into an executable
that in turn is run to deploy the Cardinal RAT malware family. These malicious Excel files use
a number of different lures, providing evidence of what attackers are using to entice victims
into executing them.

http://researchcenter.paloaltonetworks.com/2017/04/unit42-cardinal-rat-active-two-years/?adbsc=social71702736&adbid=855028404965433346&adbpl=tw&adbpr=4487645412
https://unit42.paloaltonetworks.com/author/joshgruznweig/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/cardinal-rat/
https://unit42.paloaltonetworks.com/tag/carp-downloader/
https://unit42.paloaltonetworks.com/tag/excel/
https://unit42.paloaltonetworks.com/tag/trojan/
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

2/18

The malware from start to finish exhibits the following high level operations as shown in
Figure 1:

Figure 1 Malware execution flow

Carp Downloader

As previously mentioned, we have observed Cardinal RAT being delivered using a unique
technique involving malicious Excel macros. We are calling these delivery documents the
Carp Downloader, as they make use of a specific technique of compiling and executing
embedded C# (CshARP) language source code that acts as a simple downloader.

We observed the following example macro in the most recent sample. Note that we have
prefixed the function names with ‘xx_’ to make it easier for the reader to understand what is
going on. Additionally, we have added comments to explain what is happening, as well as
the un-obfuscated strings that are found within the macro.

Figure 2 Portion of malicious macro containing base64-encoded source code

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/carp_cardinal_flow.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_2.png

3/18

Figure 3 Portion of malicious macro responsible for compiling and executing embedded
source code

As a quick recap of what the malicious macro is doing, it begins by generating two paths—a
path to a randomly named executable, and randomly named C# file in the
%APPDATA%\\Microsoft folder. It then base64-decodes the embedded C# source code as
shown in Figure 2 and writes it to the C# file path previously generated. Finally, as shown in
Figure 3 it will compile and execute this C# source code using the Microsoft Windows built-in
csc.exe utility.

The decoded source code in this example looks like the following as shown in Figure 4.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_3.png
https://msdn.microsoft.com/en-us/library/78f4aasd.aspx

4/18

Figure 4 Decoded source code

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_4.png

5/18

As we can see, it simply downloads a file from secure.dropinbox[.]pw using HTTP on port
443 (not HTTPS), and proceeds to decrypt the file using AES-128 prior to executing it. At this
point, Cardinal RAT has been downloaded and executed, and execution is directed to this
sample. Of course, the Carp Downloader is not required to download Cardinal RAT, however,
based on our visibility, it has exclusively done so.

A total of 11 unique Carp Downloader samples have been observed to date. The following
figures show lures that we observed in these samples.

Figure 5 Lure with a filename of Top10Binary_Sample_HotLeads_13.9.xls

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_5.png

6/18

Figure 6 Lure with a filename of AC_Media_Leads_ReportGenerator_5.2.xls

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_6.png

7/18

Figure 7 Lure with an unknown filename

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_7.png

8/18

Figure 8 Lure with a filename of Arabic 22.12_Pre qualified.xls

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_8.png

9/18

Figure 9 Lure with an unknown filename

Figure 10 Lure with a filename of Hot_Leads_Export_09.03_EN.xls

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_9.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_10.png

10/18

As we can see from the above examples, the majority of these lures are financial-related,
describing various fake customer lists for various organizations. Based on the similarities
witnessed in some of these lures, it appears that the attackers use some sort of template,
where they simply swap specific cells with the pertinent images or information.

Cardinal RAT

The name Cardinal RAT comes from internal names used by the author within the observed
Microsoft .NET Framework executables. To date, 27 unique samples of Cardinal RAT have
been observed, dating back to December 2015. It is likely that the low volume of samples
seen in the wild is partly responsible for the fact that this malware family has remained under
the radar for so long.

