
1/27

November 17, 2016

It’s Parliamentary KeyBoy and the targeting of the Tibetan
Community

citizenlab.ca/2016/11/parliament-keyboy/

Research

https://citizenlab.ca/2016/11/parliament-keyboy/
https://citizenlab.ca/category/research/

2/27

Targeted Threats
By Adam Hulcoop, Matt Brooks, Etienne Maynier, John Scott-Railton, and Masashi Crete-Nishihata
November 17, 2016
Download this report

Key Findings

In this report we track a malware operation targeting members of the Tibetan Parliament over
August and October 2016.
The operation uses known and patched exploits to deliver a custom backdoor known as KeyBoy.
We analyze multiple versions of KeyBoy revealing a development cycle focused on avoiding basic
antivirus detection.
This operation is another example of a threat actor using “just enough” technical sophistication to
exploit a target.

Introduction

The Tibetan community has been targeted for over a decade by espionage operations that use malware
to infiltrate communications and gather information. They are often targeted simultaneously with other
ethnic minorities and religious groups in China. Examples as early as 2008 document malware
operations against Tibetan non-governmental organizations (NGOs) that also targeted Falun Gong and
Uyghur groups. More recently in 2016, Arbor Networks reported on connected malware operations
continuing to target these same groups, which the Communist Party of China perceives as a threat to its
power.

These types of operations have multiple components, each with their own associated costs to the
operator. There is the exploit code and malware used to gain access to systems, the infrastructure that
provides command and control to the malware operator, and the human elements – developers who
create the malware, operators who deploy it, and analysts who extract value from the stolen information.

We anticipate that operators will attempt to balance the amount of information they expect to gather with
the operational costs and risks of deploying different strategies and technologies. For example, in
deploying a particular malware implant against a target the operator will balance the likelihood and cost

https://citizenlab.ca/category/research/targeted-threats/
https://citizenlab.ca/author/adam-hulcoop/
https://citizenlab.ca/author/mattbrooks/
https://citizenlab.ca/author/etiennemaynier/
https://citizenlab.ca/author/jsrailton/
https://citizenlab.ca/author/masashi/
https://tspace.library.utoronto.ca/bitstream/1807/96989/1/Report%2383--keyboy.pdf
https://isc.sans.edu/diary/Overview+of+cyber+attacks+against+Tibetan+communities/4177
https://www.arbornetworks.com/blog/asert/wp-content/uploads/2016/04/ASERT-Threat-Intelligence-Report-2016-03-The-Four-Element-Sword-Engagement.pdf

3/27

of discovery with the perceived value of extracting information from that target. If a toolkit is exposed
inadvertently, the target may increase defenses and the operator will have to spend more time and
resources on development.

Civil society groups, due to their generally limited technical capacity and lack of security expertise and
countermeasures, shift the risk/reward ratio in ways favourable to the malware operator. For example,
we have observed frequent reuse of older (patched) exploits in malware operations against the Tibetan
community. Up-to-date operating systems and software would block these threats, but the operators
have probably discovered through experience that the their targets have unpatched systems and a
general lack of security controls beyond antivirus programs. The continued use of old exploits is a cost
reduction strategy: since they still work, there is little need to use more expensive exploits.

Moreover, many of the malware defenses used by the Tibetan diaspora involve individuals recognizing
signs of a malicious email, such as exhortations to open attachments. This kind of behavioral strategy
pushes the operators to change their social engineering tactics, but does not provide pressure to
radically change their toolkits. This situation is different from a technical-indicator based institutional
security environment. In practice, minimal code changes sufficient to bypass signature-based security
controls such as antivirus may be all that are necessary.

This report analyzes an operation targeting members of the Tibetan Parliament. The actors used a new
version of “KeyBoy,” a custom backdoor first disclosed by researchers at Rapid7 in June 2013. Their
work outlined the capabilities of the backdoor, and exposed the protocols and algorithms used to hide
the network communication and configuration data.

We observed operations in August and October 2016, shortly after an order in June to demolish the
Larung Gar Buddhist Academy and days before organized protests on October 19 around the same
issue. These operations involved highly targeted email lures with repurposed content and attachments
that contained an updated version of KeyBoy. We assess that KeyBoy is the product of a development
cycle that is iterated only as much as necessary to ensure the survival of the implant against antivirus
detection and basic security controls.

This report is divided into two parts:

Part 1: The Parliamentarian Operation Analyzes an operation targeting the members of the Tibetan
Parliament by repurposing legitimate content, and documents implanted with Keyboy.

Part 2: KeyBoy – Tracking Evolution Examines the KeyBoy development cycle revealing a focus on
avoiding basic antivirus detection.

To assist other researchers, we include appendices and indicators of compromise that detail the KeyBoy
samples we analyzed and provide an in-depth analysis of some features of the most recent implant.

Part 1: The Parliamentarian Operation

In August and October 2016 we observed a malware operation targeting members of the Tibetan
Parliament (the highest legislative organ of the Tibetan government in exile, formally known as Central
Tibetan Administration). We collected two emails sent to Parliamentarians that rapidly repurposed
legitimate content in an attempt to entice recipients to open malicious documents. The first attempt
leveraged an old vulnerability in the parsing of Rich-text-format (.rtf) files (CVE-2012-0158). The

https://citizenlab.ca/2016/03/shifting-tactics/
https://community.rapid7.com/community/infosec/blog/2013/06/07/keyboy-targeted-attacks-against-vietnam-and-india
https://en.wikipedia.org/wiki/Larung_Gar_Buddhist_Academy
https://www.facebook.com/events/190950044675347/
http://tibetanparliament.org/
http://tibet.net/
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-0158

4/27

second attempt used a newer, but also patched, .rtf vulnerability (CVE-2015-1641). Both attempts
used versions of KeyBoy and shared the same command and control infrastructure as well as other
configuration details.

