
1/20

February 2, 2017

Oops, they did it again: APT Targets Russia and Belarus with ZeroT
and PlugX

proofpoint.com/us/threat-insight/post/APT-targets-russia-belarus-zerot-plugx

https://www.proofpoint.com/us/threat-insight/post/APT-targets-russia-belarus-zerot-plugx

2/20

Blog
Threat Insight
Oops, they did it again: APT Targets Russia and Belarus with ZeroT and PlugX

https://www.proofpoint.com/us
https://www.proofpoint.com/us/blog
https://www.proofpoint.com/us/blog/threat-insight

3/20

February 02, 2017 Darien Huss, Pierre T, Axel F and Proofpoint Staff

Overview

Although state-sponsored attacks against the United States by Chinese threat actors have decreased
dramatically since the signing of the US-China Cyber Agreement in 2016, Proofpoint researchers have continued
to observe advanced persistent threat (APT) activity associated with Chinese actors targeting other regions. We
have previously written about related activity [2][3] in which a particular China-based attack group used PlugX
and NetTraveler Trojans for espionage in Europe, Russia, Mongolia, Belarus, and other neighboring countries.
Most recently, we have observed the same group targeting military and aerospace interests in Russia and
Belarus. Since the summer of 2016, this group began using a new downloader known as ZeroT to install the
PlugX remote access Trojan (RAT) and added Microsoft Compiled HTML Help (.chm) as one of the initial
droppers delivered in spear-phishing emails.

This blog details the function of the new malware, provides delivery details for elements of the APT activity, and
describes additional changes in tactics, techniques, and procedures (TTPs) associated with this group.

Delivery

In previous campaigns, the group used spear-phishing emails with Microsoft Word document attachments
utilizing CVE-2012-0158, or URLs linking to RAR-compressed executables. Although some of these patterns of
behavior still continue, in June 2016 we observed the attackers using a new type of dropper to deliver a
previously unknown malware we named "ZeroT". Specifically, the CHM file 20160621.chm (SHA256:
4ef91c17b1415609a2394d2c6c353318a2503900e400aab25ab96c9fe7dc92ff) dropped the first known sample of
ZeroT.

The proprietary Microsoft HTML Help file format (.chm) is used for software documentation and may consist of
HTML pages and other compressed files. This particular CHM contained an HTM file and an executable file. The
HTM file contained the text displayed to the user and referenced the executable svchost.exe (SHA256:
d1c4a51064aeec4c11a8f90f80a3b60a36c07cce2dde0756c114e477d63ce375). Thus, opening the CHM has the
effect of running the executable (the UAC dialog is shown in Figure 1).

https://www.proofpoint.com/us/threat-reference/advanced-persistent-threat

4/20

Figure 1: The dropper file 20160621.chm with a Russian-language lure pretends to be from the “Defense
Industry of Russia in the 21st Century”; user must accept the UAC warning before malware executes.

Figure 2: Listing of the files in the CHM file and their partial contents

Attackers also continued to send spear-phishing emails with Microsoft Word attachments utilizing CVE-2012-
0158 to exploit the client. These documents were built with MNKit, described in detail here [6][7]. For example,
the email with subject “Федеральная целевая программа 2017-2020 гг.” (translated from Russian: “Federal

https://www.proofpoint.com/sites/default/files/apt-1.png
https://www.proofpoint.com/sites/default/files/apt-2.png

5/20

Target Program 2017-2020 gg.”) contained an attachment “2017-2020.doc” and was sent to a potential victim in
an aerospace company in December 2016.

Figure 3: Email sent to potential victim in aerospace company contained a MNKit-generated CVE-2012-0158
exploit document

Throughout the second half of 2016 we also found many RAR archives and RAR SFX (self-extracting
executables) of ZeroT; example names are listed in the table below. Several refer to Commonwealth of
Independent States (CIS), a regional organization that includes nine out of the fifteen former Soviet Republics,
including Russia and Belarus [5].

