
1/9

KopiLuwak: A New JavaScript Payload from Turla
securelist.com/blog/research/77429/kopiluwak-a-new-javascript-payload-from-turla/

Authors

 Brian Bartholomew

On 28 January 2017, John Lambert of Microsoft (@JohnLaTwC) tweeted about a malicious document that
dropped a “very interesting .JS backdoor“. Since the end of November 2016, Kaspersky Lab has observed
Turla using this new JavaScript payload and specific macro variant. This is a technique we’ve observed
before with Turla’s ICEDCOFFEE payloads, detailed in a private report from June 2016 (available to
customers of Kaspersky APT Intelligence Services). While the delivery method is somewhat similar to
ICEDCOFFEE, the JavaScript differs greatly and appears to have been created mainly to avoid detection.

Targeting for this new malware is consistent with previous campaigns conducted by Turla, focusing on
foreign ministries and other governmental organizations throughout Europe. Popularity of the malware,
however, is much lower than ICEDCOFFEE, with victim organizations numbering in the single digits as of
January 2017. We assess with high confidence this new JavaScript will be used more heavily in the future
as a stage 1 delivery mechanism and victim profiler.

The malware is fairly simplistic but flexible in its functionality, running a standard batch of profiling
commands on the victim and also allowing the actors to run arbitrary commands via Wscript.

Actor Profile

Turla, also known as Snake / Uroburos / Venomous Bear and KRYPTON is a Russian-speaking APT group
that has been active since at least 2007. Its activity can be traced to many high-profile incidents, including
the 2008 attack against the US Central Command, (see Buckshot Yankee incident) or more recently, the

https://securelist.com/blog/research/77429/kopiluwak-a-new-javascript-payload-from-turla/
https://securelist.com/author/brian_bartholomew/
https://twitter.com/JohnLaTwC/status/825371797767938048
https://en.wikipedia.org/wiki/2008_cyberattack_on_United_States

2/9

attack against RUAG, a Swiss military contractor. The Turla group has been known as an agile, very
dynamic and innovative APT, leveraging many different families of malware, satellite-based command and
control servers and malware for non-Windows OSes.

Targeting Ukraine, EU-related institutions, governments of EU countries, Ministries of Foreign Affairs
globally, media companies and possibly corruption related targets in Russia, the group intensified their
activity in 2014, which we described in our paper Epic Turla. During 2015 and 2016 the group diversified
their activities, switching from the Epic Turla waterhole framework to the Gloog Turla framework, which is
still active. They also expanded their spear phishing activities with the Skipper / WhiteAtlas attacks, which
leveraged new malware. Recently, the group has intensified their satellite-based C&C registrations ten-fold
compared to their 2015 average.

Technical Details

Sample MD5: 6e7991f93c53a58ba63a602b277e07f7
 Name: National Day Reception (Dina Mersine Bosio Ambassador’s Secretary).doc

 Author: user
 LastModifiedBy: John

 CreateDate: 2016:11:16 21:58:00
 ModifyDate: 2016:11:24 17:42:00

Decoy document used in the attack

The lure document above shows an official letter from the Qatar Embassy in Cyprus to the Ministry of
Foreign Affairs (MoFA) in Cyprus. Based on the name of the document (National Day Reception (Dina
Mersine Bosio Ambassador’s Secretary).doc, it is presumed it may have been sent from the Qatar
Ambassador’s secretary to the MoFA, possibly indicating Turla already had control of at least one system
within Qatar’s diplomatic network.

The document contains a malicious macro, very similar to previous macros used by Turla in the past to
deliver Wipbot, Skipper, and ICEDCOFFEE. However, the macro did contain a few modifications to it,
mainly the XOR routine used to decode the initial JavaScript and the use of a “marker” string to find the
embedded payload in the document.

New XOR Routine

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/02/20081149/Report_Ruag-Espionage-Case.pdf
https://securelist.com/satellite-turla-apt-command-and-control-in-the-sky/72081/
https://securelist.com/analysis/publications/65545/the-epic-turla-operation/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/02/07181544/kopiluwak_en_1.jpg

3/9

Below is a snippet of the new XOR routine used to decode the initial JavaScript payload. Turla has
consistently changed the values used in this routine over the last year, presumably to avoid easy detection:

1

2

3

4

5

6

7

8

9

Function Q7JOhn5pIl648L6V43V(EjqtNRKMRiVtiQbSblq67() As Byte, M5wI32R3VF2g5B21EK4d As
Long) As Boolean