Attempt 1

On August 25, 2016, members of the Tibetan Parliament received an email with information on an
upcoming conference relevant to the Tibetan community. This email had the same subject and
attachment as a legitimate message sent to the same recipients just 15 hours prior, but in this case the
attachment was crafted to exploit a frequently targeted vulnerability in Microsoft Office. The
accompanying malware was a backdoor implant designed to surveil the computers of the
Parliamentarians. This malicious attachment used the original, legitimate filename as a decoy (see:
Figure 1).

Figure 1: Email lure containing malicious document. Note the use of letters ‘r n’ in an attempt to appear
as ‘m’ in the sender address.
This level of targeting and re-use of a legitimate document sent only hours before shows that the actors
behind the operation are closely watching the Tibetan community, and may have already compromised
the communications of one or more of the Parliamentarians.

Document name: theme of the conference.doc
 MD5: 8307e444cad98b1b59568ad2eba5f201

Opening the attachment (an apparently blank document) in Microsoft Word would result in the infection
of the target system with the KeyBoy implant.

The Infection Chain

The email attachment is a .rtf document containing a dropper, delivered using an exploit designed to
leverage CVE-2012-0158, a vulnerability in the way that Microsoft Word handles .rtf files. Over the
past four years, this vulnerability has been consistently used in malware campaigns against the Tibetan
community despite having been patched since April 2012.

If the exploit is successful, the following infection chain (see: Figure 2) is observed on the system.

https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1641
https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure1.png&nocache=1
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158
https://targetedthreats.net/

5/27

Figure 2: Process chain after exploit is successful
The files in this infection chain are outlined below. The exploit launches an executable ‘dropper’
component which is responsible for placing the malware payload and its configuration file on disk, and
finally for launching the main malware code.

Note that the dropper and the final (DLL) payload were compiled within seconds of each other.

Name: dw20.exe
Size: 256512 bytes
Compile Time: 09 May 2016 08:41:26 UTC
MD5: 0b4d45db323f68b465ae052d3a872068
SHA256: 5f24a5ee9ecfd4a8e5f967ffcf24580a83942cd7b09d310b9525962ed2614a49
Purpose: dropper binary, used to install and execute the main implant

Name: wab32res.exe
Size: 46080 bytes
Compile Time: 13 April 2008 18:30:52 UTC
MD5: 8f08609e4e0b3d26814b3073a42df415
SHA256: 58105e9772f6befbc319c147a97faded4fbacf839947b34fe3695ae72771da5d
Purpose: legitimate Microsoft Windows Address Book executable, used to load final payload

Name: wab32res.dll
Size: 138240 bytes
Compile Time: 09 May 2016 08:41:05 UTC
MD5: 495adb1b9777002ecfe22aaf52fcee93
SHA256: 9a55577d357922711ab0821bf5379289293c8517ae1d94d48c389f306af57a04
Purpose: malware payload, launched by wab32res.exe via DLL search order hijacking

Next, the dropper places a renamed copy of the legitimate Windows Address Book executable, along
with the malware binary, wab32res.dll , in the Local Application Data directory. Notably, the dropper
modifies the timestamps of the configuration file and the payload to match those of the
\Microsoft\SystemCertificates\My\ directory within the user’s Local Application Data directory.

Once these files are written to disk, the dropper starts the Windows Address Book executable which
loads and executes the malicious wab32res.dll file via DLL search-order hijacking.

Attempt 2

On October 11, 2016, the Tibetan Parliamentarians received an email with content repurposed from a
Tibetan activism campaign protesting the demolition of a Buddhist monastery in Tibet. The email was
sent from the same email address as the previous attempt (tibetanparliarnent[@]yahoo.com) and

https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure_2_parliament.jpeg&nocache=1
https://www.fireeye.com/blog/threat-research/2010/07/malware-persistence-windows-registry.html

6/27

appears to copy content from the Facebook page of a Tibetan NGO promoting the campaign. The
message urges recipients to open an attached .rtf file with further details on the campaign (see:
Figure 3).

Figure 3: Email lure used in second attempt
Document name: urgent action larung gar buddhist academy.rtf

 MD5: 913b82ff8f090670fc6387e3a7bea12d

Opening the attachment (an apparently blank document) in Microsoft Word would, similar to the first
attempt, result in the infection of the target system with the KeyBoy implant.

The Infection Chain

The .rtf document attached to the malicious email was designed to exploit a more recent
vulnerability: CVE-2015-1641. If successful, this exploit launches a newer version of the same malware
used in the August attempt outlined above, using a similar infection chain.

Name: n/a
 Size: 262144 bytes

 Compile Time: 29 September 2016 00:46:11 UTC
 MD5: 23d284245e53ae4fe05c517d807ffccf

 SHA256: 542c85fda8df8510c1b66a122e459aac8c0919f1fe9fa2c43fd87899cffa05bf
 Purpose:dropper binary, used to install and execute the main implant

Name: wab32res.exe
 Size: 46080 bytes

 Compile Time: 13 April 2008 18:30:52 UTC
 MD5: 8f08609e4e0b3d26814b3073a42df415

 SHA256: 58105e9772f6befbc319c147a97faded4fbacf839947b34fe3695ae72771da5d
 Purpose:legitimate Microsoft Windows Address Book executable, used to load final payload

Name: wab32res.dll
 Size: 143872 bytes

 Compile Time: 29 September 2016 00:21:34 UTC

https://www.facebook.com/events/190950044675347/
https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure_3_parliament.png&nocache=1
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1641

7/27

MD5: 087bffa8a570079948310dc9731c5709
SHA256: 5da2f14c382d7cac8dfa6c86e528a646a81f0b40cfee9611c8cfb4b5d589aa88
Purpose:malware payload, launched by wab32res.exe via DLL search order hijacking

As with the first attempt, the resulting dropper installs the malware payload into the Local
Application Data directory as wab32res.dll and subsequently launches it using the same method
of DLL search-order hijacking against the legitimate Windows Address Book executable.

