Floki Bot and the stealthy dropper

blog.malwarebytes.com/threat-analysis/2016/11/floki-bot-and-the-stealthy-dropper/

Malwarebytes Labs November 10, 2016

Floki Bot, described recently by Dr. Peter Stephenson from SC Magazine, is yet another bot
based on the leaked Zeus code. However, the author came up with various custom
modifications that makes it more interesting.

According to the advertisements announced on the black market, this bot is capable of
making very stealthy injections, evading many mechanisms of detection. We decided to take
a look at what are the tricks behind it. It turned out, that although the injection method that
the dropper uses is not novel by itself, but it comes with few interesting twists, that are not so
commonly used in malware.

Analyzed sample

5649e7a200df2fb85ad1fb5a723bef22 — dropper <- main focus of this analysis
o €54d28a24c976348c438f45281d68c54 — core module — bot 32bit
o d4c5384da41fd391d16eff60abc21405 — core module — bot 64bit

NOTE: The core modules depend on a data prepared by the dropper and they crash while
run independently.

The Floki Dropper

1/9

https://blog.malwarebytes.com/threat-analysis/2016/11/floki-bot-and-the-stealthy-dropper/
https://www.scmagazine.com/floki-bot--a-zeus-wannabe-with-delusions-of-grandeur/article/569329/
https://www.virustotal.com/en/file/5e1967db286d886b87d1ec655559b9af694fc6e002fea3a6c7fd3c6b0b49ea6e/analysis/
https://www.virustotal.com/en/file/5d2ee0440314f7229a126baa152e43473d771591e818f8317275c175fd888f23/analysis/1478618090/
https://www.virustotal.com/en/file/0522bfea61ab0db154cde9c1217c90547bd46ba1be0fc6a17bfb4b52e8241a63/analysis/1478618112/

The Floki dropper looks simple and it has been found in wild without any outer protection
layer. It has 3 resources with descriptive names — bot32, bot64, and key:

[H Resource Hacker - 5¢1967db286d886b87 d1ec655559b9af694f c6e002fealab 7fd3c6b0bideabe o= 3]
File Edit WView Action Help RCData : BOT32: 0
. &y D|a|0g g
RV .QW L3 -|,-1Mer+|,2| |
A | RCDatz 00006208 C& 96 AR 58 98 83 47 CE 0OE 22 8B BA BD BAL FE =
|y BOT32:0 0000&2EE 5]:" a0 D& A9 Al 448 81 AS F1 32 34 AD 746 B2 14 48 _ F 24 v H
f BOTe4 : 0 0000&2Fs |DE 81 9R EE 41 E9 13 D2 78 48 25 20 22 52 1D AC L xHE "R
r KEY : 0 00006308 |03 35 17 BS 2B 33 24 59 41 08 FB 8D BE& SA 42 40 3 +33YR ZBE
00006318 |44 DE AD 61 24 74 41 3C 21 1F BE 55 47 D4 FD &4 D asth ! UG
00006328 |BF 16 28 Be 72 AT D8 CO 22 75 36 BF 99 25 32 F1 {r *us %2
00006338 (34 1E B3 &F DB 72 3E 58 96 6D C4 FF F9 75 5S4 DC 4 or*im u
00006348 (62 14 FB B8 6D 38 DE 07 85 14 F5 aAD C2 B4 E6 96 b m8
00006358 |18 98 70 3E 17 BD AS 41 1B BA 04 C1 A5 2B CR &7 B> L + g
0000&368 |[CE 26 55 FF 89 01 02 EC DO 74 Ae CE E& FB 7B 42 1} t {B
00006378 |30 AS A8 01 78 7B F& 46 32 AF Ba 58 4E 3B 5A &7 0 x{ F2 EN;Z
ooooe38s |R4 25 31 D9 EE 74 D7 76 FF 02 &5 &C 12 32 19 8 (1 twv el 2
00006398 | N3 57 3A CE FE RA TE FE NT F1 FA 52 RO ADTE 73~ | W BE s
94 731 Off. 0. Sel. 0

When we try to observe its activity, we can see it making an injection into explorer.

8741 47184 K 25228 K
22 66 2296 K RA34 K 2120 Windows Explorer Microsoft Corporation

Indeed when we attach the debugger to the newly created explorer process, we can see
some alien code implanted — it is written on three additional memory areas with full
permissions (RWE):

However, when we trace the API calls, we cannot find any reference to a function that will
write the code into the explorer process. Fragment of the trace:

2/9

[...]

