securitykitten.github.io/2016-12-14-mikey.md at master -

malware-kitten/securitykitten.github.io - GitHub

O github.com/malware-kitten/securitykitten.github.io/blob/master/_posts/2016-12-14-mikey.md

malware-kitten

malware-kitten/
securitykitten.github.io

Jekyll theme inspired by Swiss design

A0 ON¢ w0 F0 O

Contributors Issues Stars Forks

Cannot retrieve contributors at this time

layout title date
category-post MiKey - A Linux keylogger 2016-12-14 00:00:00 -0500

Summary:

Linux malware is slowly becoming more popular. Within the past couple
years there were several major incidents that cited the use of Windows
backdoors being ported to Linux. Through our research on the Windows
KLRD keylogger from the Odinaff report, we were able to discover several
new keyloggers. The focus of this blog post is MiKey, a little-known and
poorly detected keylogger.

1/8

https://github.com/malware-kitten/securitykitten.github.io/blob/master/_posts/2016-12-14-mikey.md

At the time of this writing, the malware wasn’t detected by a single engine
on Virustotal.

SHA256: 9c07ed0315b156495e1d3655521 5¢9e 7 4bb586ec45diiced2a8368490dadc829
File name: mikey

Detectionratio: 0/ 54

Analysis

The malware is a 64 bit Linux executable:

9c07ed03f5bf56495e1d365552f5c9e74bb586ec45dffced2a8368490da4c829: ELF
64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,
interpreter /1ib64/1d-1inux-x86-64.s0.2, for GNU/Linux 2.6.32,
BuildID[shal]=550c58e6a9bc88b8724fd8ab7fd79a6c58c12d28, not stripped

And depends on the following libraries:

linux-vdso.so.1 (0x00007ffd25123000)

1ibX11.s0.6 => /usr/1ib/x86_64-1inux-gnu/libX11.s0.6
(Ox00007f7f56420000)

libdl.s0.2 => /1ib/x86_64-1inux-gnu/libdl.so.2
(OX00007f7f5621c000)

libc.so.6 => /1ib/x86_64-1inux-gnu/libc.so0.6
(Ox00007f7f55e7e000)

libxcb.so.1 => /usr/1ib/x86_64-1inux-gnu/libxcb.so.1
(OX00007f7f55c56000)

/1ib64/1d-1inux-x86-64.50.2 (Ox00005597839c6000)

libXau.s0.6 => /usr/1ib/x86_64-1inux-gnu/libXau.so0.6
(Ox00007f7f55a52000)

libXdmcp.so0.6 => /usr/1ib/x86_64-1inux-gnu/libXdmcp.so0.6
(0x00007f7f5584a000)

Analyzing the symbol table for this binary yielded some interesting function
names. (Full output omitted for readability):

2/8

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey01.jpg

63: 00000000004014b2 79 FUNC GLOBAL DEFAULT 14
createProccess

64: 00000OOOO00400ed6 128 FUNC GLOBAL DEFAULT 14
initPlugins

67: 0000000000400f56 105 FUNC GLOBAL DEFAULT 14 moduleFeed

68: 000000000040102d 1157 FUNC GLOBAL DEFAULT 14 keylogger

75: 0000000000400dc6 159 FUNC GLOBAL DEFAULT 14 handleArgs

83: 000000OOO0400e65 113 FUNC GLOBAL DEFAULT 14
moduleHandleArgs

85: 00000000004015fcC 209 FUNC GLOBAL DEFAULT 14 addData

87: 0000000000400cd0O 42 FUNC GLOBAL DEFAULT 14 _start

88: 0000000000400 fbT 110 FUNC GLOBAL DEFAULT 14

addParentheses
92: 0000OOOOOO401501 126 FUNC GLOBAL DEFAULT 14 main
103: 000POONOOOOE400bOO O FUNC GLOBAL DEFAULT 11 _init

Comments left by the compiler provide evidence it was compiled on
Ubuntu 16.04.2:

9c07ed03f5bT56495e1d365552f5c9e74bb586ec45dffced2a8368490dad4c829:
file format elf64-x86-64

Contents of section .comment:

0000 4743433a 20285562 756e7475 20352e34 GCC: (Ubuntu 5.4
0010 2e302d36 7562756e 7475317e 31362e30 .0-6ubuntul~16.0
0020 342e3229 20352e34 2e302032 30313630 4.2) 5.4.0 20160
0030 36303900 609.