A Note on Vulnerabilities

The two .rtf vulnerabilities targeted in these exploitation attempts, CVE-2012-0158 and CVE-2015-
1641, are among a set of four .rtf vulnerabilities discussed in recent reporting from researchers at
Arbor Networks.

The researchers describe the presumed existence of an exploit document ‘builder’ designed to
selectively weaponize .rtf files using four older, patched, vulnerabilities: CVE-2012-0158, CVE-2012-
1856, CVE-2015-1641, and CVE-2015-1770.

The Arbor report describes the ongoing use of these four vulnerabilities in a series of espionage
campaigns against not only Tibetan groups, but also others related to Hong Kong, Taiwan, and Uyghur
interests. While we have not connected the campaign targeting the Tibetan Parliamentarians to the
campaigns described by Arbor, the continual pairing of these older .rtf vulnerabilities with malware
operations against the Tibetan community is noteworthy.

The Malware

The malware samples deployed in both of these operations are updated versions of the KeyBoy
backdoor first discussed in 2013 by Rapid7. KeyBoy provides basic backdoor functionality, allowing the
operators to select from various capabilities used to surveil and steal information from the victim
machine.

KeyBoy functionality:

Gather system information, including details of the operating system, processor, disk, memory,
display, and uptime (see: Figure 4)
Upload files to the victim computer
Download files from the victim computer
Browse the file system, including gathering details about attached drives
Execute commands and applications
Launch interactive shell

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-0158
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1641
https://www.arbornetworks.com/blog/asert/wp-content/uploads/2016/04/ASERT-Threat-Intelligence-Report-2016-03-The-Four-Element-Sword-Engagement.pdf
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-0158
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-1856
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1641
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-1770
https://community.rapid7.com/community/infosec/blog/2013/06/07/keyboy-targeted-attacks-against-vietnam-and-india

8/27

Figure 4: Format strings illustrating some of the system information obtained by KeyBoy from an
infected machine
These updated versions of KeyBoy make use of an encoded configuration file to store their command
and control (C2) information along with other required settings. In both cases, the dropper wrote this
configuration file in the user’s Local Application Data directory as win32res.dat . After analyzing these
malware samples, we were able to decode the following configuration parameters, presented in Table 1

Line Description First sample
Second
sample

Line
1

Identity code, used to ensure config was correctly
decoded

9876543210 9876543210

Line
2

C2 Server #1 (hostname/ip) 45.125.12[.]147 45.125.12[.]147

Line
3

C2 Server #2 (hostname/ip) 103.40.102[.]233 45.125.12[.]147

Line
4

C2 Server #3 (hostname/ip) 45.125.12[.]147 45.125.12[.]147

Line
5

Port used with C2 Server #1 443 443

Line
6

Port used with C2 Server #2 443 443

Line
7

Port used with C2 Server #3 443 443

Line
8

Password for operator login tibetwoman tibetwoman

Line
9

Campaign ID, transmitted to C2 during login NNNN NNNN

https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure-4_parliament.png&nocache=1

9/27

Table 1: Decoded configuration parameters from both KeyBoy samples observed in the Parliamentarian
operation

A full description of the new algorithm used by KeyBoy to decode its configuration file is presented in
Appendix A.

Once the KeyBoy DLL has been executed, it validates that a particular string value (likely identifying the
KeyBoy version) is set in the Windows Registry.

Key
First
sample

Second
sample

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Zonemap\Ver

20160509 agewkassif

Additionally, these versions of KeyBoy ensure persistence by setting the wab32res.exe file to be
loaded upon login via exploiting the Winlogon Shell key, which in turn loads the malicious
wab32res.dll file by the aforementioned DLL search-order hijacking method.

Key Value

HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\Shell

explorer.exe, “C:\users\
<user>\AppData\Local\wab32res.exe”

The backdoor then sends a login beacon to the C2 server which, once decoded, looks like:

a
USER-PC
192.168.100.101
NNNN
2016/09/13 16:11:56
20160509

These values are described as follows in Table 2:

Value from Example Description

a Data header code for initial check-in beacon

USER-PC %computername% of victim PC

192.168.100.101 IP address of victim PC

NNNN Campaign ID from the KeyBoy configuration file

2016/09/13 16:11:56 Timestamp of local PC

20160509 Internal version identifier

Table 2: Descriptions of the login beacon values

10/27

This login data, as well as all other communication between backdoor and command and control server,
is transmitted using an encoding mechanism based on principles from modular arithmetic. We describe
this network communication encoding in detail in this supplementary document.

As can be seen in the login event example above, when sending data to the C2, the KeyBoy implant
uses a series of header ‘codes’ to specify the type of data which is being transmitted, described in Table
3:

Header code Data being transmitted

l Heartbeat / Keepalive

a Initial check-in beacon

s System information (drive info, system specifications, interface info)

d Data from remote commands and shell

f Data relating to interactions via File Manager

g Ready to initiate file download

h Ready to initiate file upload or update

Table 3: KeyBoy header codes for sending data to the C2 server

The Infrastructure

The command and control (C2) servers used in the Tibetan Parliament operation were extracted from
the KeyBoy configuration files:

C2 Host: 45.125.12[.]147 Desc: Royal Network
Technology Co

City:
Guangzhou

Country:
China

No relevant data or passive DNS
information was available

C2 Host: 103.40.102[.]233 Desc: Dragon Network
Int’l Co. Ltd

City: Hong
Kong

Country: Hong
Kong

https://citizenlab.ca/wp-content/uploads/2016/11/keyboy-network-comm.pdf

11/27

Domain: tibetvoices[.]com

Host First
Seen:

Last Seen:

127.0.0.1 2016-
09-29

Current as of
publication

103.40.102[.]233 2016-
07-15

2016-09-28

112.10.117[.]47 2016-
05-25

2016-05-26

We uncovered very little information about the command and control (C2) infrastructure used in this
operation. The configuration files referenced hard-coded IP addresses for the C2 servers, as opposed to
using domain names as was seen in prior KeyBoy campaigns.

