
1/11

Andromeda’s Five Star Custom Packer – Hackers’ Tactics
Analyzed

blog.morphisec.com/andromeda-tactics-analyzed

Posted by Roy Moshailov on March 13, 2017
Find me on:
Twitter

Tweet

http://blog.morphisec.com/andromeda-tactics-analyzed
https://blog.morphisec.com/author/roy-moshailov
https://twitter.com/RoyXmos
https://twitter.com/share

2/11

Packer-based malware is malware which is modified in the runtime memory using different
and sophisticated compression techniques. Such malware is hard to detect by known
malware scanners and anti-virus solutions. In addition, it is a cheap way for hackers to
recreate new signatures for the same malware on the fly simply by changing the
encryption/packing method. Packers themselves are not malware; attackers use this tactic to
obfuscate the code’s real intention.

For security solutions to be effective, they will need to augment their solutions with in-
memory capabilities in order to monitor/hook the behavior of the malware after unpacking is
completed.

This document describes a sophisticated Andromeda/Gamarue Custom Packer. Andromeda
first appeared in 2011 and still remains popular. As the Andromeda attack chain has been
described previously, this analysis focuses on the packer and deobfuscation, which happens
before the malware downloads or executes its next stage malicious payload. The recent
version of the custom packer we obtained (originating June 2016), has noteworthy and
innovative functionality.

Does Morphisec stop this attack? Of course, even these new tricks can’t get past
Morphisec, which prevents this attack before it can drop its load.

Technical Analysis

Andromeda/Gamarue Custom Packer

http://resources.infosecinstitute.com/andromeda-bot-analysis/#article

3/11

Nowadays most malware employs anti-analysis techniques to make their code harder to
analyze by security researchers. Just like legitimate software developers protect their
proprietary work, hackers use obfuscation techniques to protect their code from being
reverse-engineered or debugged.

The malware sample in our analysis is packed by a custom packer. To be able to get to the
actual code, we first need to unpack it.

How can you recognize a packed malware?

The sample usually comes with a resource section (in this example RC data contains
some encrypted content).
Typically, the compressed file is very large.
By looking at the import table – It might have only a few imports and many times these
include LoadLibrary and/or GetModuleHandleW as those functions are used for the
initial unpacking procedure.
No readable static strings as the strings are encrypted.
High entropy in sections for higher efficiency of information storage.
A large portion of the code is inside the .data section (although there are newer
versions with code inside text).
The program has abnormal section sizes, such as .data and .rsrc sections. The
RawDataSize is lower than VirtualSize and usually also the section names themselves
may indicate a particular packer.

How to unpack?

In forensic analysis, there are different ways to handle the unpacking process. While there
are automatic tools for different popular packers, it is more difficult to handle custom packers,
which require some manual work and a deeper knowledge of the different anti-debugging
obstacles. Moreover, custom packers usually also involve stripping off multiple packing
layers.

The Packer - Detailed

Looking at Andromeda’s top-layer packer, we start by noticing an interesting, relatively high
entropy in one of the sections (e.g. entropy of .rsrc is 7.376) which gives us the first
indication that it is a packer.

Determining a point in time for which we know the malicious code was already unpacked, we
identify the use of ws2_32.dll (responsible for communication API). This means we can
assume that the malicious code will start communication after it is unpacked. This is of high
probability for downloaders or C&C based malware.

4/11

As shown in the image below, there are two unnamed modules with RWE (read write
execute) access rights – those are indicators for the unpacked executable shellcode (the
code will write and execute from the same location).

Additionally, we can see now strings which are typical to Andromeda.

It is noticeable that those modules are still not a PE file (do not start with PE header) – those
are executable shellcodes.

5/11

We also notice that the code starting from the entry point of the executable was modified,
which reminds us of Process Hollowing/ RunPE techniques.

6/11

RunPE techniques are designed to evade AV mitigation methods.

