
1/17

Nymaim revisited | CERT Polska
cert.pl/en/news/single/nymaim-revisited/

Introduction

Nymaim was discovered in 2013. At that time it was only a dropper used to distribute
TorrentLocker. In February 2016 it became popular again after incorporating leaked ISFB
code, dubbed Goznym. This incarnation of Nymaim was interesting for us because it gained
banking capabilities and became a serious threat in Poland. Because of this, we researched
it in depth and we were able to track Nymaim activities since then.

However a lot of things have changed during the last two months. Most notably, Avalanche
fast-flux network (which was central to Nymaim operations) was taken down and that struck
a serious blow to Nymaim activity. For two weeks everything went silent and even today
Nymaim is a shadow of its former self. Although it’s still active in Germany (with new injects),
we haven’t observed any serious recent activity in Poland.

Obfuscation

This topic is really well researched by other teams, but it’s still interesting enough to be worth
mentioning. Nymaim is heavily obfuscated with a custom obfuscator – to the point that
analysis is almost impossible. For example typical code after obfuscation looks like this:

But with some effort we can make sense of it. There are a lot of obfuscation techniques
used, so we’ll cover them one by one:

First of all, registers are usually not pushed directly onto the stack, but helper function
“push_cpu_register” is used. For example push_cpu_register(0x53) is equivalent to pushing
ebx and push_cpu_register(0x50) is equivalent to pushing eax. Constants are not always the
same, but registers are always in the same order (standard x86 ordering).

https://www.cert.pl/en/news/single/nymaim-revisited/


2/17

. register constant. register constant

0 eax 0x50

1 ecx 0x51

2 ebx 0x52

3 edx 0x53

4 esp 0x54

5 ebp 0x55

6 esi 0x56

7 edi 0x57

Additionally, most constants in code gets obfuscated too – for example mov eax, 25 can be
changed to:

The constant used in the example is 8CBFB5DA, but there’s nothing special about it – it’s a
random dword value, generated just for the purpose of obfuscating this constant. The only
thing that matters is the result of the operation (0x25 in this case).

Additionally there other similar obfuscating functions are used sometimes – for example
sub_*_from_eax and add_*_to_eax.

Last but not least, the control flow is heavily obfuscated. There are a lot of control flow
obfuscation methods used, but all boil down to simple transformation – call X and jmp X are
transformed to at least two pushes. This obfuscation is in fact very similar to previous one –
instead of jumping to 0x42424242, malware calls function detour with two parameters:
0x40404040 and 0x02020202. The detour adds it’s parameters and jumps to the result. In
pseudoasm instead of:

we have:

There exists also a slight variation of this method – instead of pushing two constants,
sometimes only one constant is pushed and machine code after a call opcode is used
instead of a second constant (detour uses return address as a pointer to the second
constant).

To sum up, previously pasted obfuscated code should be read like this:

With this in mind, we created our own deobfuscator. This was quite a long time ago and
since then other solutions have shown up. Our deobfuscator probably isn’t the best, but is
easily modifiable for our needs and it has some unique (as far as we know) features that we



3/17

need, for example it imports recovery and decrypting encrypted strings stored in binary.
Other deobfuscators include mynaim and ida-patchwork Nevertheless, with our deobfuscator
we are able to untangle that messy code to something manageable:

When it comes to Nymaim obfuscation capabilities it’s not nearly over. For example external
functions are not called directly, instead of it an elaborate wrapper is used:

This wrapper pushes hash of function name on the stack and jumps to the next dispatcher
(even though call opcode is used, this code never returns here):

A second dispatcher pushes hash of a dll name on the stack and jumps to the helper
function:

And finally real dispatcher is executed:

Additionally, real return address from API is obfuscated – return address is set to call ebx
somewhere in the ntdll (real return address is somewhere in ebx by then, of course). Most
tools are very confused by it. Let’s just say, it’s very frustrating when debugging and/or single
stepping.

https://github.com/thngkaiyuan/mynaim
https://bitbucket.org/daniel_plohmann/idapatchwork


