
1/23

Dominik Reichel January 6, 2017

2016 Updates to Shifu Banking Trojan
researchcenter.paloaltonetworks.com/2017/01/unit42-2016-updates-shifu-banking-trojan/

By Dominik Reichel

January 6, 2017 at 12:00 PM

Category: Unit 42

Tags: banking, Shifu, threat research, Trojan

This post is also available in: 日本語 (Japanese)

Overview

Shifu is a Banking Trojan first discovered in 2015. Shifu is based on the Shiz source code which incorporated techniques used by Zeus.
Attackers use Shifu to steal credentials for online banking websites around the world, starting in Russia but later including the UK, Italy, and
others.

Palo Alto Networks Unit 42 research has found that the Shifu authors have evolved Shifu in 2016. Our research has found that Shifu has
incorporated multiple new techniques to infect and evade detection on Microsoft Windows systems. Some of these include:

Exploitation of CVE-2016-0167 a Microsoft Windows Privilege Escalation vulnerability to gain SYSTEM level privileges. Earlier versions
of Shifu exploited CVE-2015-0003 to achieve the same goal
Use of a Windows atom to identify if the host is already infected with Shifu in addition to the mutex used by previous versions
Use of “push-calc-ret” API obfuscation to hide function calls from malware analysts
Use of alternative Namecoin .bit domains

We have also identified new links between Shifu and other tools which suggest Shifu isn’t simply based on the Shiz Trojan, but is probably the
latest evolution of Shiz.

The primary goal of this report is to introduce Shifu’s new features to other malware analysts who may encounter this Trojan in the future. The
following sections give an overview of the new features, and the appendix at the end includes the technical details on the overall functionality
of Shifu.

New Developments and Features in Shifu

The Shifu version discussed in this analysis is comprised of several stages of payloads and was compiled in June 2016. The following image
illustrates the different files included in the initial loader which get decrypted after execution:

http://researchcenter.paloaltonetworks.com/2017/01/unit42-2016-updates-shifu-banking-trojan/
https://unit42.paloaltonetworks.com/author/dominik-reichel/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/banking/
https://unit42.paloaltonetworks.com/tag/shifu/
https://unit42.paloaltonetworks.com/tag/threat-research/
https://unit42.paloaltonetworks.com/tag/trojan/
https://unit42.paloaltonetworks.jp/unit42-2016-updates-shifu-banking-trojan/
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0167
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0003

2/23

Figure 1. File structure of Shifu

The initial obfuscated loader (x86 exe) contains the encrypted second stage injector (x86 exe). It uses three layers for decryption by
subsequently allocating memory via VirtualAlloc() for the next layer. The second stage injector gets decrypted into memory and the original
loader process is then overwritten with it. Next, the section flags are adjusted and the IAT addresses are resolved. The final decryption layer
then jumps to the entry point of the second stage injector.

The second stage injector contains two exploits for CVE-2016-0167 (x86/x64) that have a compilation time stamp dated February, 2016. At the
time of compilation, patches were not yet available for this vulnerability. However, the malware’s compilation time stamp dates June 2016. This
may indicate the people behind this Shifu version had access to the zero-day exploit at that time or gained access to it afterwards. The exploit
uses an interesting technique which makes it possible to just copy the raw disk file into memory. To make the file executable in memory, it uses
a custom PE loader shellcode appended to both versions of the exploit as an PE overlay. The shellcode takes care of all the adjustments
needed to get a proper executable memory image and executes the exploit. By doing so, the file just needs to be copied into a memory buffer
and execution needs to be passed to the shellcode.

We have also found multiple other variants of the exploit, standalone versions (x86/64), but also versions which are embedded in an injector
like in Shifu. Additionally, we identified a version of Vawtrak which contains an earlier version of the exploit dating back to November 2015,
according to the compilation time stamp. The compilation time stamp of this Vawtrak sample itself dates January 2016 and thus is effectively
the first malware known to us to use this exploit.

The second stage injector contains several anti-analysis tricks similar to the previous version. It also contains two command line parameters
with functionality that indicate the malware is still in development. Further, the second stage injector uses an atom to check if the system is
already infected, instead of using a mutex like most of the malware today. The use of atoms is not a new technique, but still not very
widespread.

The main payload is encrypted and packed inside the .tls section of the second stage injector. It first gets decrypted and then unpacked with
the aPLib compression library. As persistence method, the main payload copies the initial loader to the AppData folder and creates a Jscript
file inside the Startup folder which points to it. The second stage injector injects the main payload inside a x86 instance of svchost and patches
its API function calls with an obfuscation technique to make static and dynamic analysis of the malware more difficult.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/01/Shifu_1.png
https://technet.microsoft.com/en-us/library/security/ms16-039.aspx

3/23

Compared to the previous version, the main payload contains some updates. This includes the strings to search on the victim’s system, the
browser target list, and the bot commands. The main payload uses .bit top-level domains to contact its C&C server. The domain names, the
user-agent string and the URL parameters are encrypted with a modified RC4 encryption algorithm. The domain names indicate that the
attackers may be either located in Ukraine or have a Ukrainian background.

Unfortunately, at the time of the analysis the C&C server didn’t respond with any commands and thus further analysis of the targeted financial
institutions wasn’t possible. This information would be normally downloaded into a configuration file on the victim’s disk. For some of its
functionality, the main payload hooks some API functions inside the svchost.exe process into which it is injected. Further, it uses the Apache
web server for the web injections. If it was successfully downloaded from the C&C server, the malware makes use of a layered service provider
to hook into the Winsock API for intercepting and modifying inbound and outbound Internet traffic. It also contains the normally used methods
to hook into the browsers networking functions found in many other banking Trojans.

Both the second stage injector and the main payload contain a lot of strings which are never used. This indicates the author(s) were either in a
rush to build the malware or the development was done in a sloppy way.

Instead of the string “IntelPowerAgent6” seen in the last version, this sample contains the string “IntelPowerAgent32” which is never used. In
addition to the atom created by the second stage injector to check if the system is already infected, the main payload also creates a mutex with
a name based on the same procedure to create the name for the atom (see Appendix). However, the mutex uses a hardcoded prefix named
“DAN6J0-” before the byte sequence that is also used for the atom string: “{DAN6J0-ae000000d2000000e100}”

Figure 2. Shifu mutex and the associated svchost process

Shifu, Shiz and Other Related Tools

The Shifu banking Trojan is mainly based on the Shiz/iBank source code, which is one of the oldest banking Trojans still in the wild today. Shiz
was first discovered in 2006 and has been through several stages of development since that time. It began as a banking Trojan which only
focused on Russian financial institutions. Later, it also began targeting an Italian bank which may have set the stage for a more international
focus. The internal versions we have tracked over the last five years ranged from generation 2 to 4 (2011) and 5 (2013/2014). The fifth
generation of Shiz was the last one we saw in the wild in 2014 (last internal version was 5.6.25) and it differs from the 4th generation in the
coding style. It looks like it was developed by another coder, which could indicate the source code was sold or shared. The query string used to
contact the C&C server of one of the very first versions of the fifth generation supports our theory:

botid=%s&ver=5.0.1&up=%u&os=%03u<ime=%s%d&token=%d&cn=reborn&av=%s

We can see that the campaign name (cn) contains the string “reborn”.