 Dim THQNfU76nlSbtJ5nX8LY6 As Byte

 THQNfU76nlSbtJ5nX8LY6 = 45

 For i = 0 To M5wI32R3VF2g5B21EK4d - 1

EjqtNRKMRiVtiQbSblq67(i) = EjqtNRKMRiVtiQbSblq67(i) Xor THQNfU76nlSbtJ5nX8LY6

THQNfU76nlSbtJ5nX8LY6 = ((THQNfU76nlSbtJ5nX8LY6 Xor 99) Xor (i Mod 254))

Next i

 Q7JOhn5pIl648L6V43V = True

End Function

Here is a function written in Python to assist in decoding of the initial payload:

1

2

3

4

5

6

7

def decode(payload, length):

 varbyte = 45

 i = 0

 for byte in payload:

 payload[i] = byte ^ varbyte

 varbyte = ((varbyte ^ 99) ^ (i % 254))

 i += 1

Payload Offset

Another change in the macro is the use of a “marker” string to find the payload offset in the document.
Instead of using hard coded offsets at the end of the document as in ICEDCOFFEE, the macro uses the
below snippet to identify the start of the payload:

1

2

3

Set VUy5oj112fLw51h6S = CreateObject("vbscript.regexp")

VUy5oj112fLw51h6S.Pattern =
"MxOH8pcrlepD3SRfF5ffVTy86Xe41L2qLnqTd5d5R7Iq87mWGES55fswgG84hIRdX74dlb1SiFOkR1Hh"

Set I4j833DS5SFd34L3gwYQD = VUy5oj112fLw51h6S.Execute(KqG31PcgwTc2oL47hjd7Oi)

Second Layer JavaScript

4/9

Once the marker is found, the macro will carve out “15387 + 1” bytes (hard coded) from the end of the
marker and pass that byte array to the aforementioned decoding routine. The end result is a JavaScript file
(mailform.js – MD5: 05d07279ed123b3a9170fa2c540d2919) written to “%APPDATA%MicrosoftWindows”.

mailform.js – malicious obfuscated JavaScript payload

This file is then executed using Wscript.Shell.Run() with a parameter of “NPEfpRZ4aqnh1YuGwQd0”. This
parameter is an RC4 key used in the next iteration of decoding detailed below.

The only function of mailform.js is to decode the third layer payload stored in the JavaScript file as a
Base64 string. This string is Base64 decoded, then decrypted using RC4 with the key supplied above as a
parameter (“NPEfpRZ4aqnh1YuGwQd0”). The end result is yet another JavaScript which is passed to the
eval() function and executed.

Third Layer JavaScript

The third layer payload is where the C2 beaconing and system information collection is performed. This JS
will begin by copying itself to the appropriate folder location based on the version of Windows running:

1. c:Users<USERNAME>AppDataLocalMicrosoftWindowsmailform.js

2. c:Users<USERNAME>AppDataLocalTempmailform.js

3. c:Documents and Settings<USERNAME>Application DataMicrosoftWindowsmailform.js

Persistence

Next, it will establish persistence on the victim by writing to the following registry key:

Key: HKEY_CURRENT_USERsoftwaremicrosoftwindowscurrentversionrunmailform
 Value: wscript.exe /b “<PATH_TO_JS> NPEfpRZ4aqnh1YuGwQd0”

Profiling

After establishing its persistence, it will then execute a series of commands on the victim system using
“cmd.exe /c” and store them to a file named “~dat.tmp”, in the same folder where “mailform.js” is located:

systeminfo

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/02/07181539/kopiluwak_en_2.png

5/9

net view
net view /domain
tasklist /v
gpresult /z
netstat -nao
ipconfig /all
arp -a
net share
net use
net user
net user administrator
net user /domain
net user administrator /domain
set
dir %systemdrive%Users*.*
dir %userprofile%AppDataRoamingMicrosoftWindowsRecent*.*
dir %userprofile%Desktop*.*
tasklist /fi “modules eq wow64.dll”
tasklist /fi “modules ne wow64.dll”
dir “%programfiles(x86)%”
dir “%programfiles%”
dir %appdata%

Once the information is collected into the temporary “~dat.tmp” file, the JavaScript reads its contents into
memory, RC4 encrypts it with the key “2f532d6baec3d0ec7b1f98aed4774843”, and deletes the file after a
1 second sleep, virtually eliminating storage of victim information on disk and only having an encrypted
version in memory.

Network Communications

With the victim info stored in encrypted form in memory, the JavaScript then will perform the necessary
callback(s) to the C2 servers which are hard coded in the payload. The addresses seen in this payload
were as follows:

http://soligro[.]com/wp-includes/pomo/db.php
http://belcollegium[.]org/wp-admin/includes/class-wp-upload-plugins-list-table.php

It should be noted that the above domains appear to have been compromised by the actor based on the
locations of the PHP scripts.