Passive DNS analysis revealed one domain, tibetvoices[.]com , which was briefly pointed to one of
the C2 server IP addresses found in the KeyBoy configuration file used in the first attempt against the
Parliamentarians. This domain was created in May 2016 (around the time that the KeyBoy sample used
in the first attempt was compiled) and was pointed to IP address 103.40.102[.]233 from July 15 to
September 28. Subsequently, this domain was pointed to 127.0.0.1 , effectively taking it offline.

This behavioural tactic was previously mentioned in relation to KeyBoy in a 2013 blog post by Cisco.
Cisco hypothesized that the actors behind KeyBoy may have been nullifying the DNS records when an
active campaign was not underway, in an attempt to stay “below the radar”. This tactic allows the
malware operator to ensure that no command and control traffic will be sent out from the infected
system, thus preventing detection via network monitoring.

This tactic, however plausible, would not apply to the KeyBoy samples we analyzed, as the C2
configuration relied upon hard coded IP addresses and did not directly reference the
tibetvoices[.]com domain. It is possible that a different campaign was launched which used this

domain, but we were unable to find any evidence of such a campaign.

Our analysis provides a cursory look at some of the capabilities and implementation details of the
KeyBoy backdoor as used during a malware operation targeting Tibetan Parliamentarians. These
versions of KeyBoy differed from the one first described by Rapid7 in several ways, many of which will
be described in the sections to follow.

During our research into this operation we were able to uncover two additional samples of KeyBoy
which were likely used in previous malware campaigns. These samples were contained in exploit
documents containing distinct lure content, one having a Tibetan nexus, the other an Indian nexus.

In Part 2 we present a brief overview of the observable evolution of KeyBoy based upon all of the
samples we obtained.

Part 2: KeyBoy – Tracking Evolution

http://blogs.cisco.com/security/scope-of-keyboy-targeted-malware-attacks

12/27

Periodic updates are common in the world of software development. Features are added and removed,
bugs are patched, and code is written to execute more efficiently. The same holds true for malicious
software, but with the additional requirement that the development cycle must always satisfy the
operational need for covertness. To be effective, malicious software designed for surveillance must
remain undetected. Malware developers are in a constant struggle to avoid the security controls that
protect target systems.

We believe the 2013, 2015, and 2016 KeyBoy samples provide evidence of a development effort
focused on changing components that would be used by researchers to develop detection signatures.
This section outlines how we came to this conclusion.

In building our KeyBoy chronology, we collected several samples and examined three data points from
each:

The compile time of the KeyBoy binary
A string observed in the KeyBoy binary we refer to as the ‘version identifier’
Elapsed time between compile time and the time of first exposure

Analysis of these data points gave us a moderate to high level of confidence that the binary compile
times provided a reliable estimate of the true development timeline.

An Evolving Implant

In an effort to understand its evolution, we compared the code of several versions of KeyBoy as
identified by their ‘version identifier’ strings, shown in Table 4:

Version Identifier Notes

Proxy 20130401 Reported by Rapid7 in relation to an Indian nexus

Proxy 20130401 Reported by Rapid7 in relation to a Vietnamese nexus

P_20150313 Discovered via hunting; carried Indian lure content

20151108 Discovered via hunting; carried Tibetan lure content

20160509 First sample of the Parliamentarian operation from August 2016

20160509 An alternate sample, using different configuration data

agewkassif Second sample of the Parliamentarian operation from October 2016

Table 4: Version identifier strings analyzed

The ‘version identifier’ is a particular string that appeared in every KeyBoy sample we studied. It is
transmitted to the command and control server as part of the login data packet, and, in recent versions,
this identifier is written to the Windows registry in a key named ‘Ver’. With the exception of the newest
(chronologically speaking) KeyBoy version we discovered, this identifier always contained a date-like
component which matched the compile date of the KeyBoy binary in every case. In the newest sample,
the developers replaced this date-like string with a seemingly random set of letters.

13/27

A timeline depicting these KeyBoy versions, along with some important characteristics, is shown in
Figure 5.

Figure 5: The timeline of KeyBoy’s evolution

Noteworthy Modifications

This section describes some of the most significant changes observed across the KeyBoy versions.
Each of these components would have been an ideal target for signature-based identification, using
either static string or network packet-based detection mechanisms.

Header Code Evolution

Of the changes we identified one stands out as being an immediate target for an effective antivirus
signature – the evolution of header codes used during communication between the implant and
command and control server. As shown in Table 5, these codes changed substantially after the 2013
KeyBoy samples were examined and publically documented by Rapid7. It is reasonable to hypothesize
that this significant change in format was in response to the publication of Rapid7’s research.

2013 Early 2015 Late 2015 2016

$login$ #l# *a* *l*

$sysinfo$ #s# *s* *a*

$shell$ #e# *d* *s*

$fileManager$ #f# *f* *d*

$fileDownload$ #D# *g* *f*

$fileUpload$ #U# *h* *g*

https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure_5_parliament.png&nocache=1

14/27

2013 Early 2015 Late 2015 2016

h

Table 5: Header codes used by KeyBoy during C2 communication

In addition, modifying these codes produced a downstream change in the appearance of the network
communication traffic produced by an active KeyBoy infection. This change would likely have rendered
existing network based signatures ineffective.