Shifu was first discovered in the wild in the middle of 2015 and we believe it's the evolution of the 5th generation of Shiz with a more
international focus.

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/01/Shifu_2.png

4/23

We have not only tracked the Shiz banking Trojan over the last couple of years, but also found several additional malware tools allegedly from
the same author(s). Collected samples indicate the author(s) have developed a whole set of financially related malware. It’s not clear if the
author works as part of a group or uses the malware themselves. These tools are mainly based on the source code of the fifth generation of
Shiz.

We have connected these tools together because they all contain a PDB path that has the same root folder:

Z:\coding\...

Furthermore, most of the tools are based on the Shiz source code, because the coding style and used API functions are very similar. Also,
comparing the code between the tools with BinDiff shows a high degree of similarity. Moreover, those tools with network functionality contain
query strings similar to the one in Shiz to contact their C&C server.

As our colleagues from FireEye described last year, the PDB path found in Shifu is as follows:

Z:\coding\project\main\payload\payload.x86.pdb

Other tools we have identified have the following PDB paths and are likely from the same author(s):

Z:\coding\cryptor\Release\crypted.pdb

Z:\coding\malware\tests\Release\cryptoshit.pdb

Z:\coding\malware\RDP\output\Release\rdp_bot.pdb

Z:\coding\malware\ScanBot\Release\bot.pdb

The malware internally named "cryptor" contains an encrypted sample of BifitAgent, the first malware known to attack the financial software
from BIFIT. While it's possible that BifitAgent is developed from the same person, we haven't found any indications for that. According to the
compilation time stamps, most of the samples were created in October/November 2013.

The malware with the name "rdp_bot" is a small bot which uses the RDP protocol to gain full access to a computer. It uses the same modified
RC4 encryption algorithm as the Shifu version discussed in this article. This tool was probably used along the Shiz banking Trojan, because
the attacker is able to do his fraudulent activities directly from the victim’s computer. By doing so, one could fool bank antifraud systems which
check for the IP address, browser footprints or keyboard layouts. The tool is based on the research about RDP performed by Alisa Esage. The
samples date from June to November 2013.

The tool which is named "cryptoshit" contains an encrypted sample of rdp_bot and also uses the same modified RC4 algorithm as the Shifu
version described here. The samples date September/October 2013 and January 2014 according to the compilation time stamp.

The malware with the internal name "ScanBot" is a small backdoor which uses the Super Light Regular Expression library (SRLE) for scanning
a victim’s computer for files via commands from its operator. The samples date June 2013 according to the time stamp.

Protection Against Shifu

Palo Alto Networks customers are protected from Shifu in the following ways:

Wildfire classifies Shifu files as malicious and signatures are loaded into Threat Prevention
AutoFocus customers can track malware using the Shifu tag
Command and Control domains used by Shifu are blocked through Threat Prevention

SHA256 Hashes of Samples Discussed

Initial obfuscated loader

d3f9c4037f8b4d24f2baff1e0940d2bf238032f9343d06478b5034d0981b2cd9
 368b23e6d9ec7843e537e9d6547777088cf36581076599d04846287a9162652b

 e7e154c65417f5594a8b4602db601ac39156b5758889f708dac7258e415d4a18
 f63ec1e5752eb8b9a07104f42392eebf143617708bfdd0fe31cbf00ef12383f9

Second stage injector

003965bd25acb7e8c6e16de4f387ff9518db7bcca845502d23b6505d8d3cec01
 1188c5c9f04658bef20162f3001d9b89f69c93bf5343a1f849974daf6284a650

Exploit injector

e7c1523d93154462ed9e15e84d3af01abe827aa6dd0082bc90fc8b58989e9a9a

CVE-2016-0167 exploit (x86)

https://www.fireeye.com/blog/threat-research/2015/10/shifu-malware-analyzed-behavior-capabilities-and.html
https://securelist.com/blog/virus-watch/59901/lock-stock-and-two-smoking-trojans-2/2/
http://de.slideshare.net/alisaesage/hacking-microsoft-remote-desktop-services-for-fun-and-profit
https://autofocus.paloaltonetworks.com/

5/23

5124f4fec24acb2c83f26d1e70d7c525daac6c9fb6e2262ed1c1c52c88636bad

CVE-2016-0167 exploit (x64)

f3c2d4090f6f563928e9a9ec86bf0f1c6ee49cdc110b7368db8905781a9a966e

Main payload

e9bd4375f9b0b95f385191895edf81c8eadfb3964204bbbe48f7700fc746e4dc
5ca2a9de65c998b0d0a0a01b4aa103a9410d76ab86c75d7b968984be53e279b6

Appendix - Technical details

Second Stage Injector Analysis

The second stage injector contains an exploit injector (x86 DLL) which in turn has two embedded exploits (x86/64 DLL) for CVE-2016-0167.
The second stage injector also contains the encrypted and aPLib packed main payload module (x86 DLL) in its .tls section. For decryption, it
uses a modified version of the RC4 encryption algorithm with a salt that is stored in the .rsrc section. Significant strings in the second stage
injector's .data section were XORed with the key 0x8D and get decrypted on-the-fly. Decrypted strings:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

AddMandatoryAce
ADVAPI
Advapi32.dlladvapi32.dllws2_32.dll
WPUCloseEvent
WPUCloseSocketHandleWPUCreateEvent
WPUCreateSocketHandle
WPUFDIsSet
WPUGetProviderPath
WPUModifyIFSHandle
WPUPostMessage
WPUQueryBlockingCallbackWPUQuerySocketHandleContext
WPUQueueApc
WPUResetEvent
WPUSetEvent
WPUOpenCurrentThreadWPUCloseThread
WSPStartup
> %1\r\ndel %0
software\\microsoft\\windows\\currentversion\\run
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/echo
rundll32.exe shell32.dll, ShellExec_RunDLL %s
Microsoft\\Microsoft AntimalwareSoftware\\Coranti
Software\\risingSoftware\\TrendMicroSoftware\\Symantec
Software\\ComodoGroup
Software\\Network Associates\\TVD
Software\\Data Fellows\\F-SecureSoftware\\Eset\\Nod
Software\\Softed\\ViGUARD
Software\\Zone Labs\\ZoneAlarm
Software\\Avg
Software\\VBA32
Software\\Doctor WebSoftware\\G DataSoftware\\Avira
Software\\AVAST Software\\Avast
Software\\KasperskyLab\\protected
Software\\Bitdefender
Software\\Panda SoftwareSoftware\\Sophos.bat\\\\.\\%C:
|$$$}rstuvwxyz{$$$$$$$>?@ABCDEFGHIJKLMNOPQRSTUVW$$$$$$XYZ[\\]^_`abcdefghijklmnopq
conhost
CreateProcessInternalW
ConvertStringSecurityDescriptorToSecurityDescriptorWContent-Type: multipart/form-data; boundary=---------------------------%s\r\n
Content-Type: application/x-www-form-urlencoded\r\n
Host: %s\r\n%d.%d.%d.%d
%d.%d.%d.%d.%x
%temp%\\debug_file.txt
[%u][%s:%s:%u][0x%x;0x%x] %sDnsFlushResolverCache
.
dnsapi.dll
DnsGetCacheDataTable.dll.exedownload.windowsupdate.com
vk.com
yandex.ru
HTTP/1.1https://http://%s
IsWow64Process
kernel
kernel32.dllLdrGetProcedureAddress
Microsoft
NtAllocateVirtualMemory
CLOSED
LAST_ACKTIME_WAIT