4/17

But wait, there’s more! As we have seen, short constants are obfuscated with simple
mathematical operations, but what about longer constants, for example strings? Fear not,
malware authors have a solution for that too. Almost every constant used in the program is
stored in a special data section. When Nymaim needs to use one of that constants, it is using
special encrypted_memcpy function. At heart it is not very complicated:

Inner workings of memcpy_and_decrypt are not that complicated either. Our
reimplementation of the encryption algorithm in Python is only few lines long:

We only need to extract constants used for the encryption (they differ between executables)
– they are hidden in these portions of code:



5/17

(These functions are not obfuscated, so extraction can be done with simple pattern
matching).

But encryption of every constant was not good enough. Malware authors decided that they
can do better than that – why don’t encrypt the code too? That’s not very often used, but few
critical functions are stored encrypted and decrypted just before calling. Quite an unusual
approach, that’s for sure. Ok, let’s leave obfuscation at that.

Static Configuration

After deobfuscation, the code is easier to analyze and we can get to interesting things. First
of all, we’d like to extract static configuration from binaries, especially things like:

C&C addresses
DGA hashes
Encryption keys
Malware version
Other stuff needed for communication

How hard can that be? Turns out that harder than it looks – because this information is not
just stored in the encrypted data section.

Fortunately, this time the encryption algorithm is rather simple.

We just need to point nymaim_config_crypt to the start of encrypted static config and
everything will just work.



6/17

How do we know where static config starts? Well… We tried few clever approaches
(matching code, etc), but they weren’t reliable enough for us. Finally, we solved this problem
with a simplest possible solution – we just try every possible index in binary and try to
decrypt from there. This may sound dumb (and it is), but with few trivial heuristics (static
config won’t take 3 bytes of space, neither will it take 3 megabytes) this is quite fast – less
than 1s on typical binary – and works every time.

Despite this, after decrypting static config we get a structure, which is is quite nice and easy
to parse. It consists of multiple consecutive “chunks”, each with assigned type, length and
data (for those familiar with file formats, this is something very similar to PNG, or wav, or any
other RIFF).

Graphically this looks like this:

And chunks are laid consecutive in static config block:

So we can quickly traverse through all chunks of a static config with a simple five-liner:

Snippet from process_chunk (hash == chunk_type):

After initial parsing the static config looks like this:



7/17

(By the way, in this article chunk types are usually represented byte-order, i.e. big endian)

And in a more human readable form with most interesting chunks interpreted:

Infection timeline

There is more than one “kind” of Nymaims. As of now we distinguish between three kinds:

dropper – first Nymaim that gets executed on the system. This is the only type
distributed directly to victims.
payload – module responsible for most of the “real work” – web injects for
example
bot_peer – module responsible for P2P communication. It tries to become
supernode in the botnet.



8/17

These are all one kind of malware and all of them share the same codebase, except few
specialized functions. For example our static config extractor works on all of them, just like
our deobfuscator and they all use the same network protocol.

Dropper role is simple. It performs few sanity checks – for example:

Makes sure that it’s not virtualized or incubated
Compares current date to “expiration time” from static config
Checks that DNS works as it should (by trying to resolve microsoft.com and
google.com)

If something isn’t right, the dropper shuts down and the infection doesn’t happen.

The second check is especially annoying, because if you want to infect yourself Nymaim has
to be really “fresh” – older executables won’t work. Even if you override check in the binary,
this is also validated server-side and the payload won’t be downloaded.

If we want to connect to a Nymaim instance, we need to know the IP address of peer/C&C.
Static config contains (among others) two interesting pieces of information:

DNS server (virtually always it’s 8.8.8.8 and 8.8.4.4).
C&C domain name (for example ejdqzkd.com or sjzmvclevg.com).