Configuration File Changes

Another major change we first observed in version P_20150313 is the complete redesign of the
algorithm used to encode the KeyBoy configuration file. In the 2013 samples described by Rapid7, this
configuration file was encoded using a simplified static-key based algorithm. This newer encoding
algorithm is significantly more involved, removing the use of a static encryption key in favour of a
dynamically constructed lookup table. We provide a detailed explanation of this new algorithm in
Appendix A.

Persistence Changes

The method used by the implant for maintaining persistence was also changed several times. The
earlier versions used a Windows service to ensure the malware stayed persistent, moving to a more
commonly seen tactic of setting the Run key in the Windows registry in the early 2015 sample. This
method changed again in late 2015 when the implant migrated from the Run key to using a less
frequently observed registry key: Winlogon\Shell . This key stores the list of executables which are to
be run once a Windows GUI session is created, and typically holds only the standard user shell,
explorer.exe .

String Obfuscation

In another modification, first observed in the most recent October 11 Parliamentarian operation (version
agewkassif), the developer(s) of KeyBoy began using a string obfuscation routine in order to hide

many of the critical values referenced within the malware. This introduction of string obfuscation also
suggests a development change aimed at evading detection. The header codes, filename references,
and all of the operator commands were obfuscated and only decoded during execution of the KeyBoy
DLL. Figure 6 shows a sampling of these strings, after decoding.

15/27

Figure 6: Header code and command strings after being decoded at run-time

Evidence of Modularity

Finally, there were numerous changes observed that could suggest that KeyBoy was being deployed
using a modular or component based mechanism. The GetUp export which is linked to the browser
credential theft capability seems to be present in some samples and not others, even for versions within
the same development stage. As well, the inconsistent use of a dropper binary during infection is further
evidence supporting the modular component theory.

Additional Details

Beyond the main modifications outlined above, numerous smaller changes were also observed, many of
which are described in Table 6 below.

Version
Identifier Key Changes

Proxy
20130401

Persistence handled via Windows service
One sample contained the ‘GetUP’ export, the other did not
Used full word header codes encapsulated by $ symbols, such as $login$

P_20150313 Adopts new algorithm for config file encoding
Retained browser credential theft module
Moved to persistence via Run key
Header codes shift to #-encapsulation
Deployed without use of dropper binary

https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure_6_parliament.png&nocache=1

16/27

Version
Identifier Key Changes

20151108 Continues use of new config encoding algorithm
Migrated to use of WinLogon key for persistence
Installation now conducted via VBS scripts
Adopted multi-byte strings internally and in C2 communication
Header codes move to *-encapsulation
64 bit version distributed inside 32 bit payload
No evidence of browser credential module
Deployed using dropper binary

20160509 Continues use of new config encoding algorithm
Added AutoUpdate/Upload & Execute function
Deployed using dropper binary
Header codes retain *-encapsulation, new ‘keep-alive’ code, *l*
Execution via DLL search-order hijacking of legitimate Windows application
VBS script traces still present, but no longer used
No 64bit version embedded

agewkassif Functionally identical to 20160509 sample
Continues use of new config encoding algorithm
Removed date string from version identifier
Added static string obfuscation code. Strings used for C2 commands, header
codes, and more are now decoded at runtime

Table 6: Changes observed between successive versions of KeyBoy

Additional technical details relating to several of the KeyBoy samples described in this section are
provided in Appendix B.

Connecting KeyBoy to Other Operations

In their Operation Tropic Trooper report, Trend Micro documented the behaviour and functionality of an
espionage toolkit with several design similarities to those observed in the various components of
KeyBoy. Trend Micro specifically noted that the 2013 versions of KeyBoy used the same algorithm for
encoding their configuration files as was observed in the Operation Tropic Trooper malware.

This connection may offer another explanation for the significant change in the configuration file
encoding algorithm we described in relation to KeyBoy. If KeyBoy is a single component of a larger
espionage toolkit, the developers may have realized that this older, static-key based, configuration
encoding algorithm was inadvertently providing a link between disparate components of their malware
suite.

A Note on Samples

We were not able to locate a large sample set for KeyBoy. Though we discussed the development
timeline, we have limited insight into the victims targeted by each of these samples. We cannot conclude
that all are being deployed by the same group. We provide YARA signatures and encourage anyone
who can provide additional samples or context to contact us.

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-operation-tropic-trooper.pdf
https://github.com/citizenlab/malware-indicators/blob/master/201611_KeyBoy/keyboy.yar

17/27

Recent Tibetan Protests

The harm of malware operations against the Tibetan community is well-documented, and this latest
campaign is no exception. Examining the lure content sent to the Tibetan Parliamentarians sheds light
on the oppression faced by the Tibetan community. On October 19, over 180 Tibetan groups protested
the ongoing demolitions of the Larung Gar Buddhist Academy, the largest Tibetan Buddhist institute in
the world.

The demolitions stem from an order issued by Chinese authorities in June 2016, according to a joint
statement issued by Tibet groups on the date of protest. According to the same joint statement, the
order from Chinese authorities said the community was in need of “ideological guidance” from the
Chinese state. In conjunction with the demolitions, residents are being forcefully removed from Larung
Gar. To date, the forced removals have led to to the suicide of three resident nuns.

The Communist Party of China views the Tibetan movement as a threat to its rule, alongside Uyghur,
Falun Gong, advocates for an independent Taiwan and Hong Kong, and members of the democracy
movement. Surveilling the highest governing body of the Central Tibetan Administration aligns with the
overall interests of the government of China. However, connecting the malware development ecosystem
and the flow of stolen information to a state-actor is an elusive task. With the data available we are
unable to conclusively connect the Parliamentarian Operation to any specific actor or nation-state.

