Necurs Proxy Module With DDOS Features

@ bitsighttech.com/blog/necurs-proxy-module-with-ddos-features

Written by Sofia Luis February 24, 2017 Share Facebook Twitter LinkedIn

Necurs is a malware that is mainly known for sending large spam campaigns, most notably
the Locky ransomware. However, Necurs is not only a spambot, it is a modular piece of
malware that is composed of a main bot module, a userland rootkit and it can dynamically
load additional modules.

Having been around for a few years, this malware has been subject to a lot of great research
that has covered many of its aspects including the rootkit, the DGA, the communication
protocol and the spam module. However, there has not been much public information on any
modules loaded by Necurs besides the spam module.

About six months ago we noticed that besides the usual port 80 communications, a Necurs
infected system was communicating with a set of IPs on a different port using, what
appeared to be, a different protocol. The following image shows an example of this network
traffic.

1/15


https://www.bitsighttech.com/blog/necurs-proxy-module-with-ddos-features
https://www.virusbulletin.com/virusbulletin/2014/04/curse-necurs-part-1
https://www.virusbulletin.com/virusbulletin/2014/05/curse-necurs-part-2
https://www.virusbulletin.com/virusbulletin/2014/06/curse-necurs-part-3
https://www.johannesbader.ch/2015/02/the-dgas-of-necurs/
https://www.cert.pl/en/news/single/necurs-hybrid-spam-botnet/

£ *Local Area Connection ™ - - oyBEly =X 4
AW g0 XRE QavzjgiiEaaan

(| tep.stream eg 123 B -] expression..  +
No. Time Source Destination Protocol Length Info

— 14325 15872.115889 192.168.82.147 185.135.42.224 TCP 66 49365 » 5222 [SYN] Seq=8..

14327 15872.462429 192.168.82.147 185.133.42.224 TCP 54 49365 - 5222 [ACK] Seq=l1..

14328 15872.462683 192.168.82.147 185.133.42.224 TCP 94 [TCP segment of a reasse.
14329 15872.824662 185.133.42.224 192.168.82.147 TCP 67 [TCP segment of a reasse..
14331 15873.836996 192.168.82.147 185.133.42.224 TP 54 49365 » 5222 [ACK] Segq=4..

Ml Wireshark - Follow TCP Stream (tcp.stream eq 123) - wireshark_pcapng_AG90C14A-8AF2-446A-04E9-E30EA. . L[+ ) Il

sasRaTaunlassss Pess?Passaass Db..f -5...{csils@imirissas

1 chane phezl I sarver plefz) 1 m

[Entire conversation (53 bytes) 3 Showdata as [ASCII ¥ Steam 123 [
Find: Find Next
:M Hide thisstream| | Print | | Saveas.. | Close || hHep |

Recently, while decrypting the C2 communication of the a Necurs bot, we observed a request
to load two different modules, each with a different parameter list. The following is the
decrypted translation of the modules section of the C2 response:

"module_id: EB76FF144CB59D@OE4727F15970DC7E1EFFF52F49 params: http://158.255.6.204/forum/module.php
\nhttp://178.159.43.78/forum/module.php\nhttp://185.127.26.236/forum/module.php\n
http://185.133.42.224/forum/module.php\nhttp://185.22.172.209/forum/module.php\n
http://185.31.162.135/forum/module. php\nhttp://185.39.148.28/forum/module.php\n
http://194.63.140.115/forum/module.php\nhttp://212.109.192.231/forum/module. php\n
http://217.12.203.33/forum/module. php\nhttp://5.39.219.216/forum/module.php\n
http://77.222.54.239/forum/module.php\nhttp://91.234.34.187/forum/module. php\n
http://95.215.111.172/forum/module. php"

"module_id: D6774D1797@0D69FFD56DC57921EE289210ADAF37 params: 158.255.6.204:5222\n
178.159.43.78:5222\n185.127.26.236:5222\n185.133.42.224:5222\n185.22.172.209:5222\n
185.31.162.135:5222\n185.39.148.28:5222\n194.63.140.115:5222\n212.109.192.231:5222\n
217.12.203.33:5222\n5.39.219.216:5222\n77.222.54.239:5222\n91.234.34.187:5222\n
95.215.111.172:5222"

The first one was the spam module for which Necurs is most known, and the parameters are
the C2 addresses from which it can receive new spam campaigns. The second one was an
unknown module and, judging by the parameter values, it was the one responsible for the
communication we were seeing to port 5222.

