Ursnif Malware: Deep Technical Dive

AK November 1, 2016

In this blog | explain some of the core methods an attack tool named Ursnif uses, as well as mention some, probably unintentional, pieces of
code that were left behind in the production version of the malware.

Ursnif is a data stealer and a downloader with a lot of abilities to steal data from installed browsers and other applications (such as Microsoft
Outlook).

In addition to stealing data, Ursnif also has the ability to download additional malicious components from the attacker’'s Command & Control
(C&C) servers and load them dynamically into memory. In this version of Ursnif | have also encountered an internal peer-to-peer
communication which could possibly add the ability for the sample to communicate with other Ursnif peers over the same network. We will
discuss the peer-to-peer part in a future blog post.

It All Begins With An Executable
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When the Ursnif executable is first loaded, it will unpack the real payload. The real payload is packed by the attackers, because it helps
keeping it undetected by security solutions which are based on a file signature.

After the real payload is unpacked, it will run in a hollowed process, and even at that stage of unpacking, the .BSS section is still obfuscated
and will be de-xored on runtime before the malware will continue with the execution.
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and after dexoring it

Afterward, there is a simple check the malware authors left behind. If the file C:\321.txt exists, the checks for a virtualized environment are
ignored. This was most probably developed in order to allow the attackers to test their tool on their own virtualized machines. Even though it is
quite funny that the attackers left this piece of code in a production compilation, it might show how careless they are. Basically, if anyone else
would like to test Ursnif on a virtual machine, they can just create a file with that name at that location and the malware will work properly with
no need to change the virtual machine’s configurations.

Next, the malware will make sure that all of the users on the machine are infected, by enumerating the registry root key HKU and for each user
key, it will put an appropriate startup value, as well as the payload on each AppData folder of each user. Registry Keys used:
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o HKU\<SID>\Software\Microsoft\Windows\CurrentVersion\Run

« HKU\<SID>\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\AppData
(Value equals the folder to be used for the malware, for example:
C:\Users\Administrator\Appdata\Roaming\”)

After this procedure, we move on to the injection method.

And It Continues With Another Executable To Be Injected

In the second part, the malware will look for a legitimate process to run in its context. Running in a different process context allows the
malware to bypass firewall rules which let some processes through without alerting or blocking them.

Internally, the malware calculates a unique checksum for each process name it finds, in order to obfuscate the processes into which it will try to
inject itself. Instead of injecting to explorer.exe for example, a checksum will be calculated, resulting in something like 0x17F9B5AA. Then, it
will check if that value matches a value from an internal list of checksums, and only if it exists in that list, it will begin the injection method on
that process.

Let's examine a pseudo code (as simple as possible) of how the first part of the injection looks:

/* Obtain the process pid to inject to */
dwPID = GetInjectProcess()

hProcess = OpenProcess(dwPID, ...)
pAddress = GetProcAddress("ntdll.dll", "RtlExitUserThread")

/* Create remote thread in suspended mode */

hThread = CreateRemoteThread(hProcess, /* Remote process handle */
CREATE_SUSPENDED, /* creation flags */
pAddress, /* thread function address */
)
/* Read remote procedure first four bytes */
dwBackupData = ZwReadVirtualMemory(hProcess, /* Remote process handle */
pAddress, /* Address to read */
4, /* number of bytes to read */
2
/* Change address protection to ‘writable™ */
VirtualProtectEx(hProcess, /* Remote process handle */
READ_WRITE_EXECUTE, /* New protection flags */
pAddress, /* Address to change protection on */
4, /* Size of address */
2

ZwWriteVirtualMemory(hProcess, /* Remote process handle */

pAddress, /* Address to overwrite */

OXCCCCFEEB, /* Data to write */

4, /* Size of data */
-)
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« Open a handle to the desired process.

e Get the address of ntdll!RtlExitUserThread function.

« Create a remote suspended thread with the appropriate function.

« Obtain the first four bytes of the function as a backup (because in the upcoming steps, they will be overwritten).