Conclusions

Recent Citizen Lab reports have documented a trend away from the use of attachment-based malware
operations targeting the Tibetan Diaspora. These changes may reflect malware operators shifting tactics
in response to changes in the community, including education campaigns encouraging Tibetans not to
use email attachments, or perhaps also by more sophisticated attachment scanning by popular email
providers.

The operation against the Tibetan Parliamentarians illustrates the continued use of malicious
attachments in the form of documents bearing exploits. These exploits, while older, were used to deliver
a malware payload which shows signs of a systematic technical adaptation designed to reduce the
likelihood of signature based detection.

The developers of KeyBoy have made the minimum necessary technical changes required to avoid
detection by signature-based antivirus, and yet retained “old” exploits because they likely continue to
work their targets.

For a community lacking an adequate level of human and financial resources, deployment of
commercial (i.e.: non-free) antivirus solutions, updated releases of common office productivity software,
and even software patches may be out of reach. Under such conditions, the use of exploits against
older, patched, vulnerabilities becomes yet another iteration of an actor using “just enough”
sophistication to successfully exploit a target.

The operation against the Parliamentarians yields a clear example of this tactic. When the August
operation failed to fully compromise the target group, the operators redeployed in October using a
slightly newer, but still well-known and patched, exploit.

https://targetedthreats.net/
https://freetibet.org/news-media/na/over-180-tibet-groups-condemn-larung-gar-demolitions-joint-statement
http://tchrd.org/nuns-continue-suicide-protest-against-demolition-of-buddhist-institute/
https://citizenlab.ca/2016/03/shifting-tactics/
https://www.cybersuperhero.net/safer-file-sharing/
https://www.johnscottrailton.com/security-for-the-high-risk-user/

18/27

As we observe the evolution of strategies levied against the Tibetan Diaspora, the constant cat-and-
mouse game embroiling this community becomes evident. While some behavioural adaptations have
shown promise in reducing the threat, the operation against the Tibetan Parliament underscores the
need for continued diligence and security awareness.

Acknowledgments

Special thanks to Tibet Action Institute. Additional thanks to Jakub Dalek, PassiveTotal, VirusTotal, and
TNG.

Appendix A: Decoding KeyBoy Config

Recent versions of KeyBoy maintain encoded configuration data inside a file stored on disk. In the
20160509 sample used in the Tibetan Parliament campaign, this file was named wab32res.dat . The

configuration file contains a 16 byte header followed by a number of bytes which are encoded using a
novel algorithm. The 16 byte header stores an ascii character representation of the hexadecimal values
corresponding to the size (in bytes) of the decoded config data, followed by the number of bytes
containing encoded configuration data.

The sample under examination contained the following header, and Figure 7 shows the raw
configuration file:

Size of config (in bytes) once decoded Number of bytes in encoded config

0x00 0x00 0x00 0x5B 0x00 0x00 0x00 0x4B

Figure 7: Configuration file for sample under examination
The configuration file used by this malware is encoded using what appears to be a custom schema.
While some earlier versions of this backdoor used more simplified encoding techniques for the
configuration data, newer versions have adopted a more involved algorithm.

At the heart of the decoding function is the use of a dynamically constructed lookup table containing
sequences of bytes which represent the ASCII characters for the cleartext configuration data.

https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure_7_parliament.png&nocache=1

19/27

Figure 8: Construction of the base lookup table
At the outset of the decoding function, a base lookup table is created containing 256 entries. This initial
table can be thought of as an identity matrix, where, for each index, the lookup table contains the index
as the stored value (see: Figure 8). For example:

LookupTable[0x0] → 0x0

LookupTable[0x1] → 0x1

⋮ ⋮

LookupTable[0xFF] → 0xFF

During the decoding of the configuration file, this table is expanded dynamically. Each iteration of the
algorithm will populate the lookup table sequentially, beginning with index 0x102 (since the table index
0x101 is reserved).

Algorithm Walkthrough

The algorithm has three basic steps:

1. Obtain an index by decoding a value from the configuration file
2. Find the value in the lookup table corresponding to this index, and place this result in the memory

buffer holding decoded configuration data
3. Generate a new value and insert it into the lookup table at the next available index

Step 1

This step requires the algorithm to obtain an index value from the configuration file. In order to obtain
this index, a decoding function evaluates the data in the configuration file not as successive bytes, but
as a series of integers calculated by considering consecutive sequences of 9-bit binary values.

Figure 9 provides a visual representation of this process. We can see that the first few indices being
calculated by this decoder are hexadecimal values 0x100, 0x39, 0x38, and 0x37. The first value, 0x100,
is a ‘marker’ which denotes the beginning of the configuration data. The values 0x39, 0x38, and 0x37
are the first three indices used to obtain data from the lookup table.

https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure_8_parliament.png&nocache=1

20/27

Figure 9: Step 1 in KeyBoy decoding algorithm. Indices are obtained by viewing the data in 9-bit
‘windows’

Step 2

As mentioned above, the first 256 entries in the lookup table are created as an identity matrix, and thus
the result of lookups for 0x39,0x38,0x37 would be:

LookupTable[0x39] = 0x39 => “9” (ascii)

 LookupTable[0x38] = 0x38 => “8” (ascii)
 LookupTable[0x37] = 0x37 => “7” (ascii)

These values are then stored in memory as decoded bytes of configuration data.

