
1/13

EyePyramid: An Archaeological Journey
blog.talosintel.com/2017/01/Eye-Pyramid.html

This post authored by Mariano Graziano and Paul Rascagneres

Summary

The last few days a malware sample named EyePyramid has received considerable
attention, especially in Italy. The Italian police have arrested two suspects and also published
a preliminary report of the investigation. This malware is notable due to the targeting of
Italian celebrities and politicians.

We conducted our analysis on one of the first public samples attributed to EyePyramid.
Sources in the security community have described this malware campaign as
unsophisticated, and the malware samples involved as uninteresting. However Talos was
intrigued to determine just how EyePyramid managed to stay hidden under-the-radar for
years.

Preliminary Analysis

The sample is written in .Net and it is heavily obfuscated. Although at first sight we can also
extract some interesting strings which are useful for possible ClamAV or Yara signatures.
The author paid attention to hide the core functionalities by using either known .Net
obfuscators or cryptography to hide crucial information such as URLs, email addresses and
credentials.

Generally speaking, reversing .Net applications is not a difficult task because it is possible to
decompile the binary. There are many tools do it such as ILSpy, dotPeek, etc. We first tried
decompiling the sample with ILSpy but the obfuscation was heavy and all over the place. As
a result the ILSpy output was not very useful and we had problems identifying the entry point
of the application. The sample cannot be debugged, and it does not run inside virtual
machines due to several and sometimes trivial (but effective) anti-debugging and anti-vm
checks.

Dissection

http://blog.talosintel.com/2017/01/Eye-Pyramid.html
https://twitter.com/emd3l
https://www.blogger.com/profile/10073079939160046441
http://www.agi.it/pictures/pdf/agi/agi/2017/01/10/132733992-5cec4d88-49a1-4a00-8a01-dde65baa5a68.pdf
http://ilspy.net/

2/13

To effectively analyze EyePyramid we needed to defeat the obfuscation. We first tried to use
de4dot for the deobfuscation and it detected two different known obfuscators namely
'Dotfuscator' and and 'Skater .NET'. From this point on, we refer to a 'cleaner' version of the
sample. Keep in mind, however, that the malware is still obfuscated and the decompiler still
fails for some routines.

The sample starts with some initialization code for the license keys and the certificates.
Then, there is some code to achieve persistence using the CurrentVersion\Run and
CurrentVersion\RunOnce registry keys. Moreover, there are checks to ensure the malware
has Administrator privileges, and for the system uptime via a Windows Management
Instrumentation (WMI) query to LastBootUpTime.

Regarding the persistence, we can observe the operation in which the registry key is set
below:

The next step is to check and 'fix' the security descriptors of many folders via 'cacls.exe'.
Specifically, this code is interested in the Windows Firewall and a long list of possible
antivirus software (among them also 'ClamAV for Windows'). To find these programs the
malware looks in typical locations such as ProgramFiles, ProgramFiles (x86), etc. You can
see from the picture below 'cacls.exe' and part of the security products list:

http://de4dot.com/
https://2.bp.blogspot.com/-kfDUsYneXHk/WI90prx6RtI/AAAAAAAAADA/mLQjZXskgyUhfpo0j1b7J9A34NOM-s-VgCLcB/s1600/image07.png

3/13

In the next picture we can see how the malware creates an exception rule for itself, adding
several new entries to the firewall policy ruleset:

The program also spawns threads and executes commands and executables (e.g., via

https://4.bp.blogspot.com/-gM_ZVrETttw/WI90ydmRCuI/AAAAAAAAADE/X-Idz2iQXXwGvjJkkVEX6KJjTFWypOfbgCLcB/s1600/image09.png
https://4.bp.blogspot.com/-iBotjS0kaoY/WI906BJRnYI/AAAAAAAAADI/qQsN4rx32Ng04fbtUBELlx0YqEbZwJmmQCLcB/s1600/image00.png

4/13

ProcessStart or InteractionShell functions). For instance, it creates a registry key named
'default.reg' and it is added to the registry by directly invoking the regedit command.
Regarding executables, we have instead 'ghk.exe' and 'stkr.exe' that are executed and other
resources downloaded from the web.