« Before we overwrite the bytes, we must change the protection flags of the memory so it will be writable.

» Write four bytes (DWORD) (6xCCCCFEEB) . This is the interesting part, changing the original function prologue this way, will result in an
infinite loop.

Let's examine the function before and after the changes:

Before After

ntdll!RtlExitUserThread: ntdll!RtlExitUserThread:

77dc1000 8bff mov edi,edi 77dc1000 ebfe imp ntdll!RtlExitUserThread (77dc1000)
77dc1002 55 push ebp 77dc1002 cc int 3

77dc1003 8bec mov ebp, esp 77dc1003 cc int 3

77dc1005 83e4f8 and esp, OFFFFFFF8h 77dc1004 ec in al,dx
77dc1008 81echcOOOOO sub esp, OBCh 77dc1005 83e4f8 and esp, OFFFFFFF8h
77dc1008 81echcoopOOO Ssub esp, OBCh

After the change, the new values assigned to the function prologue are translated to JMP <short> , which is a two byte opcode. The first byte
( 0xEB ) is what translated the processor to recognize it as a JMP opcode, and it will also expect the second byte to be the value of where to
jump to (Relatively from the EIP at the end of the opcode). The second byte we have in this scenario is 0xFE , which translates to (-2).
Jumping relatively from the end of the opcode ( address 0x77dc1002 ) -2 bytes, will make the EIP get back to address 0x77dc1000 , which
is the same opcode again. This will result an infinite loop of one opcode. as you can see WinDBG translates it beautifully:

77dc1000 ebfe jmp ntdll!RtlExitUserThread (77dc1000)

After this change, the thread is resumed until its EIP of the newly created thread reach the ntdl11!Rt1ExitUserThread address, then the
thread is set to suspended mode again. The reason all this procedure is happening is because when a thread is created, it doesn’t immediately
start at the function given, it requires some initialization functions to be called first, so the original code is waiting for the initialization to
complete and then it have a post initialized thread which it can take control of its EIP without worrying.

Thereafter the thread is suspended again, the function original 4 bytes are restored. The new PE itself is injected with NtCreateSection and
NtMapViewOofSection , for mapping the new PE to the malware’s memory ending with SetThreadContext which with that we are able to
change the registers value, specifically EIP — to the new created entry point of the remote process following ResumeThread .

As we've seen before, attackers are building techniques into their tools in order to evade detection by security solutions. One of the techniques
exploits sandbox weaknesses by using different sleeping mechanisms. Sandboxing solutions usually run malware samples only for about 2-3
minutes before they move on to the next sample they have in queue. The reason is simply because those kind of solutions are required to
keep up with analyzing hundreds of thousands of samples every day. Therefore, for a sandbox time is a very precious resource. Basically, this
means that if a malware can stay dormant for this period of time, the sandbox will not recognize its behavior as malicious and will move to the
next sample in queue.

Ursnif has recently evolved and changed the sleeping mechanism, trying to evade detection through a unique sleeping API. Earlier versions
used Sleep \ WaitForSingleObject \ WaitForMultipleObjects or similar APIs. Nowadays, a different method coming in hand, Relative
sleeping using windows timers. Here is a code example of how to use the Timers API:
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#include <windows.h>

#include <tchar.h>

/* Definitions */

#define SLEEP_TIME (5) /* In seconds */

/* Macros */

#define NANOSECONDS(nanos) \

(((signed __int64)(nanos)) / 1006L)