6/9

Belcollegium[.]org – a legitimate website compromised and used for C2

Victim data is sent to the C2 servers in the form of a POST request. The headers of the POST request
contain a unique User-Agent string that will remain the same per victim system. The User-Agent string is
created by performing the following steps:

1. Concatenate the string “KRMLT0G3PHdYjnEm” + <SYSTEM_NAME> + <USER NAME>

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/02/07181533/kopiluwak_en_3.png

7/9

2. Use the above string as input to the following function (System Name and User Name have been
filled in with example data ‘Test’ and ‘Admin’):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

function EncodeUserAgent() {

 var out = "";

 var UserAgent = 'KRMLT0G3PHdYjnEm' + 'Test' + 'Admin';

 for (var i = 0; i < 16; i++) {

var x = 0

for (var j = i; j < UserAgent.length - 1; j++) {

 x = x ^ UserAgent.charCodeAt(j);

}

x = (x % 10);

out = out + x.toString(10);

 }

 out = out + 'KRMLT0G3PHdYjnEM';

 return out;

}

The function above will produce a unique “UID” consisting of a 16-digit number with the string
“KRMLT0G3PHdYjnEm” appended to the end. In the example above using the System Name “Test”
and User Name “Admin”, the end result would be “2356406508689132KRMLT0G3PHdYjnEm”

3. Prepend the string “user-agent:”, “Mozilla/5.0 (Windows NT 6.1; Win64; x64); ” to the result from the
last step. This will now be the unique User-Agent value for the victim callbacks. In this example, the
final result will be “user-agent:”, “Mozilla/5.0 (Windows NT 6.1; Win64; x64);
2356406508689132KRMLT0G3PHdYjnEm”.

The POST request will contain the unique User-Agent string above as one of the headers and also the
Base64 encoded version of the RC4 encrypted victim data collected earlier.

The C2 will respond in one of four ways after the POST request:

1. “good”

2. “exit”

3. “work”

4. “fail”

In the case of an answer of “good”, the JavaScript will then sleep for a random amount of time, ranging
from 3600-3900 seconds.

8/9

The “exit” command will cause script to exit gracefully, thus shutting down the communications to the C2
server until next startup / login from the user.

The “fail” command is for uninstalling the JavaScript and its persistence. Both the “mailform.js” file and
registry key created for persistence will be deleted upon receipt of this command.

The “work” command is used to task the victim’s system to run arbitrary commands via Wscript.shell.run().
It begins by checking to see if a file “mailform.pif” exists in the same directory as the JavaScript, and if so,
it will delete it. The victim will then send a POST request to the C2 much in the same way as before with
the beacon traffic, but with some slight differences. The User-Agent header will remain the same as in the
beacon traffic, but the data sent to the C2 will consist of the 4-byte string “work”. If the response from the
server after this acknowledgement is “200 OK”, then the system will proceed to read the response data
into memory, RC4 encrypt it using the same key “2f532d6baec3d0ec7b1f98aed4774843”, then write it out
to the “mailform.pif” file referenced above. The command file is run, the JavaScript will sleep for 30
seconds, and then the file is subsequently deleted.

Victims and Sinkholing

One of the domains involved in this new malware (soligro[.]com) expired in July 2016 and was was
available for purchase and sinkhole at the time of the analysis. Sinkhole data shows several potential
victims, with one high profile victim (195.251.32.62) located within the Greek Parliament:

The majority of connections to the sinkhole server have been observed from IP ranges residing within
Greece. This leads us to believe the main target for the specific document above was Greece, although we
also have indications of targeting in Romania and Qatar based on other data.

Conclusions

In recent months, the Turla actors have increased their activity significantly. The addition of KopiLuwak to
their already existing ICEDCOFFEE JavaScript payload indicates the group continues to evolve and
deliver new tools to avoid detection by known malware signatures.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/02/07181529/kopiluwak_en_4.png

9/9

Currently, it seems the Turla actors continue to rely heavily on embedded macros in Office documents.
While this may appear to be an elementary technique to use for such a sophisticated actor, they are
repeatedly successful in compromising high value targets with this method. It is advised that users disable
macros in their enterprise and not allow the user to enable said content unless absolutely necessary.
Furthermore, using the polymorphic obfuscation technique for the macros has caused difficulties in writing
signatures for detection.

APT
JavaScript
Macros
Malware Descriptions
Turla

Authors

 Brian Bartholomew

KopiLuwak: A New JavaScript Payload from Turla

Your email address will not be published. Required fields are marked *

https://securelist.com/tag/apt/
https://securelist.com/tag/javascript/
https://securelist.com/tag/macros/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/turla/
https://securelist.com/author/brian_bartholomew/