2/15



We noticed this module in September 2016 and the compilation timestamp on the module is
“Aug 23 2016”, which suggests the module started being used around then. However, it is
possible that another version of the same module had been deployed before, without being
noticed.

We downloaded the module and reverse engineered it to try to understand exactly what it
was. At first look, it seemed to be a simple SOCKS/HTTP proxy module, but as we looked at
the commands the bot would accept from the C2 we realized that there was an additional
command, that would cause the bot to start making HTTP or UDP requests to an arbitrary
target in an endless loop, in a way that could only be explained as a DDOS attack. This is
particularly interesting considering the size of the Necurs botnets (the largest one, where this
module was being loaded, has over 1 million active infections each 24 hours, we blogged
about it here). A botnet this big can likely produce a very powerfull DDOS attack.

Please notice that we have not seen Necurs being used for DDOS attacks, we simply
saw that it has that capability in one of the modules that it has been loading.

The rest of this post contains the results of a technical analysis of this module, detailing its
C2 protocol, the SOCKS/HTTP proxy features, and the DDOS attack features.

MODULE TECHNICAL ANALISYS

Module start/initialization

Once the module is loaded by the bot, it performs the following initialization actions:

o Parses the parameters and stores them in an internal list of C2 addresses;
e Fills a memory structure (see botsettings struct definition below) with:
o The BotID - Generated through gathering unique system characteristics;
o The internal IP address - Obtained by checking the outbound sockets IP
address when connecting to google.com;
o The external IP address - Obtained trough HTTP from ipv4.icanhazip.com or
checkip.dyndns.org;
o The available bandwidth - Obtained by measuring the download speed of the
Windows 7 Service Pack 1 file from microsoft;
o The (socks/http) proxy service port - The port of the service listening on a
random port above 1024,
e Checks if the system is behind NAT - By checking if the outbound socket IP is not a
local address and that it matches the external IP;
o If the system is not behind NAT, the bot starts a SOCKS/HTTP proxy service listening
on a random port above 1024.

The botsettings struct can be defined as follows:

3/15


http://blog.anubisnetworks.com/blog/monitoring-necurs-the-tip-of-the-iceberg

struct botsettings{
int64_t botid;
int outboundsocketip;
int externalip;
short listeningport;

double bandwidth;

C2 communication protocol

After initialization, the bot will enter the main C2 connection loop, where it will attempt to
connect to the current C2 every 10 seconds, unless instructed otherwise. If the connection to
the current C2 fails, it will fetch another from the address list and try again.

The communication protocol is binary and encrypted/obfuscated using a custom algorithm.
Messages to, and from, the server have a very similar structure (see struct botmsg and
c2msg definitions below) and contain the following data:

o Key - A 32 bit encryption key;
o Encrypted header - A header structure (see struct botmsgheader and c2msgheader
definitions below), encrypted with the key and containing:
o Message type - A byte that defines the type of message/command being sent;
o Payload length - The length of the payload being sent;
o Header hash - A hash of the first bytes of the message (key, msgtype, unknown
and datalength);
o Data hash - A hash of the payload, used for integrity checking;
« Encrypted payload - An array of data being sent, encrypted with the reverse value of
the key.