#define MICROSECONDS(micros) \

(((signed __int64)(micros)) * NANOSECONDS(1000L))
#define MILLISECONDS(milli) \

(((signed __int64)(milli)) * MICROSECONDS(16000L))
#define SECONDS(seconds) \

(((signed __int64)(seconds)) * MILLISECONDS(1000L))
/* Enumerations */

typedef enum _E_CODE

{
E_FAILURE = -1,
E_SUCCESS = 0,
E_TIMER_CREATION,
E_SET_TIMER,
E_WAIT_EVENT,
} E_CODE;
E_CODE SleepingMechanism(DWORD dwSleepTime)
{
/* Initializations */
HANDLE hTimer = NULL;
E_CODE tRetVal = E_FAILURE;
FILETIME ftSystemTime = { 0 };
LARGE_INTEGER liSystemTime = { 0 };
DWORD dwWaitResult = 0;
/* Create unnamed timer */
hTimer = CreateWaitableTimer(NULL, FALSE, NULL);
if (NULL == hTimer)
{
_tprintf(TEXT("CreatewWaitableTimer failure: [%d]\n"), GetLastError());
tRetval = E_TIMER_CREATION;
goto lblCleanUp;
}
/* Get system time */
GetSystemTimeAsFileTime (&ftSystemTime);
/* Add relative time from current time to sleep */
liSystemTime.HighPart = ftSystemTime.dwHighDateTime;
1liSystemTime.LowPart = ftSystemTime.dwLowDateTime;
liSystemTime.QuadPart += SECONDS(dwSleepTime);
/* Set timer with an absolute time to sleep */
if (!SetwaitableTimer(hTimer, &liSystemTime, ©, NULL, NULL, FALSE))
{
_tprintf(TEXT("Failed creating waitable timer: [%d]"), GetLastError());
tRetVal = E_SET_TIMER;
goto lblCleanuUp;
}
/* Waiting for the timer event*/
_tprintf(TEXT("Sleeping for [%d] seconds\n"), dwSleepTime);
dwwWaitResult = WaitForSingleObject(hTimer, INFINITE);
if (WAIT_OBJECT_O != dwWaitResult)
{
_tprintf(TEXT("WaitForSingleObject failed: [%d]"), dwWaitResult);
tRetval = E_WAIT_EVENT;
}
/* Success */
tRetVal = E_SUCCSES;
1blCleanup:
if (NULL !'= hTimer)
{
CloseHandle(hTimer);
hTimer = NULL;
}
return tRetVval;
}
INT _tmain(DWORD dwArgc, LPTSTR *1lpszArgv)
{
E_CODE tRetvVal = E_FAILURE;
tRetval = SleepingMechanism(SLEEP_TIME);
if (E_SUCCSES != tRetval)
_tprintf(TEXT("Failure: [%d]"), (DWORD)tRetval);
else
_tprintf(TEXT("Success\n"));
return 0;
}

47



The Additional Evasive Techniques and the DGA Flaw

Once the attacker tool is able to evade the sandbox, it will try to evade network security solutions which are based on communication pattern
signatures. Let's examine two such evasive techniques:

Obfuscating the outbound traffic

The first data sent from the infected machine would start with the following string format:
soft=1&version=%u&user=%08x%08x%08x%08x&server=%u&id=%u&crc=%x

After adding the values which represent the machine (will not be discussed in this blog post) to the format string, the malware will xor the

original value and move on to base64 encoding. Thereafter removing the “=” padding.
W+WIpnoUOvyD3ExoGOYmmDu®bmT8a0IQc2p7qTZymZCHt8eu27PEunoWst7LOJINXEVYBinB9iwNBQ6dP+msKM1leHuJg8mb5vu2siA0On72yyGQxwIDyVrNC1

Then adding “/” at random offsets of the string, following with changing every unique letter (which doesn’t match [a-zA-Z0-9]) to its

hexadecimal format starting with “_". For example the letter “+” hex representation is 2B, and the letter “/” hex representation is 2F, so the

output will end up looking like:
WWIpnoUOvyD3ExoGOYmmDu®bmT8a®IQc2p7qTZymZCHt8eu27PEunoWst7LOJINXEVYBinB9iwN_2FBQ6dP_2BmsKMleHuJg_2F8mb5vu2siA0On72yyGQxwI
Finally, there is a second call to the function, adding the “/” slash character at random offsets and then the string is complete.
W_2BWIpn_2FoUOvyD3Ex0GO/YmmDu®bmT8/a0IQc2p7qTZymZCHt/8eu27PEunoWs/t7L0JINXEVYB/inB9iwN_2FBQ6d/P_2BmsKMleHulg_2F8mb5/vu2s