28a8;called
210f;called
1d94;called
210f;called
1d94;called
292c;called
210f;called
1d94;called
2ale;called
2a37;called
210f;called
2aal;called
1818;called
182a;called
2aad;called

module:
module:
module:
module:
module:
module:
module:
module:
module:
module:
module:
module:
module:
module:
module:

OO0 0O0O0O0O0O0O0OO0

:\Windows\system32\kernel32.dll:CreateProcessW
:\Windows\system32\kernel32.d1ll:IsWow64Process
:\Windows\SYSTEM32\ntdll.d11l:ZwClose
:\Windows\system32\kernel32.d1l1l:IsWow64Process
:\Windows\SYSTEM32\ntdll.d11l:ZwClose
:\Windows\system32\kernel32.d1ll:DuplicateHandle
:\Windows\system32\kernel32.d11l:IsWow64Process
:\Windows\SYSTEM32\ntd1ll.d1l1l:ZwClose
:\Windows\system32\kernel32.d1ll:GetThreadContext
:\Windows\system32\kernel32.d1ll:SetThreadContext
:\Windows\system32\kernel32.d1ll:IsWow64Process
:\Windows\system32\kernel32.d1ll:WaitForSingleObject
:\Windows\system32\kernel32.d1ll:IsBadReadPtr
:\Windows\SYSTEM32\ntdll.d11l:Rt1FreeHeap
:\Windows\system32\kernel32.d1l1l:ExitProcess

We can see that a new process is created, and it's context is being changed — that suggests
manipulation — but where is the write? In order to find an answer to this question, we will take
a deep dive inside the code.

Inside

At the beginning, the dropper dynamically loads some of the required imports:

a8482679
B0L8267A
A0Le267C
A8Le267F
A04082685
B84 82686
B0482687
A84082688
a848268D
A048268F
A0LA2604
a84 82690
aaLpe26na
A8L 8265
A84826A9

push
mou
and
sub
push
push
push
call
xor
push
mou
mou
call
mou
cmp

ebp
ebp
esp
esp
ebhx
esi
edi

load imports by hashes

ehx

B4CAB6ASH :
syscalls _array, ehbhx
syscalls num, ehx
search_and_open_ntdll
[esp+GhBh+var 62C], eax

eax

s BSp
., OFFFFFFF8h
. 634h

, Bbx
CRC{"ndl1l.d11") ™ BxzG8E%

, OFFFFFFFFh

The used approach depicts, that the author was trying not to leave any artifacts that could
allow for easy detection of what modules and functions are going to be used. Instead of
loading DLLs by their names, it picks them enumerating all the DLLs in the system32

directory:

3/9

aa4E1sCE || . | CHP_ERR,ESI

AE4E1z2Cco | .+ | JE SHORT dropper.8848130C
BE4E12CF | . | PUSH dropper. 88481868
aE4E1204 LEA EA:, [LOCAL. 21

aE4a120v7 || . |CALL dropper.@@461995
aE4a1z0c || » | LER ERM,CLOCAL. 1513

aE4E12E2 |1 . | PUSH ERA

AE4E13ES FLUSH [LOCAL. 21

AE4E13EE CALL OWORD FPTR DS:CEx4A7FEE]
BE4E12EC MOW EDT, EAX

@BE4E13EE || . | CHMP _EDI,-@:1

AE4E12F1 | .~ | JE_SHORT dropper.@@481445
BE4a13F2 |1 » |FLEA EBX,CLOCAL.14&]
BE4a13F3 (] . CALL dropper.B846813BE
a84812FE MOV ESI, EHX

aa4a14aa (| . TEST ESI.ESI

aa4ei4a:z |1 . || JE SHORT dropper.@84681421
aEd4aid4ad (1. MO ECH,ESI

AE46 1486 CALL dropper.@@4619E4
BE4E146E FPUSH ERX

aE4a14ac FUSH ESI

aE4a14a0 CALL dropper.B@@84@1C3C
AE4E1412 AOR ERR, B 55ES

aa4a141v || . CHF _ERX, [ARG. 11

aa4E1418 | .~ |} JE SHORT dropper.d@481435
aad4aidic (| . CALL dropper.B@d4@1s11
aa4a1421 |1 » LERA ERX,CLOCAL. 1511
BE4E1427 (] . FUSH ERX

aE4a1422 FUSH EDI

aE4a1429 CALL DWORD PTR DS:[@:487F16]
aa4a142F (] . TEST _ERR,ERX

aa4e1431 |1 o~ |WdHME SHORT dropper. B84013F3
AE4E1433 || .~ | JHMP SHORT dropper.d@461445
aE4E1425 |1 > | LER ERX,CLOCAL. 1481
@E4E1438 |1 . | PUSH ERX