Another interesting spawned thread is the one for checking the User Account Control (UAC)
via the registry key 'EnableLUA' and disabling it through the control panel. UAC is an
additional layer of security introduced by Microsoft from Windows Vista to notify the users
about changes in the computer. In case of this and other changes, the system needs a
reboot so all the modifications are effective and this is the goal of the function containing the
'shutdown' command. See below:

It is worth also a mention the programs added to 'DisallowRun', and here we noticed a
particular interest for Avast antivirus. This key contains a list of applications that cannot run
on the system.

When programs are executed by the agent, often they are launched with a command line
parameter ('-w'). Generally speaking, this sample really pays attention to disable all possible
security software and security checks. Additionally, it creates rules to make its execution
smoother whenever it is possible.

Encryption

As we already said the sample is still obfuscated and it massively adopts cryptography. As
reported by other sources, the strings are encrypted with 3DES. Here we report how the key
is generated and the overall structure for the encryption phase. The key is an array of 16
booleans at the beginning all set to false. The key is initialized in the the steps listed in the
table below. The result of every step is a boolean value (true/false).

https://4.bp.blogspot.com/-UxsSlUZ1uGA/WI91CTQl3DI/AAAAAAAAADM/E7vp0HhiBa8PF8vM1GpRK3V59NslGGbfwCLcB/s1600/image03.png
https://4.bp.blogspot.com/-xqWyaEn7H1Q/WI91F4B-6CI/AAAAAAAAADQ/mKhd8Jd5XhQWjLtBP6ZxVQDn5uxA9F0hgCLcB/s1600/image11.png
https://2.bp.blogspot.com/-1hIoK4EJ-a8/WJCowMjfI-I/AAAAAAAABbU/-mYjsVjGhFwf7mSYyG3izKX2VPEghuqKwCLcB/s1600/012717-eyepyramid.jpg

5/13

https://2.bp.blogspot.com/-1hIoK4EJ-a8/WJCowMjfI-I/AAAAAAAABbU/-mYjsVjGhFwf7mSYyG3izKX2VPEghuqKwCLcB/s1600/012717-eyepyramid.jpg

6/13

(*) These checks are more complex. Please refer to the decompiled version of the binary for a more exhaustive
description.

As a consequence, the key is dependent on the environment in which the sample is run. This
sample was configured to run in three different environments. In order to allow this, the
decryption function is called with three string arguments, which correspond to the same
string encrypted with three different keys (one for each possible environment). The function
will first try to decrypt the first string with the 16-bit based environment key, with the 14th and
15th bytes set to false. If this decryption process does not return a valid string, it will try to
decrypt the second string with the same key, and finally, if this does not work either, it will try
to decrypt the last string with the whole 16 bit key, including the last two checks.

The encryption is performed according to the pseudocode below:

array = init_key()
 sarray = serializekey(array)

 key = md5(sarray)
 iv = sha256(sarray)
 3des(data, key, iv)

https://2.bp.blogspot.com/-1hIoK4EJ-a8/WJCowMjfI-I/AAAAAAAABbU/-mYjsVjGhFwf7mSYyG3izKX2VPEghuqKwCLcB/s1600/012717-eyepyramid.jpg

7/13

where init_key() are the the checks from 0 to 13 or from 0 to 15. Given the low entropy of the
possible keys, we could bruteforce the encryption keys for the three different running
environments. In all the cases the decryption produced the same exact set of strings:

Throughout the code, the checks are also used as anti-vm in combination with others.

Among the others, it is worth mentioning a check for the 'Totalsize' of the drive. If this is less
than 46.5 GB and the operating system is Windows XP, this is not a valid environment. This
is a clever way to detect sandbox environments because generally they use a small hard
drive and an old version of the Windows operating system.