6/23

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

DELETE_TCB
LISTEN
SYN_SENTSYN_RCVDESTAB
FIN_WAIT1
FIN_WAIT2
CLOSE_WAIT
CLOSING
TCP\t%s:%d\t%s:%d\t%s\n
netstat\nProto\tLocal address\tRemote address\tState\n
ntdll.dll
NtResumeProcess
NtSuspendProcess\\\\?\\globalroot\\systemroot\\system32\\drivers\\null.sys
NtWriteVirtualMemoryopenRegisterApplicationRestart
RtlCreateUserThread
ResetSR
RtlComputeCrc32
rundll32SeDebugPrivilegeSystemDrive
\\StringFileInfo\\%04x%04x\\ProductName
software\\microsoft\\windows nt\\currentversion\\winlogon
shell
Sleep
srclient.dllSeShutdownPrivilege
\"%s\"
%d\t%s\ntaskmgr\nPID\tProcess name\nnet user\n
the computer is joined to a domain\n..
\\VarFileInfo\\Translation
%windir%\\system32\\%windir%\\syswow64\\POST*.exe
%SystemDrive%\\
SYSTEM%02x%s:Zone.Identifier
GetProcessUserModeExceptionPolicy
SetProcessUserModeExceptionPolicy
%ws\\%ws\n
WORKGROUP
HOMESoftware\\Microsoft\\Windows\\CurrentVersion\\Policies\\ExplorerDisableCurrentUserRun
%s.dat
software\\microsoft\\windows%OS%_%NUMBER_OF_PROCESSORS%
S:(ML;;NRNWNX;;;LW)D:(A;;GA;;;WD)
S:(ML;;NRNWNX;;;LW)D:(A;;GA;;;WD)(A;;GA;;;AC)
\\\\.\\AVGIDSShim
FFD3\\\\.\\NPF_NdisWanIpc:\\sample\\pos.exe
ANALYSERS
SANDBOX
VIRUS
MALWARE
FORTINETMALNETVMc:\\analysis\\sandboxstarter.exec:\\analysisc:\\insidetmc:\\windows\\system32\\drivers\\vmmouse.sys
c:\\windows\\system32\\drivers\\vmhgfs.sys
c:\\windows\\system32\\drivers\\vboxmouse.sys
c:\\iDEFENSEc:\\popupkiller.exe
c:\\tools\\execute.exe
c:\\Perlc:\\Python27api_log.dll
dir_watch.dll
pstorec.dll
dbghelp.dll
Process32NextW
Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings\\Zones\\3
1406.bitMiniDumpWriteDump
\r\nReferer: %s\r\n
\\Google\\Chrome\\User Data\\Default\\Cache
var %s = new ActiveXObject("WScript.Shell"); %s.Run("%s");
IntelPowerAgent32
%OS%_%NUMBER_OF_PROCESSORS%
%s\cmd.exe
ComSpec
ConsoleWindowClass
.exekernel32.dllntdll.dll
ZwQuerySystemInformationZwAllocateVirtualMemory
PsLookupProcessByProcessId
PsReferencePrimaryToken
Class
Window
open "%s" -q%windir%\\system32\\sdbinst.exe
/c "start "" "%s" -d"
%windir%\\system32\\sndvol.exe
"%s" -u /c "%s\\SysWOW64\\SysSndVol.exe /c "start "" "%s" -d""
%temp%\\%u
%u.tmp
Wow64DisableWow64FsRedirection
Wow64RevertWow64FsRedirection

7/23

135
136
137
138
139
140
141
142
143
144
145

runas.exe
%systemroot%\\system32\\svchost.exe
%systemroot%\\system32\\wscript.exe
snxhk.dll
sbiedll.dll
/c start "" "%s" " "
cmd.exe
runas
--crypt-test
It work's!
--vm-test

Exploit Injector with Embedded CVE-2016-0167 Exploits

The exploit injector is used to gain SYSTEM privileges on the infected host. The injector contains the actual exploits for both x86 and x64
systems. The magic PE bytes ("MZ") at the beginning of the files are patched will null bytes to prevent them from automatic extraction.

The second stage injector checks for the current process' integrity level and the OS version. If the integrity level of the process is low and the
OS version is 6.1 (Windows 7 / Windows Server 2008 R2), the second stage injector writes the exploit injector file into memory. Then, it
searches for the magic value 0x99999999 in the exploit injector which marks the beginning of the PE overlay. When the address was found, 12
bytes are added and the second stage injector jumps to this address which is in fact a custom PE loader shellcode. The call to the shellcode
looks as follows:

1
2
3
4

00401EF5 pusha
00401EF6 add esi, 0Ch
00401EF9 call esi -> PE loader shellcode in overlay
00401EFB popa

Custom PE loader shellcode

It first gets the end of the shellcode which is then used to scan the exploit injector file for the magic PE number ("MZ"). The code to get end of
the shellcode looks as follows:

1
2
3
4

00077174 jmp short 00077178
00077176 pop eax
00077177 retn
00077178 call 00077176

Next, a custom GetProcAddress() function is used together with a hashing function to find the address of VirtualAllocEx(). Then,
VirtualAllocEx() is called to allocate a memory buffer of with full access rights into which the exploit injectors sections are written with the
appropriate memory alignments. The necessary memory addresses are then adjusted with help of the relocation information, the API function
addresses are resolved and the IAT is filled. Finally, the shellcode jumps to the DLL entry point of the freshly created exploit injector module.

Exploit injector

At first, the strings "kernel32.dll", "LoadLibrary" and "GetProcAddress" are created. Next, the image base address for kernel32.dll is searched
and the addresses of LoadLibrary() and GetProcAddress() are obtained. With help of these API functions, the IAT addresses of the exploit
injector get resolved and the IAT is filled. The purpose of this function is unclear, as it was already done by the second stage injector.
Thereafter, a new thread gets created with API function CreateThread().

The thread first calls IsWow64Process() and according to the result either the embedded x86 or x64 version of the exploit file is written into a
memory buffer. Next, the PE magic value ("MZ") is written to the beginning of the exploit file. Then, an event named "WaitEventX" is created
which is later used by the exploit. Then, the main exploit loading function is called.

The exploit loading function searches for the following process names and if found also the module names for the following strings which are
part of Trend Micro security software:

"uiSeAgnt.exe"
"PtSessionAgent.exe"
"PwmSvc.exe"
"coreServiceShell.exe"

If one of the processes is found, a suspended process of wuauclt.exe is created. Otherwise, a suspended process of svchost.exe is created. In
both cases, the command line argument "-k netsvcs" is passed, but can be only used by svchost.exe. It should be noted that this functionality
always fails if the x64 version of Trend Micro Internet Security is installed. The code (x86) calls CreateToolhelp32Snapshot() on a x64 process
which results in an error (ERROR_PARTIAL_COPY). Moreover, it also fails because the code tries to access a protected Trend Micro process
(ERROR_ACCESS_DENIED).