AE4E1420 CALL OWORD PTR DS:CE:4B2E36]
EEEFEEEN | . | MOU [EOCAL. 21, ERX

aE4a144s |1 x| PUSH EDI

aa4ei44e |1 . |CALL DWORD PTR DS:[@x487F48]1
aE4a144cC Moy ESI, [LOCAL.Z21

UMICODE "#.dLL™

Wininet. reaboEEaa

kernel32.FindFirstFilel
Wininet. reda00EEa

Wininet. reaboEEaa

Wininet. Yed00EEa

crogl

Wininet. Yed00EEa

kernel3z2.FindHes tFilell
Wininet. reaboEEaa

Wininet. red0@EEa
kernel32. Loadl ibraryll
Wininet. vea00Eaa

kernel32.FindClose

For the sake of obfuscation, it doesn’t use string comparison. Instead, it calculates a
checksum of each found name. The checksum is created by CRC32 from the name XORed
with some hardcoded value, that is constant for a particular sample (in the described sample

it is OX58ES5):
88481484 mou ecx, esi
aaLe1406 call str_len
AA461408 push eax
8648148C push esi
apue148d call crc3?
agLa141?2 =or eax, SBESh

The resulting checksums are compared with the expected value, till the appropriate module
is found and loaded. In similar way the export table of a particular module is enumerated and
the required functions are being resolved.

After the initial imports load, exactly the same method is used to search NTDLL.DLL.

As we know, NTDLL.DLL provides an interface to execute native system calls. Every version

of Windows may use a different number of a syscall in order to do the same thing. That’'s why

it is recommended to use them via wrappers, that we can find among functions exported by
NTDLL. For example, this is how the implementation of the NtAllocate VirtualMemory may

look on Windows 7:

4/9

Hex Disasm

452D8
452DD
452EZ

45ZE4
452E7

Hex Disaam
gC1Da
&C1D5
eC1DA

eC1DD
aC1DF
eC1EL

The common part is, that the number of the syscall to be executed is moved into the EAX
register.
The dropper loads NTDLL into the memory and extracts syscalls from selected functions:

: NtCreateSection

: NtMapVviewOfSection

: ZwAllocateVirtualMemory
: ZwWriteVirtualMemory
NtProtectVirtualMemory
: NtResumeThread

! ZwOpenProcess
NtDuplicateObject
NtUnmapViewOfSection

o ~NOO Ol WNERO

It checks a beginning of each function’s code by comparing it with 0xB8, that is a bytecode
for moving a value into EAX:

il s =1

A04020083 mouzx edx, word ptr [ebx]

064020606 mou esi, [edi+1Ch]

A04020089 lea edx, [esitedx=l]

864082 60C mou esi, [edx+eax]

88408200F add esi, eax

88482811 cmp byte ptr [esi], BBBh ; MOU EAX,imm32
geue2e14 jnz short loc_ 48206E

If the check passed, the syscall value, that was moved into EAX, is extracted and stored in a
buffer:

5/9

204820845 and [ebp+syscall buf], @
4

204820849 push ; 4 bytes - syscall value length
g0482048 lea ecx, [esi+1] ; move pointer by 1 byte
8848284E push eCx

A848204F lea ecx, [ebp+syscall buf]

8840820852 push BCH

A84820853 call copy_bytes

20482058 mow ecx, [ebp+syscall buf]
884820858 inc [ebp+counter]

Then, when the dropper wants to call some of the functions, it uses those extracted values.

The number of the syscall is fetched from the array where it was saved, and copied to EAX.
Parameters of the function are pushed on the stack. The pointer to the parameters is loaded
into EDX — and the syscall is triggered by with the help of an interrupt — INT Ox2E:

084 8212E

8048212E make_syscall proc near

a848212E

8848212E arg_ 4= byte ptr 8

a848212E

0B40212E lea esp, [esp] |

804682131 lea esp, [esp]

004082134 lea edx, [esp+arg_4]

88482138 int 2Eh ; DOS 2+ internal - EXECUTE COMHMAHD
aa4 02138 ; DS:51I -> counted CR-terminated command string
88482137 retn

884082130 make_syscall endp

That’s how the functions NtCreateSection, NtMapViewOfSection and NtResumeThread are
being called. Those were the missing elements of the API calls’ trace, so it explains a lot!