4/15



struct botmsg{
int key;
char eheader[10];
char epayload[];

}

struct c2msg{
int key;
char eheader[9];
char epayload(];
}

struct botmsgheader{
char msgtype;
char unknown; // unknown byte send only in bot messages with a hardcoded value 5
int datalength;
short headerhash;
short datahash;

}

struct c2msgheader{
char msgtype;
int datalength;
short headerhash;
short datahash;

There are three types of messages sent by the bot to the C2, that can be distinguished by
the msgtype byte in the header:

o Beacon (msgtype 0) - This is the main message that is sent by the bot every 10
seconds. It sends the botsettingsstruct described previously as a payload;

e Connectivity check (msgtype 1) - This is a simple dummy message that contains no
data besides the encrypted message header. It is sent in case a timeout occurs to the
current C2 to make sure it is no longer available;

» Proxybackconnect (msgtype 2) - This message is sent in case the bot receives the
command to start a socks backconnect. This will start a connection to the C2 that will
be reused for the SOCKS/HTTP proxy connection, proceeding as if it had been initiated
by the proxy client.

As a response to the beacon, there are also three types of messages (or commands) sent by
the C2 to the bot, that can be distinguished by the msgtype byte in the header:

o Start Proxybackconnect (msgtype 1) - This command tells the bot to start a
backconnect proxy session by sending a proxybackconnect message from the bot to
the C2. This connection’s socket will be reused and allows the bot to be used as a
proxy even behind a firewall and without establishing a direct connection to it;

o Sleep (msgtype 2) - This will cause the bot to sleep for 5 minutes;

5/15



o Start DDOS (msgtype 5) - This command will start a DDOS attack against the target
specified in the message payload using one of two available attack modes:
o HTTPFlood: If the first bytes of the message payload are the string “http:/”, the
bot will start an HTTP flood attack against the target;
o UDPFlood: If the first bytes of the message payload are not the string “http:/”,
the bot will start an UDP flood attack against the target.

Proxy features

The SOCKS/HTTP proxy service and command, allows the botnet owners to use the
compromised bots as proxies (HTTP, SOCKSv4 and SOCKSv5 protocols), relaying
connections through them in two modes of operation (direct proxy and proxy backconnect).

In direct proxy mode, the client connects to the proxy service, which will forward the
communication to the destination, as in the following image:

Client [<«—» Proxy [«—» Target

This is only possible if the bot is not protected behind NAT or a firewall, which is not the case
in the vast majority of the botnet.

In proxy backconnect mode, the client connects to the proxy controller, that will then obtain
an outbound proxy from a pool of available proxies and relay the connection through it. The
following diagram illustrates the system:

6/15



, | ProxyC2
Client - 3 — {1 Target
23| 4
l r
/Pool of bots v
o Proxy Praxy
Prg (bot) (
Proxy Pr Proxy
—— (bot) P Pl  (bot)
p xy p _LEII ITT I
(bot) ol (b Proxy
' \ P (bot)
P Pju (b P Pr
t)

( (bot)
L L J

1 The client connects to the proxy controller (C2) to start a connection to the
larget,

2. All bots in the pool periodically send a beacon message to the C2;

a3 The C2 replies with the startbackconnect command to the intended bot;

4. The bot connects to the C2 using a special backconnect message. This
same socket will be used from this moment on to proxy the communication
between the client and the server.

There are several advantages to this operation mode. The main ones being that it works
even if the infected system is behind NAT and it will allow a connection to internal network
resources as if it came from the infected machine. Another common use for these kind of
proxies is to have a constantly changing IP address, by constantly and automatically
changing the bot serving as proxy.

Taking a brief view at how this is implemented, the following image shows part of the function
that processes the C2 commands.

7/15



; signed int _ usercall processc2commandl
processc2comnand proc near

downloadspeed= quword ptr -8

mov cl, [eax+h)
cnp cl, 1 ; IF msgtype==1 |
inz short loc 661408

|
Y

i = >
push n ; data

push 2 y msgtype 1oi
Koy tax, Bax ; length N
call sendbeacontoc? in.
pop eCK o
pop eCcK

test cax, eax

jz short loc 6613F2

Context

In case the bot receives a startproxybackconnect command (msgtype 1), the bot will send a
proxybackconnect message to the C2 (msgtype 2) and then the same socket that is used in
the C2 communication (globalsocket) to the startprocessincoming function that does the
actual proxying work. This means that the same connection used for C2 communication will
then be used to proxy the connections.

