
1/16

February 23, 2017

Related Insights
info.phishlabs.com/blog/dissecting-the-qadars-banking-trojan

By Stacy Shelley | February 22, 2017

Qadars is a sophisticated and dangerous trojan used for crimeware-related activities
including banking fraud and credential theft. Qadars targets users through exploit kits and is
installed using Powershell Scripts. We have observed Qadars targeting multiple well-known
banks in UK and Canada and is capable of stealing infected users’ two-factor authentication
codes and banking credentials through the deployment of webinjects. While not as well
known or widespread as other Trojans, the operators have shown commitment to
development of Qadars’ on-board evasion techniques and its advanced and adaptable
privilege escalation module. This emphasis on persistence alongside the frequent shifts in
both industry and geographic targeting indicate Qadars will remain a potent threat through
2017.

 List of

webinject targets from a Qadars configuration file

In this technical blog post, we will analyze a Qadars binary file and provide code and a Yara
rule to aid in the analysis and detection of this banking Trojan. First, we will examine Qadars’
methods of thwarting reverse engineering through the utilization of a dynamically resolved
Import Address Table with obfuscated functions and strings. We then will detail the trojan’s
behaviour and dynamically-generated command and control centers with which it
communicates. The C2s are not utilized solely for the collection of stolen credentials. We
have also observed them delivering a module to Qadars samples operating in a low privilege
environment that employs social engineering to trick the user into allowing higher level
access.

Import Address Table (IAT) and String Obfuscation

https://info.phishlabs.com/blog/dissecting-the-qadars-banking-trojan
https://securityintelligence.com/meanwhile-britain-qadars-v3-hardens-evasion-targets-18-uk-banks/

2/16

In its pure form, Qadars has built-in protection to make reverse engineering difficult, such as
dynamic resolution of the Import Address Table (IAT) and obfuscation of the IAT functions
and strings. At the beginning of execution, it calls a subroutine responsible for resolving and
concealing IAT entries.

It locates API entries using a well-known hashing method. For example, in the code depicted
below, 9B102E2Dh corresponds to LoadLibraryA:

Resolving API Calls via Hashing Mechanism

Dynamic Link Libraries (DLLs) are loaded using LoadLibrary and API names are located by
parsing the export address table as show in the trace file below:

3/16

Loading DLLs Using LoadLibrary

Function

Furthermore, Qadars conceals an API function by XORing the address of an API call with a
4-byte XOR-Key. Wherever there is a call to a particular API function, the original value is
reverted back to its XOR-encoded value.

4/16

Decoding

XOR-encoded API Call

In order to simplify the analysis, we can utilize one of two methods: create an IDA script to
statically resolve the import addresses, or create an IDA script to rebuild the IAT. We will
utilize the latter method.

Reconstructing Imports by Instruction Patching

In order to restore the imported function, we would need our instructions to specify CALL
[APIPointer] instead of CALL . However, patching an indirect call would not be allowed
because the size of an indirect call is only 2 bytes, while the size of a referenced call is 6
bytes. We could accommodate these additional 4 bytes by NOP’ing the previous XOR
operation which is used to retrieve the original value. In this manner, we could keep the
offsets at their specified and original locations. The following code comparison (also known
as diff) illustrates this concept:

Maintaining Memory Offsets by Inserting NOP Instructions

All resolved entries are stored in an array 748 bytes in size consisting of 187 total API calls.

5/16

Resolved API Function Calls

We will use the following script to XOR the API address array with the original global XOR
key. This allows us to patch and relocate the instructions.

6/16

Raashid Bhat
(C) PhishLabs 2017
IAT Patch Script Qadars Banking Trojan

XORKey = 0x43B9A447 # 2017 v3
LoadLibException = 0x004196F0

ApiResolvRange = 0x00406150

ApiResolvRangeLen = 0x00409ACC - 0x00406150

from capstone import *
import struct
Debug = 1

def ReadMem(addr, n):
global Debug
if Debug:
return DbgRead(addr, n)
else:
return GetManyBytes(addr, n)
def WriteMem(addr, buff):
global Debug
if Debug:
 DbgWrite(addr, buff)
else:
for i in buff:
 PatchByte(addr, ord(i))
 addr = addr + 1
return

def PatchIndirectCall(MemAddr, Addrs, CallDst):
 Reg = ''

 md = Cs(CS_ARCH_X86, CS_MODE_32)
 for i in md.disasm(MemAddr, Addrs):

 print "0x%x:t%st%s" %(i.address, i.mnemonic, i.op_str)

if i.mnemonic == 'xor' and Reg == '':
 print i.op_str[0:3]

 Reg = i.op_str[0:3]
 if i.mnemonic == 'call':

 if i.op_str == Reg:

 print "0x%x:t%st%s" %(i.address,
i.mnemonic, i.op_str)

 print "Size = %d" % (i.address - (Addrs + 6))
 Inst = ReadMem(Addrs + 6, (i.address - (Addrs + 6))) # read

remaining instructions
 WriteMem(Addrs , 'x90' * (i.address - (Addrs) + 2)) # write NOPS

 WriteMem(Addrs, Inst)
 Inst = "xffx15" + struct.pack("

7/16

 WriteMem(i.address - 6, Inst)
return

for i in range(0x004193DC, 0x004196F0, 4):

 PatchDword(i, DbgDword(i) ^ XORKey)

if i == LoadLibException:
 continue

 x = XrefsTo(i)

 for j in x:
 addr = j.frm

 print addr
 if addr > ApiResolvRange and addr print "[] API Patch Subroutine

Skipping... "
 continue

 print hex(j.frm)
 PatchIndirectCall(ReadMem(addr, 0x32), addr, i)

