
1/16

Malwarebytes Labs February 27, 2017

New Neutrino Bot comes in a protective loader
blog.malwarebytes.com/threat-analysis/2017/02/new-neutrino-bot-comes-in-a-protective-loader/

Co-authored by Hasherezade and Jérôme Segura.

In this blog post we will cover a recent version of the multi-purpose Neutrino Bot (AKA
Kasidet) which ironically was distributed by an exploit kit of the same name. Earlier in
January this year, we had described Neutrino Bot that came via spam so we won’t go over
those details again, but instead will focus on an interesting loader.

Anti VM detection is complemented by multiple layers hiding the actual core which made
extraction of the final payload a bit of challenge.

Distribution method

This sample was collected via a malvertising campaign in the US that leveraged the Neutrino
exploit kit. The infection flow starts with a fingerprinting check for virtualization, network traffic
capture and antivirus software. If any are found (i.e. not a genuine victim), the infection will
not happen. This check is done via heavily obfuscated JavaScript code in the pre-landing
pages, rather than within the Flash exploit itself, like it used to in the past.

https://blog.malwarebytes.com/threat-analysis/2017/02/new-neutrino-bot-comes-in-a-protective-loader/
https://twitter.com/hasherezade
https://blog.malwarebytes.com/author/jeromesegura
https://blog.malwarebytes.com/cybercrime/2017/01/post-holiday-spam-campaign-delivers-neutrino-bot/
https://blog.malwarebytes.com/cybercrime/exploits/2016/06/neutrino-ek-fingerprinting-in-a-flash/

2/16

Once the initial check has passed, the next step is to launch a specially crafted Flash file
containing a bunch of exploits for Internet Explorer and the Flash Player (similar to what was
described here). The final step is the download and execution of the RC4 encoded payload
via wscript.exe to bypass proxies.

The overall infection flow is summarized in the diagram below (click to enlarge):

https://blog.malwarebytes.com/wp-content/uploads/2017/02/pre-landing.png
http://malware.dontneedcoffee.com/2017/01/CVE-2016-7200-7201.html

3/16

A script from Maciej Kotowicz was used to extract artifacts from the Flash file.

https://blog.malwarebytes.com/wp-content/uploads/2017/02/Neutrino_EK-flow.png
https://github.com/mak/ekdeco/tree/master/neutrino

4/16

Analyzed samples

Behavioral analysis

The sample was well protected against being deployed in a controlled environment. When it
detects that it is being run in a VM/sandbox it just deletes itself:

If the environment passed the checks, it drops its copy into:
%APPDATA%/Y1ViUVZZXQxx/<random_name>.exe (during tests we observed the
following names: abgrcnq.exe, uu.exe):

The folder and the sample are hidden.

Persistence is achieved via the Task Scheduler:

The malware adds and modifies several registry keys. It adds some basic settings, including
the installation date:

5/16

It modifies some keys in order to remain hidden in the system. Hidden/SuperHidden features
allows its dropped copy to remain unnoticed by the user. It disables viewing such files by
modifying the following registry keys:

Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\Hidden
Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\ShowSuperHidden

It also adds itself into the firewall’s whitelist with this command:

cmd.exe " /a /c netsh advfirewall firewall add rule name="Y1ViUVZZXQxx" dir=in
action=allow program=[full_executable_path]

Similarly, path to the malware is added to Windows Defender’s exclusions:

It disables reporting incidents to Microsoft’s cloud service (SpyNet):

HKLM\SOFTWARE\Microsoft\Windows Defender\SpyNet\SpyNetReporting

It modifies settings of terminal services, setting MaxDisconnectionTime and MaxIdleTime to
0. Modified keys:

HKLM\SOFTWARE\Policies\Microsoft\Windows NT\Terminal Services\MaxDisconnectionTime
HKLM\SOFTWARE\Policies\Microsoft\Windows NT\Terminal Services\MaxIdleTime

If the full installation process went successfully, it finally loads the malicious core, and we can
see a traffic typical for the Neutrino Bot. You can see below the beacon “enter” and the
response “success”, encoded in base64. The response is sent as a comment in the retrieved
blank html page, in order to avoid being noticed:

http://www.msfn.org/board/topic/9950-whats-superhidden-for-exactly/

6/16

In the next request the bot sends information about itself, and in response the CnC gives it
commands to be executed. Requests and responses are also base64 encoded. Example
after decoding:

req:

cmd&9bc67713-9390-4bcd-9811-36457b704c9c&TESTMACHINE&Windows%207%20(32-
bit)&0&N%2FA&5.2&22.02.2017&NONE

resp:

1463020066516169#screenshot#1469100096882000#botkiller#1481642022438251#rate 15#

The first command was to take a screenshot, and indeed, soon after we can see the bot
sending a screenshot in JPG format:

7/16

From the sent version number we can conclude, that the version of the bot is 5.2 (similarly to
this campaign).