The processincomming function reads 2 bytes from the incoming connection (direct or
through backconnect) and checks if the first has the value 5 (Socks v5 protocol), 4 (Socks v4
protocol) or if it is alphanumeric (HTTP Proxy). It then calls the appropriate function that does
the actual proxying work for each of the supported protocols.

8/15



h 4
e =
loc_&&222C:
O T can, [rhpsbuf ]
push 2 €
pop
test cax, Fax
F 4 shart lec &4229%
Lt
[ e =
pu~h of fset asc_ &437EC WL nLryn
push 78 : headersleng!
1ea eax, [ebpshitpregbufbuf )
push Eax H
push [ebpssocket ) B
call receiveuntilsubstr
add esp, 18h
Cmp ecax, esi
iz short loc_ 667295
h J

[ehpeean*hitpreqbufbuf )
ean, [ehpr<ockel )

eax

starthttpproxycon

L=

rax, Tax

short loc_ 662795

T
e — s = =
lea eax, [ebprsocket]] |[lea eax, [ebpessocket]] call proxght tpcon
call startsocksSproxy call startsockshproxy Jmp short lec &6FF795 |

DDOS attack features

Possibly the most interesting, and unexpected, feature of this module is the DDOS attack
mode. The module contains two very basic DDOS attack modes, that don’t have special

features like origin IP address spoofing or amplification techniques. However, given the size
of the Necurs botnets (more than 1M IP/24 hours in the largest botnet), even the most basic

techniques should produce a very powerful attack.

Taking a brief look at how it is implemented, if the bot receives the startDDOS command
(msgtype 5) the payload portion of message is parsed looking for the string “http:/”. If it is

found, the HTTPflood function is called, if not, the UDPFlood function is called, as shown in

9/15



the following image:

..................................

cnp dl, ‘n° 4

jnz short loc_661867

1
L

cnp byte ptr [eaxe8En], “t’|{mm

jnz short loc_ 661847

:

F"E
cmp byte ptr [eax+®n), ‘U’

inz shart loc 661847

3

-

i =

nz short loc 661867

€Rp  byte ptr [eaxeiin], “p’|dumm

i

cnp byte ptr [eax+110],
ju short loc_&41647

e _

s

short leoc_&41887

byte ptr [eax+12n), '/ [

¢

inp short lec 641487

|

1y

fla botsettingsstruct .bandwidth

1oc AATM4T:
push eCx
push eoN

fstp [esprlsdown]loadsperd )

e e

10/15



HTTP Flood attack mode

The HTTP attack works by starting 16 threads that perform an endless loop of HTTP
requests. The following images show the 16 threads being queued and the section of the
code that sends the HTTP request:

11/15



mow gleb hitpgelport,

pop esi
ve

loc_661183: : Flags

10m

unique jobflag ; Context

offset sendddoshttprequest ; Function
ds :Quevelserdork] Len

rsi

short loc_&61183

-

edi, eax

op BCK

op eCH

est edi, edi

z short lec_ 661073

|i |

push esl
push [ebprhostnane )
mov esi, Hivn
push [ebprpatin]
1ea eax, [ehpsnttpstring)
pusin offset Farnat : "BLT swinhccept: image/qif . image/{peq”.
push esd + Count
pasn sax + Dest
call ds: siprinlf
add esp, 1%h
push L} : Flags
push eax 7 len
lea eax, [ﬂ.nttpstrim]
push maAK ]
push edi $ s
call as :send
push n v Flags
push esi i len
lea ean, ['hiittr.'trlnq]
push eax
push edi ; s
call ds:irece
push edi : s
call ds:closesocket
pop esi