Step 3

After each iteration of calculating an index (step 1) and then obtaining the corresponding value from the
lookup table (step 2), the algorithm will create a new entry in the lookup table at the next available index.
The format of this new lookup table entry is simply the concatenation of the results of the previous
lookup with the first byte of the current lookup (see: Figure 10).

https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure_9_parliament.png&nocache=1

21/27

Figure 10: Steps 2 & 3 in the KeyBoy configuration decoding algorithm
So, again using the same example bytes along with Figures 9 and 10 above, if the current iteration of
the algorithm decoded the value 0x34 in step 1, and thus retrieved the value 0x34 = ‘4’ in step 2, the
newly formed lookup table entry would be:

LookupTable[0x106] = [0x35,0x34] => “54”

Thus, if at some future point in the decoding process the index 0x106 was obtained in step 1, the output
to the configuration data would be the two bytes [0x35,0x34] which have ascii representation “54”. This
provides a method of data compression to the configuration file.

A Python script was created for the purpose of automating this configuration file decoding process. The
output of this script when run against the configuration file used by the first of the two Parliamentarian
operation samples yielded the following data:

Identity Code: 9876543210

 C2 Host/IP #1: 45.125.12.147
 C2 Host/IP #2: 103.40.102.233
 C2 Host/IP #3: 45.125.12.147
 C2 Port #1: 443

https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure_10_parliament.png&nocache=1

22/27

C2 Port #2: 443
C2 Port #3: 443
Password: tibetwoman
Campaign ID: NNNN

Appendix B: KeyBoy Samples

Version: P_20150313

Exploit Document: 05b5cf94f07fee666eb086c91182ad25
 Payload: 0c7e55509e0b6d4277b3facf864af018

 DLL Exports
 Embedding 0x1000bfb0

 GetUP 0x1000c940
 SSSS 0x1000bc60
 StartWork 0x1000c570

 SvcMain 0x1000c430

Installation

This sample was discovered inside a malicious PowerPoint slide show which carried lure content
consistent with an Indian-nexus, and which was uploaded to VirusTotal in April 2015 using the filename
athirappalli.pps . Athirappilly is a village in India known for its wildlife and waterfalls. The visual

contents of the slide show are images of waterfalls, presumably from this village. This malicious .pps
file was weaponized using (closely related to CVE-2014-4114 aka Sandworm, which we have previously
observed this exploit used against the Tibetan community) to execute the following embedded DLL:

Name: SystemCertificates.ocx
 Size: 495616 bytes

 Compile Time: 13 Mar 2015 03:05:34 UTC
 MD5: 0c7e55509e0b6d4277b3facf864af018
 SHA256: 5395f709ef1ca64c57be367f9795b66b5775b6e73f57089386a85925cc0ec596

Persistence

This DLL maintains persistence by setting the following registry entry in the
HKCU\Software\Microsoft\Windows\CurrentVersion\Run key: SystemCertificates → "cmd /c

start Run dll32.exe %APPDATA%\Microsoft\SystemCertificates\SystemCertificates.ocx,
SSSS

This registry key is set via the Sandworm exploit, as the execution of an .inf file containing the
following instructions are triggered:

[DefaultInstall]

 CopyFiles = RxCopy
 AddReg = RxStart

[RxCopy]

 ..\..\Roaming\Microsoft\SystemCertificates\SystemCertificates.ocx, contact.pdf

https://en.wikipedia.org/wiki/Athirappilly
https://citizenlab.ca/2015/06/targeted-attacks-against-tibetan-and-hong-kong-groups-exploiting-cve-2014-4114/

23/27

[RxStart]
HKCU,Software\Microsoft\Windows\CurrentVersion\Run,SystemCertificates,,"cmd /c start
Rundll32.exe %APPDATA%\Microsoft\SystemCertificates\SystemCertificates.ocx, SSSS"

In comparison with the prior generation of KeyBoy examined by Rapid7, this mechanism represents a
change to registry based persistence from the previously used Windows service.

Configuration

Using the algorithm presented in Appendix A, we were able to decode the configuration file used by this
sample. Once decoded, the following information was obtained:

Identity Code: IJUDHSDJFKJDE

 C2 Host/IP #1: www.about.jkub[.]com
 C2 Host/IP #2: www.eleven.mypop3[.]org

 C2 Host/IP #3: www.backus.myftp[.]name
 C2 Port #1:80

 C2 Port #2:80
 C2 Port #3:443
 Password:wariii
 Campaign ID:war

Infrastructure

C2 Host: www.about.jkub[.]com Desc: Dynamic DNS provided by
changeip.com

Host First
Seen:

Last Seen:

175.213.49[.]6 2016-10-
25

Current as of
publication

45.32.47[.]148 2016-09-
26

2016-10-24

157.7.84[.]81 2015-04-
07

2015-04-21

C2 Host: www.eleven.mypop3[.]org Desc: Dynamic DNS provided by
changeip.com

24/27

Host First
Seen:

Last Seen:

175.213.49[.]6 2016-10-
25

Current as of
publication

45.32.47[.]148 2016-09-
26

2016-10-24

C2 Host: www.backus.myftp[.]name Desc: Dynamic DNS

Host First Seen: Last Seen:

192.241.149[.]43 2015-05-05 Current as of publication

Version: 20151108

Exploit Document: 8846d109b457a2ee44ddbf54d1cf7944
 Dropper: 8846d109b457a2ee44ddbf54d1cf7944

 Payload: c5b5f01ba24d6c02636388809f44472e
 Embedded 64bit: 371bc132499f455f06fa80696db0df27

 Payload DLL Exports
 Install 0x100085a0
 SSSS 0x100081e0

 StartWork 0x100086a0
 SvcMain 0x10008fb0

 cfsUpdate 0x10008cb0

Installation

This .rtf document, also exploiting CVE-2012-0158, was submitted to VirusTotal in March 2016. The
exploit triggers the execution of an embedded dropper, similar to the method observed in our initial
sample described in Part 1.