Filename Translation

Изменения в списке аффилированных лиц по
состоянию на 21.06.2016 г.scr

Changes in the list of affiliates as of 06.21.2016 g.scr

УВЕДОМЛЕНИЕ О
КОНФИДЕНЦИАЛЬНОСТИ.rar

NOTICE of CONFIDENTIALITY.rar

ПОВЕСТКА ДНЯ 72-го заседания
Экономического совета Содружества
Независимых Государств.rar

AGENDA OF THE DAY for 72-nd meeting of the
Economic Council of the Commonwealth of Independent
States.rar

Проекты.scr Projects.scr

https://www.proofpoint.com/sites/default/files/apt-3.png

6/20

План.scr Plan.scr

08_11_2016 СНГ.7z 08_11_2016 CIS.7z

Table 1: Examples of RAR compressed executables or simply .scr executables of ZeroT

Analysis

This section provides an analysis of ZeroT, its delivery and obfuscation techniques.

UAC Bypass and Sideloading

Throughout our investigation, many of the analyzed ZeroT RAR SFX samples (e.g.
67693ddb6236d3ef790059409ae240212c47acfd8c1c76d65c3ef19096fdf43b) contained a file named Go.exe
which performs Windows UAC bypass. This executable contains a PDB path indicating its purpose of bypassing
UAC (Fig. 4).

Figure 4: PDB path containing Chinese characters translating to “Desktop”

This executable is obfuscated using the same technique that is reused in the sideload DLL and the ZeroT
payload (described later). When run, Go.exe modifies the registry key shown in Figure 5 to perform the UAC
bypass by exploiting Event Viewer [1].

Figure 5: Modified registry key to execute Zlh.exe exploiting a UAC bypass vulnerability in eventvwr.exe

It then executes eventvwr.exe which proceeds to execute Zlh.exe using the UAC bypass vulnerability (Fig. 6).

Figure 6: Zlh.exe is executed via the eventvwr.exe UAC bypass vulnerability

Zlh.exe is a legitimate, signed Norman Safeground AS application, which is used to sideload a malicious
nflogger.dll DLL.The encrypted ZeroT payload is usually named NO.2.mui. The sideloaded DLL does not always
use the same vulnerable executable, but it is always similar in functionality. Usually the DLL is not packed, but
we have observed instances compressed by UPX. This malicious DLL is usually obfuscated with the same junk
code: dummy API calls inserted in between real instructions (Fig. 7). The same obfuscation can be found in
multiple functions in ZeroT itself.

https://www.proofpoint.com/sites/default/files/apt-4.png
https://www.proofpoint.com/sites/default/files/apt-5.png
https://www.proofpoint.com/sites/default/files/apt-6.png
https://en.wikipedia.org/wiki/Norman_Safeground
https://upx.github.io/

7/20

Figure 7: Dummy API calls for obfuscation

This DLL has no other noticeable characteristics, as it functions like a typical malicious sideload. After loading
the encrypted payload in memory, it transfers the execution to a shellcode that is located at the beginning of the
file. Even if the process is similar for the PlugX RAT sideloaded later, the shellcode and obfuscation have nothing
in common. Once loaded in memory, the ZeroT shellcode does not present any kind of obfuscation, unlike that
for PlugX. This shellcode is charged with unpacking the encrypted and compressed payload. As in the new
PlugX dropper detailed below, this is done using RC4 and RtlDecompressBuffer. As in PlugX samples, the PE
header of ZeroT has been tampered with, specifically the “MZ” and “PE” constants (Fig. 8). On some PlugX
versions, either “GULP” or “XV” are common as tags replacing the “MZ” constant.

Figure 8 : Altered ZeroT PE Header

ZeroT Command and Control Protocol

ZeroT communicates with its command and control (C&C) over HTTP. A fake User-Agent is used in all the
requests made by this malware: “Mozilla/6.0 (compatible; MSIE 10.0; Windows NT 6.2; Tzcdrnt/6.0)”, with
“Tzcdrnt” possibly being a typo of “Trident.” In all the samples we observed, ZeroT first beacons to index.php
expecting an RC4-encrypted response using a static key: “(*^GF(9042&*” (Fig. 9).

https://www.proofpoint.com/sites/default/files/apt-7.png
https://www.proofpoint.com/sites/default/files/apt-8.png

8/20

Figure 9: ZeroT initial beacon over HTTP requesting URL configuration

In the decrypted initial server response (Fig. 10,11), ZeroT expects several URLs including a location to POST
system information prefixed with “w:” and a download location for any stage 2 payloads denoted with an “r:”
prefix.