Inside

The first layer is a stub of a crypter, that overwrites the initial PE in memory by the image of
the loader. Unpacking it is demonstrated in this video: https://www.youtube.com/watch?
v=m_xh33M_CRo.

The second layer is a loader that prevents from running the core bot in a controlled
environment (i.e. on VM or under a debugger). This element is probably new (we didn’t
observe it so far in previous campaigns of Neturino Bot, i.e. the one described here). We
found the loader very effective in its protective task. Most of the sandboxes and test VMs
used during tests failed to provide any useful results.

The final payload had features typical for Neutrino Bot family.

The loader code shows that it is an integral part of the full Neutrino Bot package – not yet
another layer added by an independent crypter. Both, the payload and the loader are written
in C++, use similar functions and contain overlapping strings. It will be demonstrated in
details later in this article. They both also have very close compilation timestamps: payload:
2017-02-16 17:15:43, loader: 2017-02-16 17:15:52.

A patched version of the loader, with environment checks disabled can be viewed here.

Loader

Obfuscation techniques

The code inside contains some level of obfuscation. A few strings are visible:

Directory name
Some functions

https://blog.malwarebytes.com/cybercrime/2017/01/post-holiday-spam-campaign-delivers-neutrino-bot/
https://www.youtube.com/watch?v=m_xh33M_CRo
https://blog.malwarebytes.com/cybercrime/2017/01/post-holiday-spam-campaign-delivers-neutrino-bot/
https://www.hybrid-analysis.com/sample/6f22f22ea510f35d3b6f9edd610e6ba3e6499ff6867f52a3361709c48d886c41?environmentId=100

8/16

Registry keys related with Windows Security features that are going to be disabled
Strings used to add a new scheduled task.

However, that is not all. Most of the strings are decrypted at runtime. Here is an example of
loading an encrypted string:

First, the obfuscated string is written to the dynamically loaded memory by a dedicated
function. Then, it is decrypted using a simple, XOR-based algorithm:

def decode(data):
 maxlen = len(data)
 decoded = bytearray()
 for i in range(0, maxlen):
 dec = data[i] ^ 1
 decoded.append(dec)
 return decoded

The same string after decryption:

9/16

Most of the API calls are also dynamically resolved. Example:

Tracing API calls helps to understand the programs’s functionality. For this reason, the
authors of this malware file implemented some of the functions without using API calls at all.
In the below example you can see the function GetLastError() implemented by reading a low-
level structure: Thread Envioroment Block (TEB):

Functionality

In order to prevent from being executed more than once, the loader creates a mutex with a
name that is hardcoded in the binary: 1ViUVZZXQxx.

The primary task of the loader is to check the environment, in order to make sure that the
execution is not being watched. But, in contrary to most of the malware, the check is not just
done once. There is a dedicated thread deployed:

http://www.geoffchappell.com/studies/windows/win32/ntdll/structs/teb/index.htm

10/16

It runs checks in a never ending loop:

If at any time, the loader detects i.e. some blacklisted process being deployed, execution is
terminated.

Examples of the checks performed:

1. Enumerates through the list of the running processes (using dynamically loaded functions
CreateToolhelp32Snapshot – Process32First– Process32Next). Calculates checksum from
each retrieved process name and compares it with the built-in blacklist:

The blacklisted checksums:

This file contains bidirectional Unicode text that may be interpreted or compiled differently
than what appears below. To review, open the file in an editor that reveals hidden Unicode
characters.