Script to Patch API Address Array

Patching

Import Address Table

Upon opening this file in IDA, we are presented with an annotated Import Address Table:

8/16

Patched Import Address Table in IDA

Similarly, we can use an IDA script to deal with Qadars string obfuscation which is simply a
XOR-based decoding algorithm in which each of the encoded strings has the following
structure:

struct EncodedString
 {

 DWORD len;
 char Encodedbuf[len]; // XOR encoded with a key

 }

XORKEY = “4B57A7E012368BE9AA48” // found in sample

 while (v12 {
 *(_BYTE *)(v12++ + v13) ^= v15[v14];

 v14 = (v14 + 1) % v11;
 }

 result = v13;

9/16

The code can be simply represented in Python as follows:

def DecodeString(Ea):
 XORBuff = "4B57A7E012368BE9AA48".decode("hex")

 BuffLen = Dword(Ea)
 print "[] Buffer Len = %d " % BuffLen

 dst = "

for i in range(0, BuffLen):
 dst = dst + chr((Byte(Ea + 4 + i) & 0xff) ^ ord(XORBuff[i % (10)]))

 print len(dst)
 j = 0

 for i in dst:
 PatchByte(Ea + j, ord(i))

 j = j + 1

We will use the following IDA Python script to help us with decoding all encoded strings
present in Qadars:

10/16

IDAPython String Decoder For Qadars
Raashid Bhat
(C) PhishLabs 2017

import struct
procesed = []
def DecodeString(Ea):
 XORBuff = "4B57A7E012368BE9AA48".decode("hex") #xorkey

 BuffLen = Dword(Ea)
print "[] Buffer Len = %d " % BuffLen
 dst = "

for i in range(0, BuffLen):
 dst = dst + chr((Byte(Ea + 4 + i) & 0xff) ^ ord(XORBuff[i % (10)]))

 print len(dst)
 j = 0

 for i in dst:
 PatchByte(Ea + j, ord(i))

 j = j + 1

for i in CodeRefsTo(ScreenEA(),1):
 print hex(i)

 ea = PrevAddr(i)
 while "push offset" notin GetDisasm(ea):

 ea = PrevAddr(ea)
 print GetDisasm(ea)[19:]

 if "asc_" in GetDisasm(ea):
 addr = GetDisasm(ea)[19:].split(";")[0]

 else:
 addr = GetDisasm(ea)[19:]

 if int(addr, 16) in procesed:
 continue

 DecodeString(int(addr, 16))
 procesed.append(int(addr, 16))

for i in procesed:
 MakeStr(i, BADADDR)

Running this script on the sample decodes all strings and makes them visible in the Strings
window.

11/16

Deobfuscated

Strings

Privilege Escalation / Social Engineering and Spoofing Adobe Update

If Qadars is not presented with a specific set of privileges, it tries to contact and download a
module from the command and control center. This module is then loaded in memory and an
export, aptly named “Exploit” is invoked to complete the privilege escalation. Currently, a
known vulnerability in how the Win32k.sys kernel-mode driver handles objects in memory is
exploited for this purpose (CVE-2015-1701).

Decoding ‘Exploit’ Module

https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-1701

12/16

Debugging Symbols for ‘Exploit’ Module

‘Exploit’ Module in DLL Exports

13/16

Elevated Permissions Following

Invocation of ‘Exploit’ Module

If the privilege escalation code does not work, Qadars attempts to socially engineer the
victim with a fake Windows security update prompt. This executes code that allows Qadars
to run with higher privileges using the “runas” verb:

14/16

Fake Windows Security Prompt

Upon execution of the malware, it loads a fake window with a progress bar masquerading as
an Adobe Updater application to provide a sense of legitimacy.

Fake Adobe Flash Update

Communication and DGA

Qadars locates the command and control center by generating a list of 200 domains using a
combination of a time seed and some constants. On February 1st, Qadars started using a
new seed value 0xE1F1, replacing the previous seed, 0xE1F2.

https://johannesbader.ch/2016/04/the-dga-of-qadars/

15/16

Qadars Domain Generation 1.png Qadars Domain Generation 2.png

Domain

Generation

Initially, two information packets are generated and concatenated. They consist of a chunk of
information serialized in the following format: botid, version , operation type, etc.

This information is packed together and fed to another subroutine which generates a MD5
hash of a 9-byte random string. This string will be used as an AES-128 encryption key which
is then appended in the beginning of the encoded packet for command and control traffic
decoding.

Information is serialized in each entry in the following format:

struct InfoStructEntry
{
unsigned int len;
unsigned char Buffer[len];
}

The response is encrypted using AES-128 and the first 16 bytes consist of the MD5 hash of
the command and control buffer. This hash is used for verification before processing.

Struct c2packet
{
BYTE MD5Hash[16];
BYTE []AESEncryptedBuffer;
}

After decryption, the base packet consists of metadata information which is used to
determine the parameters and type of block to be processed. Multiple entries consist of
either modules, updates, or a web inject file which is APLIB compressed.

16/16

Qadars Base Packet.png

Yara rule

The following Yara rule can be used to identify this Qadars variant:

rule Qadars
 {

 strings:
 $dga_function = { 69 C9 93 B1 39 3E BE F1 E1 00 00 2B F1 81 E6 FF FF FF 7F

B8 56 55 55 55 F7 EE 8B C2 C1 E8 1F 03 C2 8D 04 40 }
 condition:

 $dga_function
 }