Figure 10: Decrypted tassnews[.]net index.php response containing several URLs

Next, ZeroT uses HTTP POST beacons to transmit information about the infected system to the C&C. The first
beacon contains the following data: “Cn=%s&La=%s&” where Cn is the computername and La is the local IP
address (Fig. 11). While the first beacon is transmitted in cleartext it is probable that this behavior was
unintentional as subsequent POST beacons in the loop are encrypted. The first POST beacon is followed by
another in the following format (Fig. 11,12):
“Lg=%d&Pv=%d&Bu=%%s&Cn=%s&Cu=%s&Dn=%s&Ki=%s&La=%s&Me=%s&Os=%s&Ov=%s&Pt=%s&Fl=%%d”
that is RC4-encrypted with the following key: “s2-18rg1-41g3j_.;”. This POST sends basic fingerprinting data
including computer name, system language, domain information and Windows versioning.

Figure 11: Initial plaintext POST beacon

https://www.proofpoint.com/sites/default/files/apt-9.png
https://www.proofpoint.com/sites/default/files/apt-10.png
https://www.proofpoint.com/sites/default/files/apt-11.png
https://www.proofpoint.com/sites/default/files/apt-12.png

9/20

Figure 12: RC4-encrypted POST beacon

The final piece of ZeroT’s C&C protocol is to retrieve any stage-2 payloads. In the initial samples of ZeroT, the
tassnews[.]net C&C was used to distribute plain, non-encoded PE payloads (Fig. 13). Although we were not able
to retrieve all the payloads that may have existed at this C&C, the ones we did observe were RAR SFX archives
used to deliver PlugX.

Figure 13: ZeroT downloading non-encoded PlugX Stage 2

The ZeroT samples communicating to versig[.]net functioned differently from samples using tassnews[.]net
where Bitmap (BMP) [8] URLs (Figure 14) were provided as a stage 2 payload instead of EXEs (Fig. 14).

Figure 14: Decrypted versig[.]net index.php response with F.bmp stage 2

The BMPs used for stage 2 in all the instances we analyzed looked like normal images (Fig. 15, 16) which
indicated a form of steganography is being used that minimizes changes to the appearance of the image.

https://www.proofpoint.com/sites/default/files/apt-13.png
https://www.proofpoint.com/sites/default/files/apt-14.png

10/20

Figure 15: F.bmp image containing stage 2 hidden using steganography

Analysis of the F.bmp image revealed that it is indeed using Least Significant Bit (LSB) Steganography [9,10], a
commonly used form of steganography that embeds data in an image without significantly affecting its
appearance.

Analysis of ZeroT’s Bitmap LSB Steganography

ZeroT uses a single, large function for the custom LSB algorithm that occurs as the first function in the samples
we analyzed. It may selectively choose to extract one, two, three, or four bits per pixel byte depending on the
size of the embedded payload and the image being used, meaning it is capable of 1-, 2-, 3-, and 4-bit LSB (Fig.
16).

https://www.proofpoint.com/sites/default/files/apt-15.png

11/20

Figure 16: Diagram depicting portions of ZeroT’s LSB steganography algorithm

The first step in the algorithm extracts the width and height from the image. A 24-bit depth Bitmap is assumed
while calculating the size of memory needed (3*Width*Height) to store all the pixels in the image, which is
allocated using malloc. Next, because Bitmaps are padded to 32-bit boundaries, ZeroT will check to see if any
padding exists by AND’ing 3*Width. If that value is not zero, then it is subtracted from four which is then used as
the padding.

The following step in the algorithm is to assemble the bitmap row by row. Technically what occurs is as follows:
iteratively 3*Width bytes, beginning at the hardcoded offset of 54, are copied to the end of the previously
allocated memory (malloc’d 3*Width*Height). Padding is then skipped, if any exists, followed by the next 3*Width
bytes until all rows of pixels are copied.

https://www.proofpoint.com/sites/default/files/apt-16.png

12/20

Next, starting at offset 10 of the assembled bitmap, ZeroT extracts a 32-bit value from 32-bytes using 1-bit LSB
that is used to indicate the size of the embedded stage 2 payload. The stage 2 file extension is then extracted
starting at offset nine and working its way backwards until a period is found (e.g., “.exe”).