An unobfuscated copy of Cardinal RAT was identified, which allowed us to view the
decompiled class and function names. A subset of these may be seen below in Figure 11.
This allowed us to not only easily identify the full functionality of the RAT, but also made it
easier to identify and reverse-engineer various aspects of the malware itself.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_11.png

11/18

Figure 11 Decompiled Cardinal RAT classes

When initially executed, the malware will check its current working directory. Should it not
match the expected path, Cardinal will enter its installation routine. Cardinal RAT will copy
itself to a randomly named executable in the specified directory. It will then compile and
execute embedded source code that contains watchdog functionality. Specifically, this newly
spawned executable will ensure that the following registry key is set:

HKCU\\Software\\Microsoft\\Windows NT\\CurrentVersion\\Windows\\Load

This specific key is set to point towards the path of the previously copied Cardinal RAT
executable path. The executable will periodically query this registry key to ensure it is set
appropriately. If the executable finds the registry key has been deleted, it will re-set it. The
Load registry key acts as a persistence mechanism, ensuring that this Cardinal RAT
executes every time a user logs on. More information about the Load registry key may be
found here.

This watchdog process also ensures that the Cardinal RAT process is always running, as
well as ensures that the executable is located in the correct path. Should either of these
conditions not be met, the watchdog process will spawn a new instance of Cardinal RAT, or
write Cardinal RAT to the correct location, respectively.

After the installation routine, Cardinal RAT will inject itself into a newly spawned process. It
will attempt to use one of the following installed executables for the newly spawned process:

RegAsm.exe

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/Cardinal_11.png
https://technet.microsoft.com/en-us/library/ee851671.aspx

12/18

RegSvcs.exe
vbc.exe
csc.exe
AppLaunch.exe
cvtres.exe

Cardinal RAT will continue to parse an embedded configuration. This configuration, named
internally as ‘GreyCardinalConfig’, is a binary blob that contains a mixture of base64-
encoded data, DWORDs, and Boolean values. Using a custom written Python script, we
parsed the configuration of an example sample:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

$ python decode_parse_config.py GreyCardinalConfig
Mutex: cpS3H2NSA65T67mUqB3a
GUID: 952407f889285547985aa2fcf35c5383
Campaign: 04/04/2016 Public
Number of C2 Servers: 1
C2 Server: secure[.]affiliatetoday[.]xyz
Port: 4425
Communication Key: H7sVBirLvGwVfLSLSeI2
Connection Delay: 3500
Buffer Size: 20480
Max Buffer Size: 40960000
Unknown Integer: 70000
Prevent System Sleeping: 0
Hide File: 0
Die on Sandbox Detection: 0
Keylogging: 1
Install Name: None

As we can see, this particular sample is configured with a single command and control (C2)
server, however, we have seen other samples with multiple host and port combinations. We
can also identify a communication key in it, which is crucial when discussing network
communications.

After the configuration is parsed, Cardinal RAT will proceed with making attempts at
connecting with the C2. Using an example request and response from a C2 server, we can
see how this traffic is configured.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/04/cardinal_network_config.png

13/18

Figure 12 Parsed network traffic communication

Data is transmitted in two pieces—a DWORD specifying the data length, as well as the data
itself. The data is encrypted using a series of XOR and addition operations, followed by
decompression using the ZLIB library. Represented in Python, this may be implemented as
follows:

1
2
3
4
5
6
7
8
9
10
11
12
13

def decrypt(md5_key, data):
 key = data[-1]
 remaining = data[0:-1]
 c = 0
 out = ""
 for x in remaining:
 b = md5_key[c%len(md5_key)]
 out += chr(ord(x) ^ ord(b) + ord(key) & 255)
 c+=1
 if len(out) > 15:
 if ord(out[0]) == 1:
 out = zlib.decompress(out[1:], -15)
 return out

The ‘md5_key’ argument in the function above is the MD5 hash of the previously defined
‘H7sVBirLvGwVfLSLSeI2’ string that was contained within Cardinal RAT’s embedded
configuration. Now that we know how to decrypt the data, we can look at the previously
shown PCAP data and determine what is being sent. The first message decrypts to the
following:

1
2
3

$ python decrypt_cardinal_pcap.py
Data Length: 3
00000000: 00 00

Followed by the Cardinal RAT’s response:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