This is further evidenced by the build path in the binary:

/home/ubuntu/MiKey-64-ubuntu

The strace tool was used to quickly identify high-level function workflows
and identify potential focus areas. One anomaly identified was a failed file
opening, “mikey-text.so.” So we began there.

open("./tls/x86_64/mikey-text.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT
(No such file or directory)

open("./tls/mikey-text.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such
file or directory)

open("./x86_64/mikey-text.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No
such file or directory)

open("./mikey-text.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file
or directory)

The malware isn’t explicitly searching these directories for mikey-text.so.
This is a side effect of dlopen. From the man page:

3/8

“If, at the time that the program was started, the environment
variable LD_LIBRARY_PATH was defined to contain a colon-separated
list of directories, then these are searched. (As a security measure
this variable is ignored for set-user-ID and set-group-ID programs.)”

After a little searching we located a second binary (SHA-256

bc6d25dff00dfb68b19b362¢409d2cf497e5dd97d9d6e5ce2bde2ba706f2bdb3)

which contained the string “mikey-text.c.” From this, we assessed that
mickey-text.so is the compiled version of this binary.

Using this assertion, we renamed the second binary to mikey-text.so and
placed it in the load path identified using strace. This caused the
successful execution of the malware. The output file (out.log) contained
the logged keystrokes with associated timestamps.

[2016-12-13 14:14:29]
[2016-12-13 14:14:35] (Enter)
[2016-12-13 14:14:49] hello (space) from (space) a (space) keylogger

Through static analysis, we were able to identify that when the keylogger
starts up, it loaded plugins, handle arguments, and then forked its process.

When loading the plugins, the keylogger looked for a single hardcoded
plugin name “mikey-text.so” and called dlopen to obtain a handle to it.

nop

loc 400EEC: add rsp, 28h
mav eax, [rbp+1] pop rbx

cdge pop rbp

lea rdx, ds:0[rax=s] retn

mav rax, [rbp+hdlarr] initPlugins endp
lea rbx, [rdx+rax]

mov eax, [rbp+1]

cdge

mov rax, plugins(rax*g]

mov e:L, 2 ; made

may rei, rax ublic plugins
call dlopen ; const char *plEginsil? >
may rbx], rax plugins dg offset aMikeyText_so ; DATZ
moy eax, [rbp+1] “data ends .
cdge

lea rdx, ds:o[rax+g]

mav rax, [rbpthdlarr]

add rax, rdx

mov rax, [rax]

test rax, rax

jnz shoert loc_400F44

Once everything was loaded, the main functionality of the program was
handled through the “keylogger” function.

To better understand Linux keyloggers and associated function calls, basic
X function knowledge is critical. As a quick primer, here are some routines
used by the “keylogger” function to query information about keystrokes or
simply harvest raw keystroke data.

4/8

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey02.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey03.jpg

Function

XOpenDisplay

Purpose

Returns a display structure that serves as the
connection to the X server. Communication is
then carried out through TCP or IPC.

XQueryKeymap

Uses the structure from the display to gather
information about the state of the keyboard.
Information about which keys are currently
pressed can be gathered using this call.

XkbKeycodeToKeysym

Uses the structure from the display to return
the keysym for a particular key.

XKeysymToString

Converts the previously obtained keysym.

XGetlnputFocus

Controls focus on the desktop.

Once the keycode is retrieved, it's compared against a large switch table to
convert each keycode into a string. This is no different than most
keyloggers.

= |

Non-printable keystrokes are then identified and substituted with human-
readable outputs.