Finally, ZeroT checks various values such as the image length against the needed bits to complete the length of
the extracted payload [8*len(extracted payload)]. Depending on the result, ZeroT will decide to use 1-, 2-, 3-, or
4-bit LSB. Lastly, once each bit is extracted, all the bits will be compiled into bytes to form the extracted stage 2
payload.

Stage 2 Payloads

Until the end of 2016, PlugX payloads were delivered as RAR SFX archives and used one of the usual sideload
executables such as fsguidll.exe. ZeroT sets up the persistence for these samples, adding a new service to run
PlugX during system startup (Fig 17).

Figure 17: ZeroT configures PlugX service to run during startup

Of interest, a recent ZeroT sample (SHA256:
a9519d2624a842d2c9060b64bb78ee1c400fea9e43d4436371a67cbf90e611b8) downloaded a much smaller
BMP payload (SHA256: 25de9c3f7bf1f0be7eb84cf90efb643d5d51ce1742da8bcc4c7db0eec79a221f). This was
an example where the stage 2 payload was distributed using a custom dropper instead of RAR SFX. This
dropper loads the resources (Fig. 18), decrypts them using the MD5 hash of a command line argument as the
RC4 key (note: crypto API is used instead of the custom RC4 implementation) and decompresses it with LZNT1
via the RtlDecompressBuffer API. There are three Resource items contained in the payload that would
eventually decrypt to: “fsguidll.exe”, “fslapi.dll”, and “flsapi.dll.gui.” Unfortunately, when the payload extracted
from the BMP is executed, no command line argument is provided so none of the resources are properly
decrypted and decompressed. Based on the file names and size of fslapi.dll.gui, it is very likely that PlugX is the
intended stage 2 payload.

Figure 18: Resources loaded by the custom dropper

https://www.proofpoint.com/sites/default/files/apt-17.png
https://www.proofpoint.com/sites/default/files/apt-18.png

13/20

Finally, in all other cases where a stage 2 payload was successfully retrieved, PlugX was delivered. None of the
PlugX samples that we analyzed were issued from new builders (internal version 20141028), and therefore they
do not present any kind of new techniques. The extracted PlugX configurations are provided in Appendices A
and B [11].

Infrastructure Links

In addition to their similar TTPs, ZeroT infrastructure has been continuously shared with NetTraveler and both
malware families share the same C&C domains.

The C&C domain www.tassnews[.]net was used by initial samples of ZeroT in June 2016. It was
concurrently used by NetTraveler (example SHA256:
b43cbc905088c08ee3b71b6e053f91f2c79d71556462eae1c13f1cc8eb5bec72) as well as long prior [3]
The C&C domain www.riaru[.]net was observed used by at least one sample of ZeroT (SHA256:
fc2d47d91ad8517a4a974c4570b346b41646fac333d219d2f1282c96b4571478). This domain was
previously tied to NetTraveler as well [3]
The C&C domain www.versig[.]net is used by many samples of ZeroT from September 2016 to January
2017. This domain was also used by many NetTraveler samples as well (example SHA256:
0d6d789d603d6d9ba68131592fd595c4d82c0288be309876d27a53466158b312) in the time frame from
October 2016 to January 2017

The PlugX samples downloaded by ZeroT exhibit infrastructure connections to PlugX samples described in our
2015 blog about this group, “In Pursuit of Optical Fibers and Troop Intel: Targeted Attack Distributes PlugX in
Russia”. Specifically:

The C&C domain dicemention[.]com was configured (or not removed from) in the PlugX (SHA256:
3149fb0ddd89b77ecfb797c4ab4676c63d157a6b22ba4c8f98e8478c24104dfa) downloaded by ZeroT
(SHA256: d1c4a51064aeec4c11a8f90f80a3b60a36c07cce2dde0756c114e477d63ce375). This domain
was also used by PlugX samples described in the 2015 blog

Note also an interesting connection: the hostname www.riaru[.]net resolved to IP 103.200.31[.]110 which also
responded for yandax[.]net. One of the PlugX C&Cs (www[.].micrnet[.]net) resolved to 103.229.28[.]133 which
also resolved to yandcx[.]com.