$ python decrypt_cardinal_pcap.py
Data Length: 148
00000000: 00 95 24 07 F8 89 28 55 47 98 5A A2 FC F3 5C 53 ..$...(UG.Z...\S
00000010: 83 4A 00 61 00 73 00 6F 00 6E 00 20 00 42 00 6F .J.a.s.o.n. .B.o
00000020: 00 72 00 6E 00 00 00 4A 00 41 00 53 00 4F 00 4E .r.n...J.A.S.O.N
00000030: 00 42 00 4F 00 52 00 4E 00 2D 00 50 00 43 00 00 .B.O.R.N.-.P.C..
00000040: 00 30 00 34 00 2F 00 30 00 34 00 2F 00 32 00 30 .0.4./.0.4./.2.0
00000050: 00 31 00 36 00 20 00 50 00 75 00 62 00 6C 00 69 .1.6. .P.u.b.l.i
00000060: 00 63 00 00 00 57 00 69 00 6E 00 64 00 6F 00 77 .c...W.i.n.d.o.w
00000070: 00 73 00 20 00 37 00 20 00 55 00 6C 00 74 00 69 .s. .7. .U.l.t.i
00000080: 00 6D 00 61 00 74 00 65 00 20 00 00 00 00 00 00 .m.a.t.e.
00000090: 00 00 31 00 2E 00 34 00 00 00 30 00 37 00 38 00 ..1...4...0.7.8.
000000A0: 42 00 46 00 42 00 46 00 44 00 30 00 30 00 30 00 B.F.B.F.D.0.0.0.
000000B0: 33 00 30 00 36 00 44 00 32 00 00 00 3.0.6.D.2...

14/18

This communication represents the C2 server asking the Cardinal RAT to retrieve and upload
victim information (‘\x00\x00’), to which the malware responds accordingly. As we can see in
the above decrypted stream, the malware returns a wealth of information, including the
following:

Username
Hostname
Campaign Identifier
Microsoft Windows version
Victim unique identifier
Processer architecture
Malware version (1.4)

The malware itself is equipped with a number of features, including the following:

Collect victim information
Update settings
Act as a reverse proxy
Execute command
Uninstall itself
Recover passwords
Download and Execute new files
Keylogging
Capture screenshots
Update Cardinal RAT
Clean cookies from browsers

Conclusion

Cardinal RAT is deployed using an interesting technique of compiling and executing a
downloader via a malicious macro embedded within a Microsoft Excel file. The Excel files
themselves contain lures that have financial themes. This threat has had a low volume of
samples in the past two years, with 11 instances of Carp Downloader and 27 instances of
Cardinal RAT observed. Palo Alto Networks customers are protected by these threats in the
following ways:

All samples discussed are classified as malicious by the WildFire sandbox platform
All identified domains have been classified as malicious
AutoFocus users can track the malware described in this report using the
CarpDownloader and CardinalRAT

Appendix

Carp Downloader SHA256 Hashes

https://autofocus.paloaltonetworks.com/#/tag/Unit42.CarpDownloader
https://autofocus.paloaltonetworks.com/#/tag/Unit42.CardinalRAT