Example 1 — dropper makes a call that is the equivalent of calling the function
NtCreateSection:

@ *G.P.U* - rnain thread, module dymasa

FEEERIT-RI I LER ESF,OWORD FTR 55:LCESF1 i
HE4E2713 || . LEA EDX,OWORD FTR S55: CESF+ERE] 0 EEEL;;;EZEQEPU]

o INT EuZE MtCreateSect ion ECH [BEZSERFE
BEdEzF1e (L, RETH EDX BAI1ZFSvd
BE4EZ7 1A 5 FUSH @ExiE EE* AEEEEEEE
BE4az271c || . CALL dymasa.B84826F0 ESE @E12FSEC
HE4E2721 CHLL dymasa.B84827a0 EEF GE12FSE4
BEGE 2726 RETH i1 ~ ESI 8888066
4 I EDI @E1ZF914

EIF 88482717 dumasa. BR402717

BA1ZFE74 BE12F314
BEA1ZFEFE BEEEEEEE
BEA12F2FC BEEEEEERA
HE12F22E BE12F2ER
BE12F234 BEEEAESA
HE12F22 B2EEEEEEA
Qa1 zFe2C BEEa8EEE
BA1ZF328 BEEEAEER
BA12F334 BEEa88E
BEA1zZFEE BEEEEAEEER

Example 2 — the dropper mapped a section by using a syscall — it is an equivalent of calling
the function NtMap ViewOfSection:

6/9

@ *G.P.U* - main thread, module dymasa

EEEEEREH LS RETH G Fegi [FFUI

eaisters
BE4E27ED | ps | LEH ESP,OWORD PTR S5:LCESF] g EO DODEEEEE
BE4a2718 || . LER ESF,DWORD FTR S5S: [ESFI EC IBEREEE]
AR4E2712 || . LEA ED0X, DWORD FTR S5: [ESP+8:E] ED FFFFFFFF
0 INT ExZE Mt HMapl) i ewlf Secton EEX BA1ZFI10

BE4E2719 L. RETH ESF BE1ZFadd
BR4E271A ¥ |PUSH BnG@ EBE AR12ESER
IE Mermory map

Addiess |Size Owner Section |Contains Tupe Aocess Initial access|Ma
HE1CABEA| BEEE T HHE Map B804 1682 [R ~0
HEZ30068 | BEEE9HHE Map B804 1682 A R

HEZFAEEE | BEEESHEE Map B8041682 i R

HE3E88688 | BEE000EE Friv 88621884 Rl Rl

HE48068688 | BEEE100E| dymasa FE header Imag BleE18E82 i RWE

HE461 8068 BEEE4EEE | dumasa .tert SFA, code, imports Imag B1EE10E2 E RUWE

HE4E8568688 | BEEE4000 | dymasa .data data Imag Bleal882 i RWE

BE4EIEEE | DEE34E888 | dymasa =l] CESOUTCES Imag BloElEE2 R RWE

HE430868| BEEE100H| dymasa .reloc Imag BlEE18E82 i RWE

HE448888 | 881681066 Map BE041682 i R

HESCA808E | 88881666 Priv 88821884 Rl Rl

HESEEE8EE | BEEE]BER Map BEG04 1648 RUWE RWE

HESFEEEE | BEEESHHE Priv 8862168684 Rl Rl

HES2E868| 881 10066 Map B8041682 i R

H1270E6E| BEEE2HEHE FPriv 88621184 Rl Guarded Rl

Once the memory is prepared, the shellcode is copied there:

EIEPED L DS . ruan EH
6a401505 || . [PUSH DWORD PTR SSi [ESP+8#5S]
6461507 || o |FPOSH DWORD PTR SS: [ESP+E:28] ntdll.777CEETE
854815CE (| . (PUSH -Gl
6461500 || o |GALL DWORD PTR OS: [Bu4E71E4] kernel32.0uplicateHandle
82481503 (| . [PUSH 8wz
ea4a1505 (| . [PUSH EEX
86401506 (| . [POSH_EEX
66401507 || . [LEA EAX, DWORODNPTRASSSIESPHERCE]
86401506 || o |PUOSH EAX
6E461E0F || o |FUSH DWORDTPTR SS§ [ESF+EHES]
646153 || o |FPUSH DWORD PTR SS: [ESP+8:78]
83481567 (| . [PUSH -Gl
6461569 || o |CALL DWORD PTR DS: [B4E7 1641 kernel32.0uplicateHandle
ead4a1CEF (| . [PUSH &ua
ea4015F1 (| . [POP EAX
ea4a15F2 (| . [PUSH EAX
064015F3 || o |PUSH_dumasa.@@467170
6e4016F5 || o [LEA ECK, DWORD PTR SS§TESP+EHET]
GE4a15FC || o | POSH ECH kerne 32, 77 1BEEFT
85481EF0 || . |HOU DWORD FTR $5: [ESF+@n241,0:51ECEEEE the hook content
85481685 | . |MOU DWORD FTR 55: [ESP+Bu28]1,0:FCAS0r
@a4a1c60 || . |MOY DWORD FTR $5: [ESP+@R2C1,0ncon00060
86401615 || . |MOV DWORD PTR 55: [ESP+B:3@],EBY
86401619 || . |MOU DWORD PTR S5: [ESP+@n341,0:C FLESFF
ea401621 (| . |MOU DWORD PTR SS:[ESP+Eu38]1,00FCdC
86481629 || . |MOU DWORD PTR S5S:[ESP+Bu3C], BucoE66E
85481651 || . |MOU DWORD PTR SS5: [ESP+@n4@1, 0xFFoo60o6m
85481635 || o |HOU DWORD FTR $5: [ESP+@nd4d], GnC453FCE0
ea461641 || . |MOU DWORD FTR SS: [ESP+B2481, G COESEEGL
86481649 || . |HOV BYTE PTR 55: LESP+BRdCI, 0uls

. |CALL dymasa.@@4a1ELR

. |PUSH_ERx
oEd0ies4 || o [LEA ECK, DWORDNPTR SS58 [ESF+EH4E]
ea4a165s (| o |POSH_ECH kerne 22, 77 IBEEFT
65461659 || o |LEA, ECK, DWORDNPTR 53 [ESP+ERSE] _

After the preparations, those sections are mapped into the context of the explorer process,
that has been created as suspended. Using SetThreadContext, it's Entry Point is being
redirected to the injected memory page. When the explorer process is being resumed, the
new code executes and proceeds with unpacking the malicious core.

At this point of the injection, it's malicious core is not yet revealed — it's decryption process
takes place inside the shellcode implanted in the explorer. This is also additional
countermeasure that this dropper takes against detection tools.

Another trick that this bot uses, is a defense against inline hooking — a method utilized by
various monitoring tools. All the mapped DLLs are compared with their raw versions, read
from the disk by the dropper. If any anomaly is detected, the dropper overwrites the mapped
DLL by the code copied from it's raw version. As a results, the functions are getting

7/9

“‘unhooked” and the monitoring programs are loosing the trace on the executed calls.
Example from Cuckoo — the unhooking procedure was executed after calling
NtGetThreadContext — as a result the sandbox lost control over executed calls:

2016-11-07 04:39:06,453 CreateProcessinternalW ApplicationMame: SUCCESS
C:\WINDOWS
\explorer.exe
Processid: 1924
CommandLine:
ThreadHandle:
Bx0000860Ccd
ProcessHandle:
Bx000086CH
Threadld: 588
CreationFlags:

Ox08000004

2016-11-07 04:39:06,453 NtGetContextThread ThreadHandle: SUCCESS
gxO00008cd

2016-11-07 04:39:06,674 __anomaly__ Threadldentifier: 584 sUCCess

Subcategory: unhook
Message: Function was
unhooked/restored!
FunctionMame:
LdrLoadD11

2016-11-07 04:39:06,674 __anomaly__ Threadldentifier: 584 success

Conclusion

The illustrated concept is not novel, however it was utilized in an interesting way. Many
programs detect malicious activity by monitoring API calls, that are most often misused by
malware. Also, applications used for automated analysis hooks API functions, in order to
monitor where and how they are being used. The presented method allows to bypass them —
at the same time being relatively easy to implement.

In this case, the author didn’t use the full potential of the technique, because he could have
implement all the injection-related functions via direct syscalls — instead, he chose to use
only some subset, related to writing into remote memory area. Some other syscalls has been
loaded but not used — it may suggest that the product is still under development. Creation of
the new process and changing it's context still could be detected via APl monitoring — and it
was enough to rise alerts and make the dropper less stealthy than it was intended.

Appendix

8/9

https://www.evilsocket.net/2014/02/11/on-windows-syscall-mechanism-and-syscall-numbers-
extraction-methods/ — On Windows Syscall Mechanism and Syscall Numbers Extraction
Methods

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https.://hshrzd.wordpress.com.

9/9

https://www.evilsocket.net/2014/02/11/on-windows-syscall-mechanism-and-syscall-numbers-extraction-methods
https://twitter.com/hasherezade
https://hshrzd.wordpress.com/