Figure 19: Illustration of infrastructure connections on a limited set of samples

Conclusion

https://www.proofpoint.com/us/threat-insight/post/PlugX-in-Russia
https://www.proofpoint.com/sites/default/files/maltego-19.png

14/20

This APT activity represents both a change in TTPs as well as the introduction of new malware known as ZeroT
by a Chinese state-sponsored attack group that we have previously associated with multiple campaigns.
Proofpoint researchers have predicted that APT activity will continue to increase in the coming year and we will
continue to track developments among state-sponsored actors.

References

[1] https://enigma0x3.net/2016/08/15/fileless-uac-bypass-using-eventvwr-exe-and-registry-hijacking/

[2] https://www.proofpoint.com/us/threat-insight/post/PlugX-in-Russia

[3] https://www.proofpoint.com/us/threat-insight/post/nettraveler-apt-targets-russian-european-interests

[4] https://en.wikipedia.org/wiki/Microsoft_Compiled_HTML_Help

[5] https://en.wikipedia.org/wiki/Commonwealth_of_Independent_States

[6] http://researchcenter.paloaltonetworks.com/2016/06/unit42-recent-mnkit-exploit-activity-reveals-some-
common-threads/

[7] https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/sophos-office-exploit-generators-
szappanos.pdf

[8] https://en.wikipedia.org/wiki/BMP_file_format

[9] https://en.wikipedia.org/wiki/Least_significant_bit

[10] http://www.aaronmiller.in/thesis/

[11] https://github.com/arbor-jjones/volatility_plugins

Indicators of Compromise (IOCs)

RAR / 7-Zip archives

38566230e5f19d2fd151eaf1744ef2aef946e17873924b91bbeaede0fbfb38cf

ee81c939eec30bf9351c9246ecfdc39a2fed78be08cc9923d48781f6c9bd7097

ec3405e058b3be958a1d3db410dd438fba7b8a8c28355939c2319e2e2a338462

f2b6f7e0fcf4611cb25f9a24f002ba104ee5cf84528769b2ab82c63ba4476168

CHM droppers

4ef91c17b1415609a2394d2c6c353318a2503900e400aab25ab96c9fe7dc92ff

ee2e2937128dac91a11e9bf55babc1a8387eb16cebe676142c885b2fc18669b2

74dd52aeac83cc01c348528a9bcb20bbc34622b156f40654153e41817083ba1d

Word Exploit documents

9dd730f615824a7992a67400fce754df6eaa770f643ad7e425ff252324671b58

ZeroT

09061c603a32ac99b664f7434febfc8c1f9fd7b6469be289bb130a635a6c47c0

https://enigma0x3.net/2016/08/15/fileless-uac-bypass-using-eventvwr-exe-and-registry-hijacking/
https://www.proofpoint.com/us/threat-insight/post/PlugX-in-Russia
https://www.proofpoint.com/us/threat-insight/post/nettraveler-apt-targets-russian-european-interests
https://en.wikipedia.org/wiki/Microsoft_Compiled_HTML_Help
https://en.wikipedia.org/wiki/Commonwealth_of_Independent_States
http://researchcenter.paloaltonetworks.com/2016/06/unit42-recent-mnkit-exploit-activity-reveals-some-common-threads/
https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/sophos-office-exploit-generators-szappanos.pdf
https://en.wikipedia.org/wiki/BMP_file_format
https://en.wikipedia.org/wiki/Least_significant_bit
http://www.aaronmiller.in/thesis/
https://github.com/arbor-jjones/volatility_plugins