15/18

a52ba498d304906d6c060e8c56ad7db50e1af0a781616c0aa35447c50c28bae9

5025aa0fc6d4ac6daa2d9a6452263dcc20d6906149fc0995d458ed38e7e57b61

1181f97071d8f96f9cdfb0f39b697204413cc0a715aa4935fe8964209289b331

84e705341a48c8c6552a7d3dd97b7cd968d2a9bc281a70c287df70813f5dca52

ae1a6c4f917772100e3a5dc1fab7de4a277876a6e626da114baf8179b13b0031

e49e61da52430011f1a22084a601cc08005865fe9a76abf503a4a9d2e11a5450

192b204dbc702d3762c953544975b61db8347a7739c6d8884bb4594bd816bf91

571b58ba655463705f45d2541f0fde049c83389a69552f98e41ece734a59f8d4

10f53502922bf837900935892fb1da28fc712848471bf4afcdd08440d3bd037f

8bea55d2e35a2281ed71a59f1feb4c1cf6af1c053a94781c033a94d8e4c853e5

057965e8b6638f0264d89872e80366b23255f1a0a30fd4efb7884c71b4104235

Cardinal RAT SHA256 Hashes

e017651dd9e9419a7f1714f8f2cdc3d8e75aebbe6d3cfbb2de3f042f39aec3bd

778090182a10fde1b4c1571d1e853e123f6ab1682e17dabe2e83468b518c01df

8fababb509ad8230e4d6fa1e6403602a97e60dc8ef517016f86195143cf50f4e

1977cedcfb8726dea5e915b47e1479256674551bc0fe0b55ddd3fa3b15eb82b2

16aab89d74c1eaaf1e94028c8ccceef442eb2cd5b052cba3562d2b1b1a3a4ba6

9c47b2af8b8c5f3c25f237dcc375b41835904f7cd99221c7489fb3563c34c9ab

211b7b7a4c4a07b9c65fae361570dbb94666e26f0cc0fa0b32df4b09fcee6de2

fd61a5cd1a83f68b75d47c8b6041f8640e47510925caee8176d5d81afac29134

84f822d9cf575aeea867e9b73f88ad4d9244293e52208644e12ff2cf13b6b537

855cf3a6422b0bf680d505720fd07c396508f67518670b493dba902c3c2e5dfa

4b4c6b36938c3de0623feb92c0e1cb399d2dc338d2095b8ba84e862ef6d11772

5dd162ab66f0c819ee73868c26ecd82408422e2b6366805631eab95ae32516f3

6e2991e02d3cf17d77173d50cdaa766661a89721c3cc4050fba98bea0dbdb1a9

16/18

1e8ed6e8d0b6fc47d8176c874ed40fb09644c058042f34d987878fa644f493cc

647e379517fed71682423b0192da453ec1d61a633c154fdd55bab762bcc404f3

ebd4f45cbb272bcc4954cf1bd0a5b8802a6e501688f2a1abdb6143ba616aea82

edc49bf7ec508becb088d5082c78d360f1a7cad520f6de6d8b93759b67aac305

7482f8c86b63ce53edcb62fc2ff2dd8e584e2164451ae0c6f2b1f4d6d0cb6d9c

2fbd3d2362acd1c8f0963b48d01f94c7a07aeac52d23415d0498c8c9e23554db

154e3a12404202fd25e29e754ff78703d4edd7da73cb4c283c9910fd526d47db

fc5f7a21d953c394968647df6a37e1f61db04968ad1aca65ad8f261b363fa842

a1d5b7d69d85b1be31d9e1cb0686094cc7b1213079b2a66ace01be4bfe3fb7c3

4b0203492a95257707a86992e84b5085ce9e11810a26920dbb085005081e32d3

a05805bcec72fb76b997c456e0fd6c4b219fdc51cad70d4a58c16b0b0e2d9ba1

4e953ea82b0406a5b95e31554628ad6821b1d91e9ada0d26179977f227cf01ad

6272ed2a9b69509ac16162158729762d30f9ca06146a1828ae17afedd5c243ef

440504899b7af6f352cfaad6cdef1642c66927ecce0cf2f7e65d563a78be1b29

Domains

ns1[.]squidmilk[.]com

ns2[.]squidmilk[.]com

z[.]realnigger[.]xyz

ns1[.]tconvulsit[.]com

ns1[.]fresweepy[.]com

ns2[.]iexogyrarax[.]com

ns1[.]xraisermz[.]com

secure[.]affiliatetoday[.]xyz

secure[.]gayporndownload[.]xyz

secure[.]gameofthrone[.]club

17/18

secure[.]dropinbox[.]pw

secure[.]mailserver02[.]xyz

we[.]niggerporn[.]xyz

z[.]noplacelikehome[.]xyz

ns1[.]stackreports[.]com

ns2[.]stackreports[.]com

ns[.]liveupdate1[.]com

ns[.]nortonsecurity[.]in

we[.]letsdosomefun[.]xyz

we[.]be-smart[.]xyz

z[.]newblood[.]xyz

ns2[.]ibandagerk[.]com

ns1[.]rmacutecompw[.]com

ns1[.]pholothud[.]com

ns1[.]athermoforw[.]com

ns1[.]lclownerymor[.]com

ns2[.]xunderfeatuv[.]com

ns3[.]ssaddlegirv[.]com

ns1[.]qcytasicspc[.]com

ns[.]7ni7[.]com

18/18

Ignite ’17 Security Conference: Vancouver, BC June 12–15, 2017

Ignite ’17 Security Conference is a live, four-day conference designed for today’s security
professionals. Hear from innovators and experts, gain real-world skills through hands-on
sessions and interactive workshops, and find out how breach prevention is changing the
security industry. Visit the Ignite website for more information on tracks, workshops and
marquee sessions.

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

http://go.paloaltonetworks.com/ignite2017
http://www.paloaltonetworksignite.com/
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