This dropper creates three files on disk, each in the %localappdata% folder:

1. cfs.dat – KeyBoy configuration file
2. cfsupdate.dal – KeyBoy payload DLL
3. desk.vbs – Windows script used for installation

The Windows script file, desk.vbs, contained the following content:

https://virustotal.com/en/file/ba442907f3218c8664bbecb47f915c4469340219e0f05af8f2d108d72659ff0f/analysis/
https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure_11_parliament.png&nocache=1

25/27

The dropper executes this script file which subsequently launches the KeyBoy backdoor and sets
persistence as described below.

Also noteworthy in this sample was the fact that this payload inspected the architecture of the victim PC
to determine if it was 64 bit capable. If so, a 64 bit version of the payload was decoded from the data
section of the cfsupdate.dat file using an XOR operation having key 0x90. This is very similar to the
method described by Trend Micro in their report on the TROJ_YAHOYAH malware.

Interestingly, the 64-bit module was packed using a known freeware binary packer. This is in contrast to
the 32-bit versions of KeyBoy, none of which contained any binary protections whatsoever. Upon
unpacking, the 64-bit version of this KeyBoy code was functionally identical to the 32-bit version.

Leftover Code

Further illustrating the continued development and connections between samples are the leftover
remnants from 20151108 existing in the 20160509 Parliamentarian sample. The Parliamentarian
dropper contained references to the Desk.vbs script described above, yet this file and related content
was not deployed or otherwise used in the 20160509 version.

Persistence

Persistence is achieved through the WinLogon\Shell registry key, and is installed by the dropper’s
execution of the Install export from the KeyBoy DLL. This export creates the file
%localappdata%\Desktop.ini as shown below, and installs it by launching the Windows regini.exe

command:

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

 shell = explorer.exe,C:\Windows\system32\rundll32.exe "%LOCALAPPDATA%\cfs.dal"
cfsUpdate

Configuration

The configuration file used by this version of KeyBoy is written to disk as %localappdata%\cfs.dat

by the dropper, similar to the behaviour of our 20160509 sample. This configuration file uses the newer
encoding method outlined above and in Appendix A. Once decoded, the following information was
obtained:

Identity Code: 9876543210

 C2 Host/IP #1: 103.242.134[.]243
C2 Host/IP #2: 103.242.134[.]243
C2 Host/IP #3: 103.242.134[.]243
C2 Port #1: 443

 C2 Port #2: 1234
 C2 Port #3: 1234
 Password: password8888

 Campaign ID: MyUser

Possible Targeting

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-operation-tropic-trooper.pdf

26/27

This malicious document embedded an empty decoy document to hide the exploitation of the
vulnerability. We found however another interesting sample with the exact same payload but with a
decoy document presenting a petition to release a Tibetan activist:

Infrastructure

This sample communicates with the following command and control server:

C2 Host: 103.242.134[.]243
 City: Hanshan

 Country: China

Version: 20160509 (alternate)

Exploit Document: beadf21b923600554b0ce54df42e78f5
 Dropper: 0b4d45db323f68b465ae052d3a872068

 Payload: 495adb1b9777002ecfe22aaf52fcee93
 Payload DLL Exports

 SSSS 0x100080b0
 SvcMain 0x10008b80

 cfsUpdate 0x10008880

During our research we encountered another sample of the 20160509 version of KeyBoy. This sample
was also found to be deployed using the CVE-2012-0158 vulnerability. The malware payload was
identical to our first Parliamentary sample outlined in Part 1, however the configuration file in this
alternate sample was different.

Configuration

Identity Code: 9876543210

 C2 Host/IP #1: 116.193.154[.]69
 C2 Host/IP #2: 116.193.154[.]69
 C2 Host/IP #3: 116.193.154[.]69

https://malwr.com/analysis/MmZjNjMyZjYxNWRiNDJhYzg0YzY5ZTQxYjYxNWM2NDE/
https://citizenlab.ca/wp-content/webpc-passthru.php?src=https://citizenlab.ca/wp-content/uploads/2016/11/figure_12_parliament.png&nocache=1

27/27

C2 Port #1:443
C2 Port #2:80
C2 Port #3:443
Password:8888
Campaign ID:8888

Possible Targeting

The exploit document carrying this alternate KeyBoy configuration also used a decoy document which
was displayed to the user after the exploit launched. This decoy carries content with a Tibetan nexus.

Infrastructure

C2 Host: 116.193.154[.]69

 CNAME: 116-193-154-69.pacswitch.net

Appendix D: IOCs and Links

KeyBoy binaries
 agewkassif: 087bffa8a570079948310dc9731c5709

 20160509: 495adb1b9777002ecfe22aaf52fcee93
 P_20150313: 0c7e55509e0b6d4277b3facf864af018
 20151108 (32bit): c5b5f01ba24d6c02636388809f44472e

 20151108 (64bit): 371bc132499f455f06fa80696db0df27

Droppers

0b4d45db323f68b465ae052d3a872068
23d284245e53ae4fe05c517d807ffccf
98977426d544bd145979f65f0322ae30

Exploit Documents

8307e444cad98b1b59568ad2eba5f201 (used in August Parliamentary campaign)
 913b82ff8f090670fc6387e3a7bea12d (used in October Parliamentary campaign)
 05b5cf94f07fee666eb086c91182ad25

8846d109b457a2ee44ddbf54d1cf7944
beadf21b923600554b0ce54df42e78f5

C2 Hosts

www.about.jkub[.]com

 www.eleven.mypop3[.]org
 www.backus.myftp[.]name
 tibetvoices[.]com

 103.242.134[.]243
 116.193.154[.]69
 103.40.102[.]233
 45.125.12[.]147

Resources