15/20

1e25a8bd1ac2df82d4f6d280af0ecd57d5e4aef88298a2f14414df76db54bcc4

399693f48a457d77530ab88d4763cbd9d3f73606bd860adc0638f36b811bf343

3be2e226cd477138d03428f6046a216103ba9fa5597ec407e542ab2f86c37425

67693ddb6236d3ef790059409ae240212c47acfd8c1c76d65c3ef19096fdf43b

74eb592ef7f5967b14794acdc916686e061a43169f06e5be4dca70811b9815df

a16078c6d09fcfc9d6ff7a91e39e6d72e2d6d6ab6080930e1e2169ec002b37d3

a685cf4dca6a58213e67d041bba637dca9cb3ea6bb9ad3eae3ba85229118bce0

a9519d2624a842d2c9060b64bb78ee1c400fea9e43d4436371a67cbf90e611b8

aa7810862ef43d4ef6bec463266b7eb169dbf3f7f953ef955e380e4269137267

b7ee556d1d1b83c5ce6b0c903244c1d3b79654cb950105b2c03996cdd4a70be8

c15255b9a55e7a025cf36aca85eb6cc48571d0b997a93d4dfa4eacb49001cc8d

c5d022f0815aeaa27afb8f1efbce2771d95914be881d288b0841713dbbbeda1a

d1c4a51064aeec4c11a8f90f80a3b60a36c07cce2dde0756c114e477d63ce375

fc2d47d91ad8517a4a974c4570b346b41646fac333d219d2f1282c96b4571478

97016593c53c7eeecd9d3a2788199f6473899ca8f07fafcd4173464f38ee0ab4

PlugX:

b185401a8562614ef42a84bc29f6c21aca31b7811c2c0e680f455b061229a77f

3149fb0ddd89b77ecfb797c4ab4676c63d157a6b22ba4c8f98e8478c24104dfa

07343a069dd2340a63bc04ba2e5c6fad4f9e3cf8a6226eb2a82eb4edc4926f67

ZeroT C&C

www.tassnews[.]net

www.versig[.]net

www.riaru[.]net

PlugX C&C

www.micrnet[.]net

www.dicemention[.]com

Likely Related C&C

www.rumiany[.]com

www.yandcx[.]com

ET and ETPRO Suricata/Snort Coverage

16/20

2810326,ETPRO TROJAN PlugX Related Checkin

2821027,ETPRO TROJAN APT.ZeroT CnC Beacon Fake User-Agent

2821028,ETPRO TROJAN APT.ZeroT CnC Beacon HTTP POST

2824640,ETPRO TROJAN APT.ZeroT CnC Beacon

2824641,ETPRO TROJAN APT.ZeroT Receiving Config

Appendix A: Example PlugX Configuration

Sample hash: 07343a069dd2340a63bc04ba2e5c6fad4f9e3cf8a6226eb2a82eb4edc4926f67

PlugX Config (0x36a4 bytes):

 Hide Dll: 0

 Keylogger: -1

 Sleep1: 167772160

 Sleep2: 0

 Cnc: www.micrnet[.]net:80 (HTTP / UDP)

 Cnc: www.micrnet[.]net:80 (TCP / HTTP)

 Cnc: www.micrnet[.]net:80 (UDP)

 Cnc: www.micrnet[.]net:443 (HTTP / UDP)

 Cnc: www.micrnet[.]net:443 (TCP / HTTP)

 Cnc: www.micrnet[.]net:443 (UDP)

 Cnc: www.micrnet[.]net:53 (HTTP / UDP)

 Cnc: www.micrnet[.]net:53 (TCP / HTTP)

 Cnc: www.micrnet[.]net:53 (UDP)