 Learn more about bidirectional Unicode characters

Show hidden characters

https://github.co/hiddenchars
http://10.10.0.46/%7B%7B%20revealButtonHref%20%7D%7D

11/16

0x6169078A

0x47000343

0xC608982D

0x46EE4F10

0xF6EC4B30

0xB1CBC652 ; vboxservice.exe

0x6D3E6FDD ; vboxtray.exe

0x583EB7E8

0xC03EAA65

view raw

processes_blacklist.txt

hosted with ❤ by GitHub
Implementation of the function searching blacklisted processes – as we can see, every
function is loaded dynamically with the help of a corresponding checksum:

https://gist.github.com/hasherezade/aefabdb9a67193ef05c93228a78c20c6/raw/9613500a830bdc327639a9eaf00ec9c1526759ea/processes_blacklist.txt
https://gist.github.com/hasherezade/aefabdb9a67193ef05c93228a78c20c6#file-processes_blacklist-txt
https://github.com/

12/16

2. Searches blacklisted modules within the current process (using dynamically loaded
functions CreateToolhelp32Snapshot – Module32First– Module32Next). Similarly, it
calculates the checksum from each retrieved process name and compares it with the built-in
blacklist.

Checksum calculation algorithm (implementation):

https://gist.github.com/hasherezade/aefabdb9a67193ef05c93228a78c20c6#file-checksum-cpp

13/16

The blacklisted checksums:

This file contains bidirectional Unicode text that may be interpreted or compiled differently
than what appears below. To review, open the file in an editor that reveals hidden Unicode
characters.
Learn more about bidirectional Unicode characters

Show hidden characters

0x1C669D6A

0xC2F56A18

0xC106E17B

0x5608BCC4

0x6512F9D0

0xC604D52A ; snxhk.dll

0x4D0651A5

0xAC12B9FB ; sbiedll.dll

0x5B747561

0x53309C85

0xE53ED522

view raw

https://github.co/hiddenchars
http://10.10.0.46/%7B%7B%20revealButtonHref%20%7D%7D
https://gist.github.com/hasherezade/aefabdb9a67193ef05c93228a78c20c6/raw/9613500a830bdc327639a9eaf00ec9c1526759ea/modules_blacklist.txt

14/16

modules_blacklist.txt

hosted with ❤ by GitHub
3, Checking if the process is under the debugger, using: IsDebuggerPresent,
CheckRemoteDebuggerPresent

4. Detecting single-stepping with the help of time measurement, using GetTickCount – Sleep
– GetTickCount

5. Anti-VM check with the help of detecting blacklisted devices – using QueryDosDevices i.e.
VBoxGuest

6. Searching and hiding blacklisted windows by their classes – using EnumWindows –
GetClassName (i.e. procexpl)

The blacklisted checksums:

https://gist.github.com/hasherezade/aefabdb9a67193ef05c93228a78c20c6#file-modules_blacklist-txt
https://github.com/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365461(v=vs.85).aspx

15/16

This file contains bidirectional Unicode text that may be interpreted or compiled differently
than what appears below. To review, open the file in an editor that reveals hidden Unicode
characters.
Learn more about bidirectional Unicode characters

Show hidden characters

0xFE9EA0D5

0x6689BB92

0x3C5FF312 ; procexpl

0x9B5A88D9 ; procmon_window_class

0x4B4576B5

0xAED304FC

0x225FD98F

0x6D3FA1CA

0xCF388E01

0xD486D951

0x39177889

view raw

windows_blacklist.txt

hosted with ❤ by GitHub
In another thread, the malware performs operations related to the bot installation – adding a
task to the Windows Scheduler, adding exclusions to the Firewall etc.

Finally, it unpacks the final payload and runs it with the help of the Run PE method. First, it
creates another instance of its own:

Then, it maps a new PE file on this place:

https://github.co/hiddenchars
http://10.10.0.46/%7B%7B%20revealButtonHref%20%7D%7D
https://gist.github.com/hasherezade/aefabdb9a67193ef05c93228a78c20c6/raw/9613500a830bdc327639a9eaf00ec9c1526759ea/windows_blacklist.txt
https://gist.github.com/hasherezade/aefabdb9a67193ef05c93228a78c20c6#file-windows_blacklist-txt
https://github.com/

16/16

Payload

The loaded payload is a Neutrino Bot, with very similar features to the one that we described
in a previous post. However, we can find some similar elements like in the loader, for
example matching strings:

Conclusion

Neutrino Bot has been on the market for a few years. It is rich in features but its internal
structure was never impressive. This time also, the malware authors did not make any
significant improvements to the main bot’s structure. However, they added one more
protection layer which is very scrupulous in its task of fingerprinting the environment and not
allowing the bot to be discovered.

https://blog.malwarebytes.com/cybercrime/2017/01/post-holiday-spam-campaign-delivers-neutrino-bot/

