
1/9

Malwarebytes Labs November 10, 2016

Floki Bot and the stealthy dropper
blog.malwarebytes.com/threat-analysis/2016/11/floki-bot-and-the-stealthy-dropper/

Floki Bot, described recently by Dr. Peter Stephenson from SC Magazine, is yet another bot
based on the leaked Zeus code. However, the author came up with various custom
modifications that makes it more interesting.

According to the advertisements announced on the black market, this bot is capable of
making very stealthy injections, evading many mechanisms of detection. We decided to take
a look at what are the tricks behind it. It turned out, that although the injection method that
the dropper uses is not novel by itself, but it comes with few interesting twists, that are not so
commonly used in malware.

Analyzed sample

5649e7a200df2fb85ad1fb5a723bef22 – dropper <- main focus of this analysis
e54d28a24c976348c438f45281d68c54 – core module – bot 32bit
d4c5384da41fd391d16eff60abc21405 – core module – bot 64bit

NOTE: The core modules depend on a data prepared by the dropper and they crash while
run independently.

The Floki Dropper

https://blog.malwarebytes.com/threat-analysis/2016/11/floki-bot-and-the-stealthy-dropper/
https://www.scmagazine.com/floki-bot--a-zeus-wannabe-with-delusions-of-grandeur/article/569329/
https://www.virustotal.com/en/file/5e1967db286d886b87d1ec655559b9af694fc6e002fea3a6c7fd3c6b0b49ea6e/analysis/
https://www.virustotal.com/en/file/5d2ee0440314f7229a126baa152e43473d771591e818f8317275c175fd888f23/analysis/1478618090/
https://www.virustotal.com/en/file/0522bfea61ab0db154cde9c1217c90547bd46ba1be0fc6a17bfb4b52e8241a63/analysis/1478618112/

2/9

The Floki dropper looks simple and it has been found in wild without any outer protection
layer. It has 3 resources with descriptive names – bot32, bot64, and key:

When we try to observe its activity, we can see it making an injection into explorer.

Indeed, when we attach the debugger to the newly created explorer process, we can see
some alien code implanted – it is written on three additional memory areas with full
permissions (RWE):

However, when we trace the API calls, we cannot find any reference to a function that will
write the code into the explorer process. Fragment of the trace:

3/9

[...]
28a8;called module: C:\Windows\system32\kernel32.dll:CreateProcessW
210f;called module: C:\Windows\system32\kernel32.dll:IsWow64Process
1d94;called module: C:\Windows\SYSTEM32\ntdll.dll:ZwClose
210f;called module: C:\Windows\system32\kernel32.dll:IsWow64Process
1d94;called module: C:\Windows\SYSTEM32\ntdll.dll:ZwClose
292c;called module: C:\Windows\system32\kernel32.dll:DuplicateHandle
210f;called module: C:\Windows\system32\kernel32.dll:IsWow64Process
1d94;called module: C:\Windows\SYSTEM32\ntdll.dll:ZwClose
2a1e;called module: C:\Windows\system32\kernel32.dll:GetThreadContext
2a37;called module: C:\Windows\system32\kernel32.dll:SetThreadContext
210f;called module: C:\Windows\system32\kernel32.dll:IsWow64Process
2aa1;called module: C:\Windows\system32\kernel32.dll:WaitForSingleObject
1818;called module: C:\Windows\system32\kernel32.dll:IsBadReadPtr
182a;called module: C:\Windows\SYSTEM32\ntdll.dll:RtlFreeHeap
2aad;called module: C:\Windows\system32\kernel32.dll:ExitProcess

We can see that a new process is created, and it’s context is being changed – that suggests
manipulation – but where is the write? In order to find an answer to this question, we will take
a deep dive inside the code.

Inside

At the beginning, the dropper dynamically loads some of the required imports:

The used approach depicts, that the author was trying not to leave any artifacts that could
allow for easy detection of what modules and functions are going to be used. Instead of
loading DLLs by their names, it picks them enumerating all the DLLs in the system32
directory:

4/9

For the sake of obfuscation, it doesn’t use string comparison. Instead, it calculates a
checksum of each found name. The checksum is created by CRC32 from the name XORed
with some hardcoded value, that is constant for a particular sample (in the described sample
it is 0x58E5):

The resulting checksums are compared with the expected value, till the appropriate module
is found and loaded. In similar way the export table of a particular module is enumerated and
the required functions are being resolved.