 Persistence: Run key

 Install Folder: %AUTO%\TCMyXfeFAd

 Service Name: pQwEPnz

 Service Display Name: pQwEPnz

 Service Desc: Windows pQwEPnz Service

 Reg Hive: HKCU

 Reg Key: Software\Microsoft\Windows\CurrentVersion\Run

 Reg Value: mJqyCsNGBsge

 Injection: 1

17/20

 Inject Process: %windir%\explorer.exe

 Inject Process: %ProgramFiles(x86)%\Windows Media Player\wmplayer.exe

 Inject Process: %windir%\system32\svchost.exe

 Uac Bypass Injection: 1

 Uac Bypass Inject: %windir%\explorer.exe

 Uac Bypass Inject: %windir%\system32\rundll32.exe

 Uac Bypass Inject: %windir%\system32\dllhost.exe

 Uac Bypass Inject: %windir%\system32\msiexec.exe

 Plugx Auth Str: TEST

 Cnc Auth Str: DuICS

 Mutex: Global\WtMKAPYYxoWMoWW

 Screenshots: 0

 Screenshots Sec: 10

 Screenshots Zoom: 50

 Screenshots Bits: 16

 Screenshots Qual: 50

 Screenshots Keep: 3

 Screenshot Folder: %AUTO%\FS\screen

 Enable Tcp P2P: 1

 Tcp P2P Port: 1357

 Enable Udp P2P: 1

 Udp P2P Port: 1357

 Enable Icmp P2P: 1

 Icmp P2P Port: 1357

 Enable Ipproto P2P: 1

 Ipproto P2P Port: 1357

 Enable P2P Scan: 1

 P2P Start Scan1: 0.0.0.0

 P2P Start Scan2: 0.0.0.0

 P2P Start Scan3: 0.0.0.0

18/20

 P2P Start Scan4: 0.0.0.0

 P2P End Scan1: 0.0.0.0

 P2P End Scan2: 0.0.0.0

 P2P End Scan3: 0.0.0.0

 P2P End Scan4: 0.0.0.0

 Mac Disable: 00:00:00:00:00:00

Appendix B: Example PlugX Configuration

Sample hash: 3149fb0ddd89b77ecfb797c4ab4676c63d157a6b22ba4c8f98e8478c24104dfa

Process: fsguidll.exe (3980)

PlugX Config (0x36a4 bytes):

 Hide Dll: 0

 Keylogger: -1

 Sleep1: 167772160

 Sleep2: 0

 Cnc: www.dicemention[.]com:80 (HTTP / UDP)

 Cnc: www.dicemention[.]com:443 (HTTP / UDP)

 Cnc: www.dicemention[.]com:25 (HTTP / UDP)

 Cnc: www.dicemention[.]com:80 (TCP / HTTP)

 Cnc: www.dicemention[.]com:443 (TCP / HTTP)

 Cnc: www.dicemention[.]com:25 (TCP / HTTP)

 Cnc: www.dicemention[.]com:80 (UDP)

 Cnc: www.dicemention[.]com:443 (UDP)

 Cnc: www.dicemention[.]com:25 (UDP)

 Persistence: Service + Run Key

 Install Folder: %AUTO%\IZBpIciif

 Service Name: yAjUgUdMGHuvGaZ

 Service Display Name: yAjUgUdMGHuvGaZ

 Service Desc: Windows yAjUgUdMGHuvGaZ Service

 Reg Hive: HKCU

 Reg Key: Software\Microsoft\Windows\CurrentVersion\Run

19/20

 Reg Value: RqdFqFSYaBx

 Injection: 1

 Inject Process: %windir%\system32\svchost.exe

 Inject Process: %windir%\explorer.exe

 Inject Process: %ProgramFiles%\Internet Explorer\iexplore.exe

 Inject Process: %ProgramFiles(x86)%\Windows Media Player\wmplayer.exe

 Uac Bypass Injection: 1

 Uac Bypass Inject: %windir%\system32\msiexec.exe

 Uac Bypass Inject: %windir%\explorer.exe

 Uac Bypass Inject: %windir%\system32\rundll32.exe

 Uac Bypass Inject: %windir%\system32\dllhost.exe

 Plugx Auth Str: TEST

 Cnc Auth Str: NBz

 Mutex: Global\ksMoQGOTIBJXumYclXtcsAnx

 Screenshots: 0

 Screenshots Sec: 10

 Screenshots Zoom: 50

 Screenshots Bits: 16

 Screenshots Qual: 50

 Screenshots Keep: 3

 Screenshot Folder: %AUTO%\FS\screen

 Enable Tcp P2P: 1

 Tcp P2P Port: 1357

 Enable Udp P2P: 1

 Udp P2P Port: 1357

 Enable Icmp P2P: 1

 Icmp P2P Port: 1357

 Enable Ipproto P2P: 1

 Ipproto P2P Port: 1357

 Enable P2P Scan: 1

20/20

 P2P Start Scan1: 0.0.0.0

 P2P Start Scan2: 0.0.0.0

 P2P Start Scan3: 0.0.0.0

 P2P Start Scan4: 0.0.0.0

 P2P End Scan1: 0.0.0.0

 P2P End Scan2: 0.0.0.0

 P2P End Scan3: 0.0.0.0

 P2P End Scan4: 0.0.0.0

 Mac Disable: 00:00:00:00:00:00

Subscribe to the Proofpoint Blog