Here are RunPE characteristics, as described in an Andromeda Bot Analysis by Infosec
Institute:

Unpack or decrypt the original EXE file in memory.
Call CreateProcess on a target EXE using the CREATE_SUSPENDED flag. This maps
the executable into memory and it’s ready to execute, but the entry point hasn’t
executed yet.
Next, Call GetThreadContext on the main thread of the newly created process. The
returned thread context will have the state of all general-purpose registers. The EBX
register holds a pointer to the Process Environment Block (PEB), and the EAX register
holds a pointer to the entry point of the innocent application. In the PEB structure, at an
offset of eight bytes, is the base address of the process image.
Call NtUnmapViewOfSection to unmap and free up the virtual address space used by
the new process.
Call VirtualAllocEx to re-allocate the memory in the process’ address space to the
correct size (the size of the new EXE).
Call WriteProcessMemory to write the PE headers and each section of the new EXE
(unpacked in Step 1) to the virtual address location they expect to be (calling
VirtualProtextEx to set the protection flags that each section needs).
The loader writes the new base address into the PEB and calls SetThreadContext to
point EAX to the new entry point.

http://resources.infosecinstitute.com/andromeda-bot-analysis/#gref

7/11

Finally, the loader resumes the main thread of the target process with ResumeThread
and the windows PE loader will do its magic. The executable is now mapped into
memory without ever touching the disk.

Also in our case, the packer decrypts the executable memory space and replaces previously
encrypted memory with the functional code. The packer also updates the entry point to the
new functional code start.

Forensic analysts will usually stop at this stage and dump the first layer decrypted code for
further static analysis using different tools like IDA.

Based on the resemblance to RunPE methodology, we will execute the malware again,
although now we set a breakpoint on VirtualAlloc functions (used to allocate memory). Other
similar functions are VirtualAlloc, VirtualAllocEx, or ZwAllocateVirtualMemory – also part of
the Process Hollowing/RunPE method) called to reserve some RWX memory.

We get the VirtualAlloc function from PEB->Kernel32.EAT

8/11

After identifying the RWE buffer address, we set a memory breakpoint on write to this buffer -
> the written code is actually the unpacker/decode function.

9/11

After the unpacking function finishes execution, its execution is redirected to the first
shellcode:

10/11

EAX address shellcode start = 0x003D0000

From inside the shellcode, VirtualAlloc is called again. We set a memory breakpoint on write
to the new buffer one more time, get a new PE and are redirected to a second shellcode, the
unpacked PE.

From this stage on, we get the regular Andromeda Loader which is described in detail by the
Avast Threat Intelligence Team.

Conclusion

This article describes a single custom packer for Andromeda, one of the most popular
malware delivery frameworks.

Packers are a major concern for current security solutions. Packers allow attackers to
penetrate network solutions, file scanning solutions and, in many cases, behavior or AI
based solutions.

The use of custom packers will only increase, as will the need for in-memory solutions that
can block these types of attacks.

A number of popular sandbox dynamic scanning services have some basic in-memory
defenses, however these impose severe performance penalties. Moreover, they frequently
are not even effective as many packers, such as in our case, include techniques to identify

https://blog.avast.com/andromeda-under-the-microscope

11/11

sandbox environments. Morphisec’s Moving Target Defense based technology wins the
malware packer battle without monitoring, hooking or using any other methods that affect
endpoint performance.

Hash:
7b45c0141cca16fc14d4c81c653d4f22eb282cbbc4f913c9e830acf6e9d12b86

Resources

http://resources.infosecinstitute.com/andromeda-bot-analysis/#article

http://www.iosrjournals.org/iosr-jce/papers/Vol16-issue1/Version-1/L016117177.pdf

https://www.botconf.eu/wp-content/uploads/2015/12/OK-P07-Jose-Esparza-Travelling-to-the-
far-side-of-Andromeda-2.pdf

Contact SalesInquire via Azure

https://www.morphisec.com/products/?__hstc=182053752.1b163c3a4dd03affa5bab3a75da22fc8.1578295878507.1583307015582.1583313278178.17&__hssc=182053752.70.1583313278178&__hsfp=3981430878
https://www.morphisec.com/products/advanced-endpoint-threat-protection
http://resources.infosecinstitute.com/andromeda-bot-analysis/#article
http://www.iosrjournals.org/iosr-jce/papers/Vol16-issue1/Version-1/L016117177.pdf
https://www.botconf.eu/wp-content/uploads/2015/12/OK-P07-Jose-Esparza-Travelling-to-the-far-side-of-Andromeda-2.pdf
https://cta-redirect.hubspot.com/cta/redirect/1534169/38aeb02a-bc63-4a36-914f-3f88f859f8c6
http://10.10.0.46/mailto:sales@morphisec.com
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/morphisec.morphisec_unified_threat_prevention_platform?tab=overview