8/23

Next, it maps the x86 or x64 file of the exploit into memory with CreateFileMapping() and MapViewOfFile() and fills in the memory with the
exploit bytes. Finally, the section gets mapped into the suspended process of svchost.exe or wuauclt.exe by using ZwMapViewOfSection(). It
then checks the OS version if it is 5.2 (Windows Server 2003 / Windows XP 64-Bit Edition) and exits the function if so. Afterwards, two memory
buffers are created and a shellcode is written to each of them. The first obfuscated shellcode calls the second shellcode, which is a stager for
the mapped exploit file. Next, it calls ResumeThread() to execute the suspended process so the exploit is executed.

The second stage injector verifies that the exploit was successful by checking if the integrity level of itself is still
SECURITY_MANDATORY_LOW_RID. If not, the exploit successfully elevated privileges to SECURITY_MANDATORY_SYSTEM_RID and
continues with the injection of the main payload. If the exploit failed, it tries to execute itself under the SYSTEM user account with help of the
Windows command line (cmd.exe) and runas.exe tool.

Atom String Building

Instead of using a mutex like most of today’s malware, the second stage injector creates an atom and checks the global atom table to see if an
instance of Shifu is already running.

At first, it uses the template string "%OS%_%NUMBER_OF_PROCESSORS%" for the API ExpandEnvironmentStrings() to get the Windows
version and number of processors. For example, in Windows 7 with one processor the result would be "Windows_NT_1". This string is then
used to calculate four CRC32 hashes with RtlComputeCrc32() and the following initial values:

0xFFFFFFFF
0xEEEEEEEE
0xAAAAAAAA
0x77777777

The resulting CRC hashes of the string "Windows_NT_1" are as follows:

0x395693AE
0xB24495D2
0xF39F86E1
0xBAE0B5C8

Next, the last byte of each CRC hash is stored as a DWORD value on the stack:

0xAE000000 (from 0x395693AE)
0xD2000000 (from 0xB24495D2)
0xE1000000 (from 0xF39F86E1)
0xC8000000 (from 0xBAE0B5C8)

The stack with the hash byte sequence looks as follows:

AE 00 00 00 D2 00 00 00 E1 00 00 00 C8 00 00 00

The atom string is then created by converting first 8 bytes of the hash byte sequence to ASCII characters with snprintf() function. The result in
this case would be:

"ae000000d2000000"

At last, it calls GlobalFindAtom() API to check if the atom is present and calls GlobalAddAtom() if not.

9/23

Figure 3. Shifu atom in the global atom table

Command Line Arguments

The second stage injector has two command line parameters of which only one has a functionality. They may be used for an upcoming feature
or were just forgotten to be removed.

--crypt-test

Shows just a message box with the text "It work's!"

--vm-test

No functionality

Anti-Analysis Tricks

Anti Sandboxie / Avast

Shifu checks if the module snxhk.dll (Avast) or sbiedll.dll (Sandboxie) is present in its own process space by calling GetModuleHandleA() and
runs an infinite Sleep() loop if a handle is returned.

All the following anti analysis tricks are only used if Shifu is executed on a 32-bit Windows machine (no Wow64 process).

Process name detection

It enumerates running process names, converts them to lowercase, calculates the CRC32 hashes of those names and compares to the
following list:

0x99DD4432 - ?
0x1F413C1F - vmwaretray.exe
0x6D3323D9 - vmusrvc.exe
0x3BFFF885 - vmsrvc.exe
0x64340DCE - ?
0x63C54474 - vboxtray.exe
0x2B05B17D - ?
0xF725433E - ?
0x77AE10F7 - ?
0xCE7D304E - dumpcap.exe
0xAF2015F2 - ollydbg.exe
0x31FD677C - importrec.exe
0x6E9AD238 - petools.exe
0xE90ACC42 - idag.exe
0x4231F0AD - sysanalyzer.exe
0xD20981E0 - sniff_hit.exe
0xCCEA165E - scktool.exe
0xFCA978AC - proc_analyzer.exe

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/01/Shifu_3.png

10/23

0x46FA37FB - hookexplorer.exe
0xEEBF618A - multi_pot.exe
0x06AAAE60 - idaq.exe
0x5BA9B1FE - procmon.exe
0x3CE2BEF3 - regmon.exe
0xA945E459 - procexp.exe
0x877A154B - peid.exe
0x33495995 - autoruns.exe
0x68684B33 - autorunsc.exe
0xB4364A7A - ?
0x9305F80D - imul.exe
0xC4AAED42 - emul.exe
0x14078D5B - apispy.exe
0x7E3DF4F6 - ?
0xD3B48D5B - hookanaapp.exe
0x332FD095 - fortitracer.exe
0x2D6A6921 - ?
0x2AAA273B - joeboxserver.exe
0x777BE06C - joeboxcontrol.exe
0x954B35E8 - ?
0x870E13A2 - ?

File detection

Shifu checks if the following files or folders exist on the system and runs an infinite Sleep() loop if so:

c:\sample\pos.exe
c:\analysis\sandboxstarter.exe
c:\analysis
c:\insidetm
c:\windows\system32\drivers\vmmouse.sys
c:\windows\system32\drivers\vmhgfs.sys
c:\windows\system32\drivers\vboxmouse.sys
c:\iDEFENSE
c:\popupkiller.exe
c:\tools\execute.exe
c:\Perl
c:\Python27

Debugger detection

It checks if it’s being debugged by calling IsDebuggerPresent(). Also, it calls ZwQueryInformationSystem() with ProcessDebugPort and
ProcessDebugObjectHandle to check for a debugger presence. If a debugger is detected it runs an infinite Sleep() loop.

Wireshark detection

Shifu attempts to open \\.\NPF_NdisWanIp with CreateFile() and will enter an infinite Sleep() loop if it is successful.

Self-sanity checks

It checks its own file name length if it is longer than 30 characters and runs an infinite Sleep() loop if so. Also, it checks if its own process name
CRC32 hash matches one of the following:

0xE84126B8 - sample.exe
0x0A84E285 - ?
0x3C164BED - ?
0xC19DADCE - ?
0xA07ACEDD - ?
0xD254F323 - ?
0xF3C4E556 - ?
0xF8782263 - ?
0xCA96016D - ?

Furthermore, it checks if one of the following modules from GFI Sandbox is present in its own process address space:

api_log.dll
dir_watch.dll

11/23

pstorec.dll

Unknown anti-analysis trick

Shifu uses an anti-analysis trick whose purpose is unknown to us. It retrieves the address of Process32NextW() and compares the first 5 bytes
with the sequence 0x33C0C20800 which disassembles to:

1
2

33C0 XOR EAX,EAX
C2 0800 RETN 8

This code is only present in 32-bit Windows XP and not in later Windows versions, because the Unicode version of that function probably
wasn't implemented yet. If the code sequence is found meaning that Shifu was executed on 32-bit Windows XP, it runs an infinite Sleep() loop.