3 pumptatle GOOOOOCOOMMDTHA Cabe 70 |.-.< s 2 pamptable CODMOOONCHCN 68 cabe & |Lee 4018
ma1eEErarg],. o Ieat Ladriaiy [rbged spbarditatodtrungle 4Pl mghtiPalt f

If there is a non-printable character returned, a small method to format the
string in parentheses is called to make for nice output into the log.

mov rcy, rax
mov edx, offset format ; " (%s)
mow esi, O ; maxlen

mowv edi, O i g

mov eax, O

call _snprintf

add eax, 1

Once completed, the data is stored into a buffer and passed to a loadable
module. The Linux dlsym method provides similar functionality as
“LoadLibrary” on Windows. The previous handle from dlopen is being

5/8

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey04.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey05.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey06.jpg

passed to dlsym, which we can now use to call the method “getFeed” from

mikey-text.so.

mov
cdqge
lea
mov
add
mov
mov
mov
call
mov
call
mov
mov
mov
mov
mov

call
add

eax, [rbp+i]

rdx, ds:0[rax*s8]

rax, [rbp+hdlarr]

rax, rdx

rax, [rax]

es1, offset aGetfeed ; "getFeed"
rdi, rax : handle
_dlsym

[rbp+func], rax

_dlerror

[rbp+result], rax

rax, [rbp+b]

rdx, [rbp+func]

rdi, rax

eax, O

rdx

[rbp+1], 1

Peering into the “getFeed” function on mikey-text.so it simply calls the _log

function.

push
mov
sub
mov
mov
mov
lea
mov
call
nop
leave
retn

rbp
rbp, rsp
rsp, 10h

[rbp+b], rd1

rax, [rbp+b]

rsi, rax

rdi, aS LI A, L
eax, O

_log

6/8

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey07.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey08.jpg

The _log function will call _time and _localtime (to harvest the timestamps)
and build these into a format string.

push
mov
mov
lea
moy
mowv
call

rdx

ecx, edi

edx, esi

rsi1, format ; " [%04d- %!
rdi, rax 28

eax, 0O

*sprintf

At this point, the output file is opened for writing with the appended (“a+”)
flag and the file is written to using the _fputs method. If no option for --
output was provided to mikey-text.so then the default name of “out.log” is
provided. The screenshot below identifies the contents of cs:outputfile_ptr
as a pointer to the name of the output file.

mov
mov
lea
mov
call
mov
cmp
]z
mov
lea
mov
mov
call
mov
mov

call

rax, cs:outputfile ptr
rax, [rax]

rsi, modes ; "at"

rdi, rax ; filename

_fopen

[rbp+file], rax
[rbp+fi1le], ©

short loc_CO3

rdx, [rbp+file]

rax, [rbp+logbuf]

rsi, rdx ; stream
rdi, rax ; S
_fputs

rax, [rbp+file]

rdi, rax ; stream
_fclose

Outside of a small method to parse arguments, there isn’t much more
functionality to mikey-text.so. It's a simple logging plugin for the main
MiKey keylogger. Booz Allen assesses that additional plugins may exist
(for C2 communication, or to hook to other files), but is unable to confirm at

this time.

7/8

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey09.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey10.jpg

To run the keylogger and give a custom argument for an output file named
keylogged.txt, the following command can be used. In addition, providing
the “-b” option will “background” the process.

-b --output keylogged.txt

Checking processes on the host, the command “ps aux” was issued.

And checking the output of the keylogged file:

open = | s
|[2I316-12-13 15:29:47]
[26816-12-13 15:29:53] (Enter)
[2016-12-13 15:30:04] ps (space) aux
[2016-12-13 15:30:20] (unknown)
[2016-12-13 15:31:13] (Enter)

Conclusion

Small utilities that are built for a specific purpose often bypass AV with
ease. Attackers are able to write a functional keylogger that will dump the
contents to a local file. By having modular code, the authors could build
plugins that achieve whatever task they need. The plugin nature of this
code also puts the reverse engineer at a disadvantage. Without access to
each module, only specific known functions of the tool can be
documented.

One unnerving aspect of this keylogger is that, without an active command
and control capability, the attacker would need to be confident in their
ability to repeatedly gain remote access to the victim computer to retrieve
the keylogged information.

All it takes to catch this is basic process and file monitoring, but if our Linux
field experience is any indicator, there aren’t many shops with this level of
visibility on non-Windows workstations.

8/8

https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey11.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey12.jpg
https://github.com/malware-kitten/securitykitten.github.io/blob/master/images/mikey13.jpg