A

The HTTP request is built using the following format string:

12/15



GET %s

Accept: image/gif, image/jpeg, image/pjpeg, image/pjpeg, application/x-shockwave-flash,
application/x-ms-application, application/x-ms-xbap, application/vnd. ms-xpsdocument,
application/xaml+xml, */*

Accept-Language: en-us

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR
2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)

Accept-Enceding: gzip, deflate

Host: %s

Connection: Keep-Alive

UDP Flood attack mode

The UDP flood attack works by repeatedly sending a random payload with size between 128
and 1024 bytes. The function contains a 0.1 second sleep that may be triggered depending
on the available bandwidth (calculated during bot initialization), possibly to avoid losing

13/15



access to the bot during a DDOS attack. The following image shows the UDPFlood main

loop:

O R < o R h hm A s e e e s

i |[push
[ [push
[ Imovzx
ilcall
| ([mov
i|1ea
|push
[push
ijeall
| |add
{ Imov

1824

128

esi, ax
randint

edi, eax

eax, [ebp+buf]
edi

eax

fillranbuffer s Fill a 128 - 1024 bytes buffer with random data

esp, 160
[ebprtvar_ 18], s0h

P4

loc_662972:

push esi
push [ebpedestip]
lea eax, [ebpebuf])
push edi
push eax
push ebpes
ga“ ‘5,,,5.,.,,! e Send data through UDP
add [ebprvar k], edi
Fild [ebpevar &)
add esp, 14h
Fld downloadspeed_udpvar
Fdiv ds:globvar1ibddouble
Feonpp
fnstsw  ax
test ah, %1h
Hp short loc_6629AC
¥
=
push 100
call ebx ; Sleep F If throughput nears bandwidth limit sleep 0.1 seconds
and [ebptuvar &), @

. =

I —

dec
jnz

loc_6629AC:

[ebp+var_1@]
short loc_662972

Conclusion

Although known mainly for its spam module, Necurs is a modular malware that can be used
for many different purposes. In this blog post we detailed a module that adds SOCKS/HTTP
proxy and DDOS capabilities to this malware. Although we have not seen Necurs being used
to perform DDOS attacks, this capability is currently deployed in the infected systems and
taking into account the size of the botnet it could produce a powerful attack.

14/15



References

For more information about the Necurs Botnet, check out the following links:

o https://www.virusbulletin.com/virusbulletin/2014/04/curse-necurs-part-1

o https://www.virusbulletin.com/virusbulletin/2014/05/curse-necurs-part-2

o https://www.virusbulletin.com/virusbulletin/2014/06/curse-necurs-part-3

« https://www.johannesbader.ch/2015/02/the-dgas-of-necurs/
 http://www.malwaretech.com/2016/02/necursp2p-hybrid-peer-to-peer-necurs.html
o https://www.cert.pl/en/news/single/necurs-hybrid-spam-botnet/

Analysed module sample:

f3aeafe50880cb9dd584b3669800c017de561f8f9654440f62¢51319fda0e970

Get the Weekly Cybersecurity Newsletter

Subscribe to get security news and industry ratings updates in your inbox.

- %
Read more
By checking this box, | consent to sharing this information with BitSight Technologies,
Inc. to receive email and phone communications for sales and marketing purposes as
described in our privacy policy. | understand | may unsubscribe at any time.

15/15


https://www.virusbulletin.com/virusbulletin/2014/04/curse-necurs-part-1
https://www.virusbulletin.com/virusbulletin/2014/05/curse-necurs-part-2
https://www.virusbulletin.com/virusbulletin/2014/06/curse-necurs-part-3
https://www.johannesbader.ch/2015/02/the-dgas-of-necurs/
http://www.malwaretech.com/2016/02/necursp2p-hybrid-peer-to-peer-necurs.html
https://www.cert.pl/en/news/single/necurs-hybrid-spam-botnet/
https://www.bitsight.com/privacy-policy