Nymaim is resolving that domain, but returned A records are not real C&C addresses – they
are used in another algorithm to get a real IP address. We won’t reproduce that code here,
but there is a great article from Talos on that topic. If someone is interested only in the DGA
code, it can be found here:

https://github.com/vrtadmin/goznym/blob/master/DGA_release.py

When dropper obtains C&C address, it starts real communication. It downloads two
important binaries and a lot more:

payload – banker module (responsible for web injects – passive member of
botnet)
optional bot module (it is trying to open ports on a router and become an active
part of a botnet. When it fails to do so, it removes itself from a system).
few additional malicious binaries (VNC, password stealers, etc – not very
interesting for us).

http://blog.talosintel.com/2016/09/goznym.html
https://github.com/vrtadmin/goznym/blob/master/DGA_release.py


9/17

DGA

Payload is very different from dropper when it comes to network communication:

No hardcoded domain
But has DGA
And P2P

The payload’s DGA algorithm is really simple – characters are generated one by one with
simple pseudo-random function (variation of xorshift). Initial state of DGA depends only on
seed (stored in static config) and the current date, so we can easily predict it for any given
binary. Additionally, researchers from Talos have bruteforced valid seeds, simplifying the task
of domain prediction even more.

P2P

First of all, few examples why we suspected from the start that there is something else
besides DGA:

We have taken one of our binaries that hadn’t behaved like the payload, unpacked it,
deobfuscated and reverse engineered it. But even without in-depth analysis, we’ve found a
lot of hints that P2P may be happening. For example we can find strings typical for adding
exception to Windows Firewall (and of course – that’s what malware did when executed on a
real machine).

Another suspicious behavior is opening ports on a router with help of UPNP. Because of this,
infected devices from around the world can connect to it directly.



10/17

And finally something even more outstanding. As we have seen, the malware presents itself
as the Nginx in the “Server” header. Where does this header come from? Directly from the
binary:

We implemented tracker for the botnet (more about that later) and with the data we obtained,
we concluded that this probably is a single botnet, but with geolocated injects (for example
Polish and US injects are very similar). Distribution of IPs we found is similar to what other
researchers have determined (we have found more PL nodes and less US than others, but
that’s probably because the botnet is geolocated and we were more focused on Poland).

49.9% (~7.5k) of found supernodes were in Poland, 30% (~4.5k) in Germany and 15.7%
(~2.2k) in the US.

Network protocol

And now for something more technical. This is an example of a typical Nymaim request (P2P
and C2 communication use the same protocol internally):



11/17

Host header is taken from the static config
Randomized POST variable name and path
POST variable value = encrypted request (base64 encoded)
User-Agent and rest of the headers are generated by WinHTTP (so headers are
not very unique and it’s impossible to detect Nymaim network requests by using
only them).

Typical response:

This isn’t really Nginx, just pretending.
Everything except the data section is hardcoded
Data = encrypted request



12/17

Encrypted messages have very specific format:

A lower nibble of the first byte is equal to a length of the salt and a lower nibble of the second
byte is equal to the length of the padding. Everything between the salt and the padding is the
encrypted message. To decrypt it, we need to concatenate the key with the salt – and use
that password with the rc4 algorithm.

It can be easily decrypted using Python (but we had to reverse engineer that algorithm first):

After decrypting a message, we get something with a format very similar to the static config
(i.e. a sequence of consecutive chunks):

Each chunk has its type, length and raw data:

We can process decrypted message with almost exactly the same code as code for static
config:

And this is the basic code used for parsing the message. Each chunk type needs to be
processed a bit differently. Interestingly, parsing message is recursive, because some chunk
types can contain other lists of chunks, which in turn can contain other lists of chunks, etc.
Unfortunately, important chunks have another layer of encryption and compression. At the



13/17

end of an encrypted chunk we can find special RSA encrypted (or rather – signed) header.
After decryption (unsigning) of the header, we can recover a md5 hash and length of the
decrypted data and most important of all – a Serpent cipher key used to encrypt the data.

After the decryption we will stumble upon another packing method – decrypted data is
compressed with APLIB32. This structure is very similar to the one used by ISFB – firstly we
have magic ‘ARCH’, then length of compressed data, length of uncompressed data and
crc32 – all of them are dwords (4 bytes).