Windows domain name check

It checks if the computer workgroup name is either "WORKGROUP" or "HOME" with API functions NetServerGetInfo() and NetWkstaGetInfo()
and runs an infinite Sleep() loop otherwise. Next, it checks for the name "ANALYSERS" and runs the infinite loop if found.

Computer and user name check

Shifu gets the computer and user name with GetComputerName() and GetUserName() to check for the following strings:

SANDBOX
FORTINET
VIRUS
MALWARE
MALNETVM

If one is found it runs an infinite loop.

Process termination feature

Second stage injector of Shifu enumerates all running processes, converts every name to lower case, calculates the CRC32 hash of it and
compares it to the following ones:

0xD2EFC6C4 - python.exe
0xE185BD8C - pythonw.exe
0xDE1BACD2 - perl.exe
0xF2EAA55E - autoit3.exe
0xB8BED542 - ?

If one matches, it first tries to terminate the process with OpenProcess() and TerminateProcess(). If that fails, it tries to close the main window
handle of the process if it is flagged as HANDLE_FLAG_PROTECT_FROM_CLOSE with ZwClose(). Then, it opens the process with full
access rights and unmaps it from memory with ZwUnmapViewOfSection(). At last, the main window handle of the unmapped process is
closed.

Main Payload Decryption, Unpacking and Injection

To decrypt the main payload, the second stage injector retrieves a salt needed for the decryption algorithm from its .rsrc section. It uses a
modified RC4 algorithm where the salt is used to XOR the array of 256 bytes byte after byte at the beginning. The encrypted array is then used
to decrypt the main payload located in the .tls section. The decrypted main payload is additionally packed with the aPLib compression library.

If the initial loader runs as a medium or high integrity level process, the routine which calculates the atom string name is called again. This
time, only the first 4 bytes are used to build a string, for example "ae000000". Next, the CRC32 hash of this string is calculated and used to
XOR another array of 256 bytes starting from 0x0 to 0xFF. This encrypted array is then used to again encrypt the decrypted main payload. The
resulting encrypted data are written to registry for persistence purposes under the key "HKCU\software\microsoft\windows" with a random
CRC32 hash name, for example "f4e64d63". Also, a second value with the string "ae000000" as name is created and filled up with null bytes
and the path of the initial loader, for example "C:\ProgramData\7d5d6044.exe". At last, the temporarily encrypted main payload gets decrypted
again.

12/23

Figure 4. Encrypted main payload and initial loader path stored in the Windows registry

Next, the main payload gets unpacked into memory. Thereafter, a suspended svchost.exe process (x86) is created with the same integrity
level as the parent process. The main payload gets mapped into the process and the magic PE value (MZ) patched. The svchost process gets
then resumed so the main payload is executed. At last, a batch file is created and executed in the %TEMP% folder. It overwrites the original
executed initial loader with a random number of bytes to cover the tracks. The random bytes are always followed by a space character and the
CR LF control characters.

Main Payload Analysis

The main payload module's IAT function names were XORed with the key 0xFF to make static analysis more difficult. Significant strings in the
.data section are also XORed with the key 0x8D and get decrypted on-the-fly. Decrypted strings:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

AddMandatoryAce
ADVAPI
Advapi32.dlladvapi32.dllws2_32.dll
WPUCloseEvent
WPUCloseSocketHandleWPUCreateEvent
WPUCreateSocketHandle
WPUFDIsSet
WPUGetProviderPath
WPUModifyIFSHandle
WPUPostMessage
WPUQueryBlockingCallbackWPUQuerySocketHandleContext
WPUQueueApc
WPUResetEvent
WPUSetEvent
WPUOpenCurrentThreadWPUCloseThread
WSPStartup
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/echo
> %1\r\ndel %0
rundll32.exe shell32.dll, ShellExec_RunDLL %s
software\\microsoft\\windows\\currentversion\\run
Microsoft\\Microsoft AntimalwareSoftware\\Coranti
Software\\risingSoftware\\TrendMicroSoftware\\Symantec
Software\\ComodoGroup
Software\\Network Associates\\TVD
Software\\Data Fellows\\F-SecureSoftware\\Eset\\Nod
Software\\Softed\\ViGUARD
Software\\Zone Labs\\ZoneAlarm
Software\\Avg
Software\\VBA32
Software\\Doctor WebSoftware\\G DataSoftware\\Avira
Software\\AVAST Software\\Avast
Software\\KasperskyLab\\protected
Software\\Bitdefender
Software\\Panda SoftwareSoftware\\Sophos.bat|$$$}rstuvwxyz{$$$$$$$>?
@ABCDEFGHIJKLMNOPQRSTUVW$$$$$$XYZ[\\]^_`abcdefghijklmnop
q

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/01/Shifu_4.png

13/23

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

\\\\.\\%C:
conhost
CreateProcessInternalW
ConvertStringSecurityDescriptorToSecurityDescriptorWContent-Type: application/x-www-form-urlencoded\r\n
Content-Type: multipart/form-data; boundary=---------------------------%s\r\n
Host: %s\r\n%d.%d.%d.%d
%d.%d.%d.%d.%x
%temp%\\debug_file.txt
[%u][%s:%s:%u][0x%x;0x%x] %sDnsFlushResolverCache
.
dnsapi.dll
DnsGetCacheDataTable.dll.exedownload.windowsupdate.com
vk.com
yandex.ru
HTTP/1.1https://http://%s
IsWow64Process
kernel
kernel32.dllLdrGetProcedureAddress
Microsoft
NtAllocateVirtualMemory
CLOSED
LAST_ACKTIME_WAIT
DELETE_TCB
LISTEN
SYN_SENTSYN_RCVDESTAB
FIN_WAIT1
FIN_WAIT2
CLOSE_WAIT
CLOSING
TCP\t%s:%d\t%s:%d\t%s\n
netstat\nProto\tLocal address\tRemote address\tState\n
ntdll.dll
NtResumeProcess
NtSuspendProcess\\\\?\\globalroot\\systemroot\\system32\\drivers\\null.sys
NtWriteVirtualMemoryopenRegisterApplicationRestart
RtlCreateUserThread
ResetSR
RtlComputeCrc32
rundll32SeDebugPrivilegeSystemDrive
\\StringFileInfo\\%04x%04x\\ProductName
software\\microsoft\\windows nt\\currentversion\\winlogon
shell
Sleep
srclient.dllSeShutdownPrivilege
\"%s\"
%d\t%s\ntaskmgr\nPID\tProcess name\nnet user\n
the computer is joined to a domain\n..
\\VarFileInfo\\Translation
%windir%\\system32\\%windir%\\syswow64\\POST*.exe
%SystemDrive%\\
SYSTEM%02x%s:Zone.Identifier
GetProcessUserModeExceptionPolicy
SetProcessUserModeExceptionPolicy
%ws\\%ws\n
WORKGROUP
HOMEsoftware\\microsoft\\windowsSoftware\\Microsoft\\Windows\\CurrentVersion\\Policies\\ExplorerDisableCurrentUserRun
%s.dat
%OS%_%NUMBER_OF_PROCESSORS%
S:(ML;;NRNWNX;;;LW)D:(A;;GA;;;WD)
S:(ML;;NRNWNX;;;LW)D:(A;;GA;;;WD)(A;;GA;;;AC)
\\\\.\\AVGIDSShim
FFD3\\\\.\\NPF_NdisWanIpc:\\sample\\pos.exe
ANALYSERS
SANDBOX
VIRUS
MALWARE
FORTINETMALNETVMc:\\analysis\\sandboxstarter.exec:\\analysisc:\\insidetmc:\\windows\\system32\\drivers\\vmmouse.sys
c:\\windows\\system32\\drivers\\vmhgfs.sys
c:\\windows\\system32\\drivers\\vboxmouse.sys
c:\\iDEFENSEc:\\popupkiller.exe
c:\\tools\\execute.exe
c:\\Perlc:\\Python27api_log.dll
dir_watch.dll
pstorec.dll
dbghelp.dll
Process32NextW
1406Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings\\Zones\\3
.bitMiniDumpWriteDump

