
1/9

March 15, 2017

Teardown of Android/Ztorg (Part 2)
blog.fortinet.com/2017/03/08/teardown-of-android-ztorg-part-2

Threat Research

By Axelle Apvrille | March 15, 2017
UPDATE March 20, 2017 : the sample does not seem to embed root exploits themselves,
but more precisely executables that run rooting tools. Also Agcr64 is curiously a 32-bit
executable, not 64-bit.

In the part 1 of this blog, we saw that Android/Ztorg.AM!tr silently downloads a remote
encrypted APK, then installs it and launches a method named c() in the n.a.c.q class. In this
blog post, we’ll investigate what this does.

This is the method c() of n.a.c.q:

This prints "world," then waits for 200 seconds before starting a thread named n.a.c.a. I'll
spare you a few hops, but among the first things we notice is that the sample uses the same
string obfuscation routine, except this time it is not named a.b.c.a() but a.a.p.a(). We patch
the JEB2 script to deobfuscate those strings:

http://blog.fortinet.com/2017/03/08/teardown-of-android-ztorg-part-2
http://blog.fortinet.com/blog/search?author=Axelle+Apvrille
http://blog.fortinet.com/2017/03/08/teardown-of-a-recent-variant-of-android-ztorg-part-1

2/9

Embedded Packages

The sample checks for various packages (om.android.provider.ring.a, com.ndroid.livct.d). If
they are present, it starts them. If not, it retrieves them and starts them.

The way it retrieves the application is quite peculiar. By default, it does not download it from
the web, but gets it from a hexadecimal string stored in the code itself. It only downloads
from the web if the hexstring is not present.

It retrieves many files that way: Android applications, ELF executables and scripts. All of
these are embedded in the sample itself. Sometimes, the sample is embedded in an
encrypted form (making it even more difficult to detect for an anti-virus engine.) This is the
case of the mainmtk.apk application, which is retrieved from a DES encrypted hex string.
The DES key is built using a homemade algorithm, which consists of numerous Base64
encodings and decodings.

Resorting to Encrypted File Download

When the files are downloaded from the web, they are not sent in clear text, but are XOR
encrypted (see class b.b.b.a.b). The XOR key is contained within the encrypted stream.

Based on the reverse engineering of the decryption class, we can implement a decryptor.
Mine is available here.

For example, once decrypted, the bx file downloaded from hxxp://ks.freeplayweb.com/lulu/bx
turns into an ELF executable (a root exploit):

https://github.com/cryptax/misc-code/blob/master/DbaXor.java

3/9

Creating Scripts

The sample also uses some shell scripts. They are not included in the assets or
resources, but embedded in the code. This is probably done so that anti-virus engines
cannot directly match or search for those scripts.

For instance, the code below writes a shell script named boy.

The script will look as follows, and is used to run shell commands.

4/9

Files Summary

Now let's summarize the various files the sample uses. We have applications and ELF
executables. If you want to follow along in the source code, those are retrieved in
the b.b.d.a namespace.

The files are stored locally in the application's directory, in subdirectories named .zog or .zok.
Note, the name starting with a point will conceal the file to basic file listings.

File name File type Description

5/9

File name File type Description

Agcr32 ELF
executable

Runs root exploit tools, 32 bit version

Agcr64 ELF
executable

Runs root exploit tools, expected a 64 bit version, but actually
it seems it's a 32 bit version too...

bbox.apk Application Installs busybox

bx ELF
executable

Runs root exploit tools

cx ELF
executable

Runs root exploit tools

exp ELF
executable

Runs root exploit tools

maink.apk Zip Contains boy and bx files

mainmtk.apk ELF
executable

Rusn root exploit tools

mainm.apk Replacement for com.android.musitk.b

mainp.apk Could not be retrieved (server down)

mains.apk Application Replacement for com.ndroid.livct.d

mains2.apk Application Replacement for com.android.provider.ring.a

nn.zip ELF
executable

Runs root exploit tools

np ELF
executable

Runs root exploit tools

6/9

File name File type Description

supolicy ELF
executable

tool

ym32 ELF
executable

Runs root exploit, 32 bit version

ym64 ELF
executable

Runs root exploit, 64 bit version

We see we have:

Tools such as busybox and supolicy. These are not malicious. Busybox is used to
support various Unix commands on Android. Supolicy is used to modify the current SE
Linux policies on Android, and for instance, switch the phone to permissive policies.
Root exploit tools. For example, the executable Agcr32 tries to root the phone by
running rooting tools. It considers it has succeeded if the output contains the
keyword TOY. See below. This is the 32-bit variant.

Scripts to run commands.

Running the exploits

7/9

Once the root exploits are on the file system, they need to be run. This is done in the code by
creating a new process that runs sh, writing the shell commands to the process's output
stream, and reading the responses on the input stream.

Payload

Let's put pieces together.

The sample:

Gets numerous exploits, tools and scripts to root the device. The files are embedded in
the code itself, or retrieved from external websites.
Lowers the SE Linux policy and attempts to root the device.

Once the device is rooted, the sample gets to its real payload:

8/9

Replaces some system files with its own versions. For example, it creates a
backup of the original /system/bin/debuggerd, replaces it with its own .zog/.k file,
assigns it to root, and changes its SE Linux security context.
Installs various applications and runs them. In the case of this sample, those
applications are com.android.provider.ring.a, com.ndroid.livct.d, and
com.android.musitk.b. The .zog/.k ELF executable also downloads other applications
from a remote server and installs them. The screenshot below shows
the .zog/.k starting a key assistance application (am start -n) and downloading from
http://api.agoall.com/ (no longer responds.)

So, we have a malware that roots victims' devices without their knowledge, and uses this
privilege to install other malicious applications.

9/9

Conclusion

This concludes the analysis of the sample silently downloaded by the Android/Ztorg.AM!tr
sample that we studied in Part 1 of this blog.

My guess is that you will agree with me that this malware is very advanced. There is string
obfuscation, multiple levels of encryption (nested), root exploits, tools, and scripts hidden
inside the code. The malware will be difficult to remove from the device, because it spans
across many locations and replaces system binaries.

This malware is detected as Android/Ztorg.K!tr. Its sha256 sum
is 5324460dfe1d4f774a024ecc375e3a858c96355f71afccf0cb67438037697b06.

The downloader (see Part 1) is detected as Android/Ztorg.AM!tr.

Its sha256 sum is
2c546ad7f102f2f345f30f556b8d8162bd365a7f1a52967fce906d46a2b0dac4.

-- the Crypto Girl

Related Posts

Copyright © 2022 Fortinet, Inc. All Rights Reserved

Terms of ServicesPrivacy Policy
| Cookie Settings

https://www.fortinet.com/corporate/about-us/legal.html
https://www.fortinet.com/corporate/about-us/privacy.html