Again, it’s nothing Python can’t deal with. We quickly hacked this function to recover real
data hidden underneath:

With this function we finally managed to hit the jackpot. We decrypted all of the interesting
artifacts passed over the wire, most importantly additional downloaded binaries, web filters
and injects.

Communication

An example request, after dissection, may look like this:

As we can see, quite a lot of things is passed around here. There are a lot of fingerprinting
everywhere and some information about current state.



14/17

Responses are often more elaborate, but for the sake of presentation, let’s dissect a simple
one:

An infected machine gets to know its public IP address, IP addresses (and listening ports) of
its peers and the active domain. Additionally it is usually ordered to sleep for some time
(usually 90 seconds when some files are pending to be transmitted and 280 seconds when
nothing special happens).

Here is the list of types of chunks that we can parse and understand:

chunk
hash short description

ffd5e56e fingerprint 1

014e2be0 fingerprint 2 + timestamps

f77006f9 fingerprint 3

22451ed7 crcs of last received chunks of type be8ec514 and 0282aa05

b873dfe0 probably “enabled” flag (can be only 1 or 0)

0c526e8b nested chunk (decrypt with nymaim_config_crypt, unpack with aplib,
recursively repeat parsing)

875c2fbf plain (non-encrypted) executable

08750ec5 nested chunk (decrypt with nymaim_config_crypt, unpack with aplib,
recursively repeat parsing)

1f5e1840 injects (decrypt with serpent, unpack with aplib, parse ISFB binary format)

76daea91 dropper handshake (marker, without data)

be8ec514 list of peer IPs

138bee04 list of peer IPs

1a701ad9 encrypted binary (decrypt with serpent, unpack with aplib, save)

30f01ee5 encrypted binary (decrypt with serpent, unpack with aplib, save)

3bbc6128 encrypted binary (decrypt with serpent, unpack with aplib, save)

39bc61ae encrypted binary (decrypt with serpent, unpack with aplib, save)

261dc56c encrypted binary (decrypt with serpent, unpack with aplib, save)

a01fc56c encrypted binary (decrypt with serpent, unpack with aplib, save)



15/17

chunk
hash short description

76fbf55a padding

cae9ea25 nested chunk (decrypt with nymaim_config_crypt, unpack with aplib,
recursively repeat parsing)

0282aa05 nested chunk (decrypt with nymaim_config_crypt, unpack with aplib,
recursively repeat parsing)

d2bf6f4a state informations

41f2e735 web filters

1ec0a948 web filters

18c0a95e web filters

3d717c2e web filters

8de8f7e6 datetime (purpose is unknown, it’s always few days ahead of current date)

3e5a221c list of additional binaries that was downloaded

5babb165 payload handshake (marker, without data)

b84216c7 public IP of infected machine

cb0e30c4 number of seconds to sleep

f31cc18f additional CRC32s of downloaded binaries

920f2f0c injects (decrypt with serpent, unpack with aplib, parse ISFB binary format)

930f2f0c injects (decrypt with serpent, unpack with aplib, parse ISFB binary format)

This may seem like a lot, but there are a lot of things we didn’t try to understand (we ignored
most of dword-sized or always-zero chunks).

After extracting everything from communication we can finally look at injects. For example
Polish ones:



16/17

(304 different injects, as of today)

Or US injects:

(393 different injects, as of today)

Resources

Yara rules:



17/17

Hashes (md5):

Payload 2016-10-20, 9d6cb537d65240bbe417815243e56461, version 90032
Dropper 2016-10-20, a395c8475ad51459aeaf01166e333179, version 80018
Payload 2016-10-05, 744d184bf8ea92270f77c6b2eea28896, version 90019
Payload 2016-10-04, 6b31500ddd7a55a8882ebac03d731a3e, version 90012
Dropper 2016-04-12, cb3d058a78196e5c80a8ec83a73c2a79, version 80017
Dropper 2016-04-09, 8a9ae9f4c96c2409137cc361fc5740e9, version 80016

Repository with our tools: nymaim-tools

Other research

https://github.com/CERT-Polska/nymaim-tools