14/23

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

\r\nReferer: %s\r\n
\\Google\\Chrome\\User Data\\Default\\Cache
var %s = new ActiveXObject("WScript.Shell"); %s.Run("%s");
GenuineIntelAuthenticAMDCentaurHauls7z
fnbqooqdaixfueangywblgabirdgvkewdyqgfqaioluesyrpryfkjerfsouemaxnavrkguxmcmhckwprunurmhehclermtufwiyjbqhwlunbun
uumeowfjmerxppxrgaxukyx
PowerManager_M5VKII_%d
[type=ftp]\n[botid=%s]\n[proc=%s]\n[data=%s]\n
[type=pop3]\n[botid=%s]\n[proc=%s]\n[data=%s]\n
%OS%_%NUMBER_OF_PROCESSORS%
[type=post]\n[botid=%s]\n[url=%s]\n[ua=%s]\n[proc=%s]\n[ref=%s]\n[keys=%s]\n[data=%s]\n
name=%s&ok=%s&id=%d&res_code=%d&res_text=%s_%x
name=%s&ok=%s&id=%d&res_code=%d&res_text=%s
botid=%s&ver=%s.%u&up=%u&os=%u<ime=%s%d&token=%d&cn=%s&av=%s&dmn=%s&mitm=%u
java.exe|javaw.exe|plugin-container.exe|acrobat.exe|acrod32.exe
tellerplus|bancline|fidelity|micrsolv|bankman|vanity|episys|jack
henry|cruisenet|gplusmain|silverlake|v48d0250s1Root|TrustedPeople|SMS|Remote Desktop|REQUEST
TREASURE|BUH|BANK|ACCOUNT|CASH|FINAN|MONEY|MANAGE|OPER|DIRECT|ROSPIL|CAPO|BOSS|TRADEactive_bc
-----------------------------%s\r\nContent-Disposition: form-data; name=\"pcname\"\r\n\r\n%s!%s\r\n-----------------------------
%s\r\nContent-Disposition: form-data; name=\"file\"; filename=\"report\"\r\nContent-Type: text/plain\r\n\r\n%s\r\n--------------
---------------%s--\r\n
%domain%deactivebc
inject
kill_os
loadactive_sk
deactive_sk
wipe_cookiesmitm_modmitm_script
mitm_geterr
get_keylog
get_sols!active_bc\[(\d+)\] (\S+) (\d+)
!deactive_bc\[(\d+)\]
!inject\[(\d+)\] (\S+)
!kill_os\[(\d+)\]
!get_keylog\[(\d+)\]!load\[(\d+)\] (\S+)!update\[(\d+)\] (\S+)
!wipe_cookies\[(\d+)\]
!active_sk\[(\d+)\] (\S+) (\d+)
!deactive_sk\[(\d+)\]
!mitm_mod\[(\d+)\] (\S+) (\d+) (\S+)!mitm_script\[(\d+)\] (\S+)
!mitm_geterr\[(\d+)\]
!get_sols\[(\d+)\]
ATCASH
ATLOCAL
CERTCERTX
COLVCRAIF
CRYPT
CTERM
SCREEN
INTER
ELBALOCAL
ELBAWEB
ELBAWEB
ELBAWEB
PUTTY
VNCVIEW
MCLOCAL
MCSIGN
OPENVPN
PIPEK
PIPEK
PIPEK
PIPEK
POSTSAP
chrome.dll
mxwebkit.dlldragon_s.dlliron.dllvivaldi.dll
nspr4.dll
nss3.dllbrowser.dll
Advapi32.dllrsaenh.dll
kernel32.dllIprivLibEx.dll
cryptui.dll
crypt32.dll
ntdll.dll
ssleay32.dllurlmon.dll
user32.dll
Wininet.dll
Ws2_32.dll
PSAPI.dll
NzBrco.dll
VirtualProtect

15/23

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

LoadLibraryExW
ZwQuerySystemInformationWSARecv
WSASend
ZwDeviceIoControlFile
URLDownloadToCacheFileW
URLDownloadToFileW
TranslateMessageSSL_get_fd
SSL_write
PFXImportCertStore
CryptEncryptCPExportKey
CreateProcessInternalW
CreateDialogParamW
GetClipboardDatagetaddrinfo
gethostbyname
GetAddrInfoExW
GetMessageA
GetMessageW
DeleteFileA
GetModuleBaseNameW
bad port value
can't find plug-in path
can't get bot path
can't download file
can't encrypt file
can't save inject config to filecan't get temp file
file is not valid PEcan't delete original file
can't replace original file
can't close handle
can't protect file
original file not found
can't execute file
can't create directory
can't unzip file #1
can't unzip file #2
mitm_mod is inactivehttpd.exe is anactive
microsoft.com
dropbox.com
KEYGRAB
PasswordTELEMACOScelta e Login dispositivo
TLQ Web
db Corporate Banking WebSecureStoreCSP - enter PIN
google.com
Software\\SimonTatham\\PuTTYreg.txt
Software\\Microsoft\\Internet Explorer\\MainTabProcGrowth
Temp\\Low
crc32[%x]
ACCT
AUTHINFO PASS
AUTHINFO USER
Authorization
:BA:[bks]
%X!%X!%08X
btc_path.txtbtc_wallet.dat
bitcoin\\wallet.dat
%s%s\\%u_cert.pfx
cmdline.txt
1.3.6.1.5.5.7.3.3
CodeSign\n
Software\\Microsoft\\Windows NT\\CurrentVersion
[del]
Default
.exeELBA5\\ELBA_dataftp://anonymous:ftp://%s:%s@%s:%d\n
HBPData\\hbp.profileHH:mm:ssdd:MMM:yyyy
I_CryptUIProtect\\exe\\
infected.exx%s%s\\%u_info.txt
[ins]
InstallDate
%02u.jpg%s\\%02d.jpgKEYLOG
%s\\keylog.txt
[TOKEN ON]
\n\n[%s (%s-%s) - %s (%s)]\n[pst]%s[/pst]
ltcd_path.txt
ltcd_wallet.dat
litecoind\\wallet.dat
ltc_path.txtltc_wallet.dat
litecoin\\wallet.dat\\MacromediaMultiCash@Sign
C:\\Omikron\\MCSign
[ML][MR]Global\\{4C470E-%08x-%08x-%08x}