Network Behavior

By running the sample on a VM and sniffing the network traffic we noticed some requests to
known websites. At a first sight, this looks like a method to check if the connection is
available but in this case the goal is different as you can see below:

https://1.bp.blogspot.com/-oWB6QUUPX4U/WI91T-UgpfI/AAAAAAAAADY/SEJ3qc7DNVctX-GIsuoIoUDdapWeqPDvwCLcB/s1600/image13.png

8/13

The code randomly picks one domain and contacts it. Then it checks the header for the field
'Date'. This field is used to compute the difference the with current date and see if the delta is
less than 60 min.

Another interesting point is related to the way in which the domains are rotated. This is not a
real a domain generation algorithm (DGA), because the domains are not generated on the
fly. This is simply how the agent gets the required information. This works in the following
way:

switch((DateAndTime.Now.Month - 1) % 3):
 0: geturl[0]

 1: geturl[1]
 2: geturl[2]

where geturl looks like:

geturl:
 return new string{

 way_0(),
way_1(),
way_2()}

https://4.bp.blogspot.com/-OT_Q93tZX74/WI91ZKH0b1I/AAAAAAAAADg/79R_WS73mskKwkFd596GdVs6DKpDgL_3ACLcB/s1600/image10.png

9/13

In this image you can observe the behavior described above. Interestingly, the same
approach is used for URLs and other critical information such as email addresses,
passwords etc. Throughout the code there are three different implementations to get a
different kind of information. We stress the point that the domains are not generated on the
fly but are chosen among a list of candidates.

Exfiltration

The exfiltration is done mainly via email and partially via WebDAV and HTTP. Regarding
emails, they are sent via SMTP protocol and the data is exfiltrated as attachment. The
message is then uploaded to the IMAP server in a specific folder ("inbox" on the third
picture).The protocol choice depends on a flag passed as a parameter to the function dealing
with the email messages. These attachments can be either encrypted or in clear. The
encryption is once again based on 3DES. For instance, this is part of the code related to the
SMTP protocol, the second image contains IMAP servers while the third picture contains
IMAP code:

https://1.bp.blogspot.com/--0vB7ctTBH0/WI91fXYlJVI/AAAAAAAAADk/aHupcvdLyYgZOT_kXgFZU7CmR6169ru5QCLcB/s1600/image05.png
https://1.bp.blogspot.com/-zHsyve4VUQU/WI91kQvIIlI/AAAAAAAAADo/f8YJLQG1ZJQJlqWzsZIIwBaSybqOAK8XQCLcB/s1600/image12.png

10/13

WebDAV support is present in the code and it is used for uploading data and to fetch files.
We also decrypted WebDAV credentials used during this operation. The code invokes
different WebDav methods. In the picture below we can observe the code for 'SEARCH':

https://2.bp.blogspot.com/-ccxXB3sCuGI/WI91qDDLrYI/AAAAAAAAADs/wNXYDoveIgwF1jMfgcBSiCCqpWdmkcZnQCLcB/s1600/image08.png
https://1.bp.blogspot.com/-nM_mroSZL6I/WI91td9MVrI/AAAAAAAAADw/yTmav4dZlAkiFZNB7pcpTNO-EVQQIhsBwCLcB/s1600/image04.png
https://2.bp.blogspot.com/-47fl24akAlc/WI91x51oQjI/AAAAAAAAAD0/v3dv8jS_l8MHpa2JW3eHedcJecJGaG1KQCLcB/s1600/image14.png

11/13

The sample interacts with Command and Control servers and can download additional files.
This C&C communication is authenticated with a username and password. After
authentication, the agent downloads the resource and writes it to the disk in encrypted form.
Next, the file is read and decrypted, with the decryption key being used as the temporary
filename. Finally, the file is deleted.