After the initial imports load, exactly the same method is used to search NTDLL.DLL.

As we know, NTDLL.DLL provides an interface to execute native system calls. Every version
of Windows may use a different number of a syscall in order to do the same thing. That’s why
it is recommended to use them via wrappers, that we can find among functions exported by
NTDLL. For example, this is how the implementation of the NtAllocateVirtualMemory may
look on Windows 7:

5/9

Another variant, from Windows 8 looks a bit different:

The common part is, that the number of the syscall to be executed is moved into the EAX
register.
The dropper loads NTDLL into the memory and extracts syscalls from selected functions:

0 : NtCreateSection
1 : NtMapViewOfSection
2 : ZwAllocateVirtualMemory
3 : ZwWriteVirtualMemory
4 : NtProtectVirtualMemory
5 : NtResumeThread
6 : ZwOpenProcess
7 : NtDuplicateObject
8 : NtUnmapViewOfSection

It checks a beginning of each function’s code by comparing it with 0xB8, that is a bytecode
for moving a value into EAX:

If the check passed, the syscall value, that was moved into EAX, is extracted and stored in a
buffer:

6/9

Then, when the dropper wants to call some of the functions, it uses those extracted values.
The number of the syscall is fetched from the array where it was saved, and copied to EAX.
Parameters of the function are pushed on the stack. The pointer to the parameters is loaded
into EDX – and the syscall is triggered by with the help of an interrupt – INT 0x2E:

That’s how the functions NtCreateSection, NtMapViewOfSection and NtResumeThread are
being called. Those were the missing elements of the API calls’ trace, so it explains a lot!

Example 1 – dropper makes a call that is the equivalent of calling the function
NtCreateSection:

Example 2 – the dropper mapped a section by using a syscall – it is an equivalent of calling
the function NtMapViewOfSection:

7/9

Once the memory is prepared, the shellcode is copied there:

After the preparations, those sections are mapped into the context of the explorer process,
that has been created as suspended. Using SetThreadContext, it’s Entry Point is being
redirected to the injected memory page. When the explorer process is being resumed, the
new code executes and proceeds with unpacking the malicious core.

At this point of the injection, it’s malicious core is not yet revealed – it’s decryption process
takes place inside the shellcode implanted in the explorer. This is also additional
countermeasure that this dropper takes against detection tools.

Another trick that this bot uses, is a defense against inline hooking – a method utilized by
various monitoring tools. All the mapped DLLs are compared with their raw versions, read
from the disk by the dropper. If any anomaly is detected, the dropper overwrites the mapped
DLL by the code copied from it’s raw version. As a results, the functions are getting

8/9

“unhooked” and the monitoring programs are loosing the trace on the executed calls.
Example from Cuckoo – the unhooking procedure was executed after calling
NtGetThreadContext – as a result the sandbox lost control over executed calls:

Conclusion

The illustrated concept is not novel, however it was utilized in an interesting way. Many
programs detect malicious activity by monitoring API calls, that are most often misused by
malware. Also, applications used for automated analysis hooks API functions, in order to
monitor where and how they are being used. The presented method allows to bypass them –
at the same time being relatively easy to implement.

In this case, the author didn’t use the full potential of the technique, because he could have
implement all the injection-related functions via direct syscalls – instead, he chose to use
only some subset, related to writing into remote memory area. Some other syscalls has been
loaded but not used – it may suggest that the product is still under development. Creation of
the new process and changing it’s context still could be detected via API monitoring – and it
was enough to rise alerts and make the dropper less stealthy than it was intended.

Appendix

9/9

https://www.evilsocket.net/2014/02/11/on-windows-syscall-mechanism-and-syscall-numbers-
extraction-methods/ – On Windows Syscall Mechanism and Syscall Numbers Extraction
Methods

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https://hshrzd.wordpress.com.

https://www.evilsocket.net/2014/02/11/on-windows-syscall-mechanism-and-syscall-numbers-extraction-methods
https://twitter.com/hasherezade
https://hshrzd.wordpress.com/