16/23

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

Global\\{DAN6J0-%s}
noneopera.exe
PASS
password.txt\\\\.\\pipe\\%s
pop3://%s:%s@%s:%d\n%PROCESSOR_ARCHITECTURE%Referer
[ret]
%08x\\system32\\rstrui.exe
\\scrs\\send%s%s%s%d%s:%s
sysinfo.txt
[tab]
data.txt<unnamed>
<untitled>
update
USER
User-agent
vkeys
%x\r\n
\r\n%x%x%x.tmp
*.txt
%02x%2b
torrent
-config config.vnc
--config
config.ovpn
data.txt[type=post]\n
CreateFileW
pos.exe
bank.exePOS
secure.
.mozgoogle.com
CertVerifyCertificateChainPolicyCertGetCertificateChain
SSL_AuthCertificateHook
USERNAMESoftware\\ESET\\ESET Security\\CurrentVersion\\Info
C8FFAD27AE1BBE28BE24DDF20AF36EF901C609968930ED82CEFBC64808BA34102C4FABA0560523FB4CCBF33684F77C8401DFB
3A7D2D598E872DD78033E7F900B78A0C710CDF0941662FF7745A435D4BC18D5661E0582B21B2DB8FCA1C0CA3401D0FC9F051
85A558AB6A76A010F606CD77B35A480B6B7176F0903299B91F1BBD141B4D33615849C35557357DAB819BC3D4A8722BB433DE
B66C7A326BE859BD94930331B37DEE6EF4C475EA4B33DE4699FFDBCD34E196E19FE630E631D2C612705048620183BCF56709B
484A4380C4B00D8D94D131C31DB53AE6BCDCCC14131BAC99A68C59A604D0AE9116E9196F7FA3EA5F86F67E9B175CC09D3E17
997728B7D
10001
get=1
COMPNAMEAppDataDir
updfiles\\upd.ver
updfiles\\lastupd.ver
SYSTEM\\CurrentControlSet\\services\\Avg\\SystemValues
Local AppData
Avg2015
Avg2014
Avg2013
Avg2012
Avg2011
update
Software\\Microsoft\\Windows\\CurrentVersion\\explorer\\Browser Helper Objects\\{8CA7E745-EF75-4E7B-BB86-
8065C0CE29CA}
Software\\Microsoft\\Windows\\CurrentVersion\\explorer\\Browser Helper Objects\\{BB62FFF4-41CB-4AFC-BB8C-
2A4D4B42BBDC}
Software\\Microsoft\\Internet Explorer\\MainEnable Browser Extensions
httpd.exe
%s\\httpd.exe
connect
data\\index.php
logs\\error.log
error.log
<?\n';\n$bot_id = '
$bot_net = '$key_log_file = '
$process_file = '
127.0.0.1
Listen %s:%u\n
conf\\httpd.confSSL_PORT%u>\n
[type=post]\n
[type=screen]\n
[type=knock]\n
74??834E0440B832FFFFFF
74??834E04405F5EB832FFFFFF
DEBUG
memory.dmp
config.xml
php5ts.dll

17/23

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

zend_stream_fixup
zend_compile_file
index.php
config.php
content.php
iexplore.exe|firefox.exe|chrome.exe|opera.exe|browser.exe|dragon.exe|epic.exe|sbrender.exe|vivaldi.exe|maxthon.exe|ybr
owser.exe|microsoftedgecp.exe
InternetQueryDataAvailable
InternetReadFileInternetReadFileExA
InternetReadFileExW
InternetSetStatusCallbackA
InternetSetStatusCallbackW
HttpSendRequestAHttpSendRequestExA
HttpSendRequestExW
HttpSendRequestW\r\n0\r\n\r\n
.rdata
\r\n\r\nHTTP/1.
Transfer-Encoding
chunked
Content-Length
close
Proxy-ConnectionHostAccept-Encoding
x-xss-protectionx-content-security-policy
x-frame-options
x-content-type-options
If-Modified-Since
If-None-Match
content-security-policy
x-webkit-cspConnection
http://
https://NSS layer
Content-TypeBasic
PR_ClosePR_Connect
PR_GetNameForIdentity
PR_Read
PR_SetError
PR_WriteReferer:
Accept-Encoding:\r\n1406SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\3
data_after\ndata_before\n
data_enddata_inject\n
set_url %BOTID%
%BOTNET%InternetCloseHandle
HTMLc:\\inject.txt
Dalvik/1.6.0 (Linux; U; Android 4.1.2; GT-N7000 Build/JZO54K)
xxx_process_0x%08x
Common.js

API Obfuscation

The main payload uses an API obfuscation technique known as Push-Calc-Ret obfuscation. The calls to the real API functions are patched by
the second stage injector after the main payload gets injected into the svchost process. Whenever a Windows API function should have been
called, instead the address of a trampoline function is called which calculates the actual function address. All the trampoline function
addresses are stored in an array in memory.

For example, the main payload wants to call CreateFile(), but this call is patched. Now, it calls the trampoline function which could look as
follows:

1
2
3
4
5

00846110 PUSH 2B464C25
00846115 PUSHFD
00846116 XOR DWORD PTR SS:[ESP+4], 5DB5E13F
0084611E POPFD
0084611F RETN

First, a value is pushed to the stack. Next, the EFLAGS register is saved to the stack, because it will be altered by the following XOR
instruction (OF, CF flags are cleared and the SF, ZF, and PF flags are set according to the result). Then, the previously pushed value is XORed
with another value to calculate the actual API function address. At last, the EFLAGS register gets restored and the real API function address is
called via the RETN instruction.

Persistence Method

The main payload copies the initial obfuscated loader file to the %ProgramData% folder with a random file retrieved with GetTickCount(). Then,
it creates a JScript file named "Common.js" in the Startup folder of the current user. The file contains the following code which runs the initial
loader after the system was rebooted:

https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/a_museum_of_api_obfuscation_on_win32.pdf

18/23

1
2

var yqvltidpue = new ActiveXObject("WScript.Shell");
yqvltidpue.Run("C:\\PROGRA~3\\930d4a6d.exe")

Updates of the Main Payload compared to Previous Version

Reports on previous versions of Shifu have been published by FireEye and Fortinet.

In comparison to the previous version, the list of substrings to scan for in the string that gets created with the computer name, user name,
install date and system drive volume serial number was expanded:

TREASURE
BUH
BANK
ACCOUNT
CASH
FINAN
MONEY
MANAGE
OPER
DIRECT
ROSPIL
CAPO
BOSS
TRADE

Updated command list:

active_sk
deactive_sk
deactivebc
get_keylog
get_sols
inject
kill_os
load
mitm_geterr
mitm_mod
mitm_script
wipe_cookies

Updated list of targeted browsers:

iexplore.exe
firefox.exe
chrome.exe
opera.exe
browser.exe
dragon.exe
epic.exe
sbrender.exe
vivaldi.exe
maxthon.exe
ybrowser.exe
microsoftedgecp.exe