It is also interesting how the sample retrieves the IP address of 'libero.it', a well-known italian
webportal:

As you can see from the snippets of code above, the IP address is extracted directly from the
cookie. This IP is added to a list of possible IP addresses to use and it is also used to
generated an index later to pick a value from an array.The purpose of obtaining this IP is not
completely clear from analyzing the code. Unfortunately some of the functions involved do
not have any reference, so it appears as if they are never invoked.

Other Supports

Additionally in the code there is also support for Active Directory and LDAP. The code
concerning Active Directory lists the administrative members of the domains and it checks if
the current user is in this list. Another method adds the current user to the domain
administrators. Regarding LDAP, the code is not referenced by any function, and it is
probably used in more recent versions of this agent, however, logically it is similar to the
Active Directory one.

Related Samples

There are other executables that appear to be executed, such as 'stkr.exe', but the analysis
of that malware in beyond the scope of this post. For the reader interested in a further
analysis, the sha256 for 'stkr.exe' is:
0af665d7d81871474039f08d96ba067d5a0bd5a95088009ea7344d23a27ca824.

https://2.bp.blogspot.com/-ZF_rdI5fAWM/WI912dIGisI/AAAAAAAAAD8/9U1pBelTn4Qy7fvBNxVrTmRJxVE7k06DQCLcB/s1600/image06.png

12/13

During our analysis we have isolated another sample which was not publically related to this
campaign. This sample and possibly one other are on 'malwr.com'. Unfortunately, at the time
of publication malwr.com is down for maintenance and google did not cache either of the two
analyses. See:https://www.google.com/search?q=%22uaccheckbox%22

Conclusion

Although it is true the authors made some trivial mistakes, throughout this post we have
observed efforts to cover the vital information of this operation and an agent able to subvert
the entire operating system security. Additionally, this sample is not stealthy for all the
operations it performs but it has been undetected for years and is reported to have exfiltrated
vast amounts of data. In this post, Talos dissected some interesting parts of this agent and
provided detailed information on how it bypasses dynamic analysis environments and
disarms the operating system security.

The authors would like to thank the research community for sharing the hashes and
'hackbunny' for the support and information sharing.

Coverage

Additional ways our customers can detect and block this threat are listed below.

Advanced Malware Protection (AMP) is ideally suited to prevent the execution of the
malware used by these threat actors.

CWS orWSA web scanning prevents access to malicious websites and detects malware
used in these attacks.

Email Security can block malicious emails sent by threat actors as part of their campaign.

The Network Security protection ofIPS andNGFW have up-to-date signatures to detect
malicious network activity by threat actors.

https://www.google.com/search?q%3D%2522uaccheckbox%2522
https://3.bp.blogspot.com/-vAt-ykFj4SY/WI917dyUPOI/AAAAAAAAAEA/Sk41IDxue38H-vG1CNgZ0vOr1LBtbMYxACLcB/s1600/image02.png
https://www.cisco.com/c/en/us/support/security/amp-firepower-software-license/tsd-products-support-series-home.html
https://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://www.cisco.com/c/en/us/products/security/asa-next-generation-firewall-services/index.html

13/13

AMP Threat Grid helps identify malicious binaries and build protection into all Cisco Security
products.

Umbrella prevents DNS resolution of the domains associated with malicious activity.

References

http://www.tribupress.it/_/wp-content/uploads/2017/01/ORDINANZA-DI-CUSTODIA-
CAUTELARE-OCCHIONERO.pdf

https://securelist.com/blog/incidents/77098/the-eyepyramid-attacks/

https://www.cisco.com/c/en/us/solutions/enterprise-networks/amp-threat-grid/index.html
https://umbrella.cisco.com/
http://www.tribupress.it/_/wp-content/uploads/2017/01/ORDINANZA-DI-CUSTODIA-CAUTELARE-OCCHIONERO.pdf
https://securelist.com/blog/incidents/77098/the-eyepyramid-attacks/