The main payload will download the Apache httpd.exe server file from one of the C&C servers to store it on disk for web injection purposes.
Compared to the previous version, the main payload also contains two strings which indicate some functionality for the Zend PHP Framework:

zend_stream_fixup
zend_compile_file

Function Hooking in Svchost

Like in the previous version, the malware hooks some API functions to redirect URLs, capture network traffic, the clipboard and to log
keystrokes. It uses a technique known as inline function hooking where the first 5 bytes of a function get patched with a jump to the malware's
hook handlers. The following functions get hooked:

https://www.fireeye.com/blog/threat-research/2015/10/shifu-malware-analyzed-behavior-capabilities-and.html
https://www.virusbulletin.com/virusbulletin/2015/11/shifu-rise-self-destructive-banking-trojan/

19/23

NtDeviceIoControlFile (ntdll.dll)
ZwDeviceIoControlFile (ntdll.dll)
GetClipboardData (user32.dll)
GetMessageA (user32.dll)
GetMessageW (user32.dll)
TranslateMessage (user32.dll)
GetAddrInfoExW (ws2_32.dll)
gethostbyname (ws2_32.dll)
getaddrinfo (ws2_32.dll)

Network Functionality

The main payload of Shifu uses .bit top-level domains which is a decentralized DNS system based on the Namecoin infrastructure. The
malware requests the IP addresses of the domains by subsequently contacting the following hardcoded Namecoin DNS servers:

92.222.80.28
78.138.97.93
77.66.108.93

The C&C domain names, the user-agent string and the URL parameters are encrypted with a modified RC4 encryption algorithm. Decrypted
strings:

klyatiemoskali.bit
slavaukraine.bit
Mozilla/5.0 (Windows; U; Windows NT 5.2 x64; en-US; rv:1.9a1) Gecko/20061007 Minefield/3.0a1
L9mS3THljZylEx46ymJ2eqIdsEguKC15KnyQdfx4RTcVu8gCT
https://www.bing.com
/english/imageupload.php
/english/userlogin.php
/english/userpanel.php
1brz

The encrypted strings are stored in the following format inside the .data section:

<LengthOfString><EncryptedString>

The domain string “klyatiemoskali“ means roughly translated to wish something bad to Muscovites. The second domain string “slavaukraine”
means translated “glory to the Ukraine”. The included RC4 key "L9mS3THljZylEx46ymJ2eqIdsEguKC15KnyQdfx4RTcVu8gCT" is used to
encrypt the network traffic.

At the time of analysis, only the following Namecoin DNS server was answering with the IP address of the actual C&C server:

77.66.108.93 (ns1.dk.dns.d0wn.biz)

20/23

Figure 5. Namecoin DNS server information of 77.66.108.93

The following screenshot shows the captured network traffic during the dynamic analysis of Shifu:

Figure 6. Shifu network traffic captured with Wireshark

We can see that Shifu subsequently queries the Namecoin DNS servers with the domain name klyatiemoskali.bit to get the IP address. After
one name server responds with the IP address of the C&C server, it does a TLS handshake to open an encrypted network channel. Finally, it
sends some encrypted data and gets an encrypted answer. However, no further network traffic could have been observed during the time of

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/01/Shifu_5.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/01/Shifu_6.png

21/23

the analysis. Both domain names, klyatiemoskali.bit and slavaukraine.bit, resolved to the IP address 103.199.16.106 at the time of analysis.

As the .bit top-level domain relies on the Namecoin cryptocurrency which is based on the Bitcoin system, every transaction can be traced
back. Thus, we can use a Namecoin block explorer to look when the .bit domains were registered and which IP addresses are connected to it.
For example, if we use the web service namecha.in, we can get the following information for klyatiemaskali.bit:

We can see the same information for slavaukraine.bit:

Both domains were registered on 2016-06-03 and only one IP address is assigned to them. This IP address coincides with the response of the
Namecoin DNS server we have seen in the captured network traffic. Moreover, we can see the domain seems to be still active.

URL Query String for C&C Server

The main payload contains a query string template used to send information of the victim to the C&C server:

botid=%s&ver=%s.%u&up=%u&os=%u<ime=%s%d&token=%d&cn=%s&av=%s&dmn=%s&mitm=%u

We can see that some information is dynamically retrieved (bot identifier, uptime, operating system version, local timestamp, token, anti-
virus software, domain name of workstation, man in the middle interception detected), while also static values like the bot version and the
campaign name are send. An example of the created query string could look as follows:

botid=26C47136!A5A4B18A!F2F924F2&ver=1.759&up=18294&os=6110<ime=-8&token=0&cn=1brz&av=&dmn=&mitm=0

We can see that the internal Shifu version is “1.759” and the campaign name is stated “1brz”.

If we compare Shifu's query string with the one of the latest Shiz version we have tracked which dates February 2014 (internal version 5.6.25),
we can see the similarity between those two malwares:

botid=%s&ver=5.6.25&up=%u&os=%03u<ime=%s%d&token=%d&cn=sochi&av=%s

Modified RC4 Encryption Algorithm

https://unit42.paloaltonetworks.com/wp-content/uploads/2017/01/Shifu_7.png
https://unit42.paloaltonetworks.com/wp-content/uploads/2017/01/Shifu_8.png

22/23

Shifu uses a modified version of the RC4 encryption algorithm. We have reconstructed the algorithm in Python and show how the domain
name "klyatiemoskali.bit" present in the main payload will be encrypted as an example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

import os
import binascii

###initial values##########
string = "klyatiemoskali.bit"
seed =
"fnbqooqdaixfueangywblgabirdgvkewdyqgfqaioluesyrpryfkjerfsouemaxnavrkguxmcmhckwprunurmhehclermtufwi
yjbqhwlunbunuumeowfjmerxppxrgaxukyx"
buffer = [0] * (len(string))
table_encr = [0] * 0x102
table_encr[0x100] = 1
table_encr[0x101] = 0
###########################

###string2buffer###########
i = 0
while (i<len(string)):
 char_1 = string[i]
 int_1 = ord (char_1)
 buffer[i] = int_1
 i += 1
###string2buffer###########

###encryption table########
i = 0
while (i < 0x100):
 table_encr[i] = 0x000000ff&i
 i += 1

i = 0
j = 0
while (i < 0x100):
 char_1 = seed[j]
 int_2 = ord (char_1)
 table_encr[i] ^= int_2
 i += 1
 j += 1
 if (j == len(seed)):
 j = 0
###########################

###encryption##############
size_1 = len(string)
i = 0
while (size_1 != 0):
 byte_buf = buffer[i]
 ind_1 = table_encr[0x100]
 ind_2 = table_encr[ind_1]
 ind_3 = 0x000000ff&(ind_2 + table_encr[0x101])
 ind_4 = 0x000000ff&(table_encr[ind_3])
 table_encr[ind_1] = ind_4
 table_encr[ind_3] = ind_2
 buffer[i] = 0x000000ff&(table_encr[0x000000ff&(ind_2 + ind_4)] ^ byte_buf)
 table_encr[0x100] = 0x000000ff&(ind_1 + 1)
 table_encr[0x101] = ind_3
 i += 1
 size_1 -= 1

i = 0
str_1 = ""
while (i < len(string)):
 str_1 = str_1 + chr(buffer[i])
 i += 1
###########################

###output##################
print ("Cleartext string: %s" % string)
print ("Encrypted: 0x%s" % binascii.hexlify(str_1))
###########################

Get updates from
Palo Alto
Networks!

23/23

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