This is sent to the C&C server with the following format:

<Domain>/images/<CraftedBase64Url>.gif ”
where the <Domain> will be chosen by the DGA algorithm, and the <CraftedBase64Url> is what was just created.

http://thiscrevmscllevelfak[.]club/images/W_2BWIpn_2FoUOvyD3Ex0GO/YmmDu®bmT8/a0IQc2p7qTZymZCHt/8eu27PEunows/t7LOJNXEVYB

Domain Generation Algorithm (DGA)

When | first reverse engineered the DGA and tried to recreate it using Python, for some reason my code didn’t work as expected and | got
different results compared to the actual domains used by the attackers. When | reversed everything slowly and made sure my code does
exactly what it is supposed to — | found out that they have some logical flaw in the code. Whether this was intentional or not, | will let you be the
judge. But | am pretty sure it was unintentional. Let's see what exactly is going on in there step by step:

1.

1. Download a predefined wordlist from an online text file.
In python that would be as easy as using urllib2.urlopen .

2. Obtain all the words that are at least 3 letters long. In python that would be: re.findall("[a-zA-Z]{3,}", data)

3. Add a null termination ( ©x00 ) after every word that matched, in the original buffer.

4. Override the original data with the matching words, after every word add space bar.
(Author comments: This is necessarily shorter than the original buffer so it should work, however in general this is very bad code
practice.)

5. Create the domain using the strings in the buffer list of Step Three.
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ebx

ebx, [ebptuar_i]

esi

edi

duord ptr [ebx] ; lpString2
[ebptlWordsBuffer] ; 1pStringl
ds:1lstrcpyfn

esi, ds:lstrcatn

edi, offset @SpaceBar

edi ; 1pString2
[ebp+WordsBuffer] ; 1lpStringl
esi lstrcatn

eax, eax

eax

[ebptuar_4], eax
[ebptlWordsCounter], eax

short loc_28F3C85 he ‘bug’ in action

loc_28F3C69:
moy eax, [ebptvar_i]
push dword ptr [ebx+teaxx4] ; lpString2
push [ebp+WordsBuffer] ; lpStringl
call esi lstrecata
push edi ; lpString2
push [ebp+WordsBuffer] ; lpStringl
call esi lstrecata
inc [ebptuar_4]

eax, [ebptvar_i]

eax, [ebptlordsCounter]

short loc_28F3C69

Now, the problem exists at Step Four, let’s take a look at the assembly:

To understand the problem better, let's have a dummy buffer to demonstrate the issue.
Match-Another se cu DEADBEEF le rt

Applying the regex from Step Two would result in the following word list:
["Match", "Another", "DEADBEEF"]

Adding the null termination on the original string will make it look like:
Match\x00Another\x00se cu DEADBEEF\x00le rt

After that, we are going to copy each of those strings, override the original buffer with them, and add a space bar right after. This should result
the matching strings being one after another ordered in that buffer. However, the first copy is the reason for the problem. We are first of all
copying the original word over itself using ‘Istrcpy’, resulting in the same buffer.

Match\x00Another\x00se cu DEADBEEF\x00le rt
But after that, we are using ‘Istrcat’ to add a space after the word. The MSDN documentation of “Istrcat’ states:
“IpString1 must be large enough to add IpString2 and the closing 10’,”

which means that there are going to be two more bytes added! One of them is the space, and the other one is the null termination coming right
after, resulting in the following problem:

Match \x00nother\x00se cu DEADBEEF\x00le rt

As you can see, it overwrote some of the next word, which will eventually make it “lose” one of the words in the list making the whole wordlist
short by one essentially affecting all of the DGA.

(Author Comments: | believe the malware authors have no idea they have such a bug in their code because they are probably using the
exact same piece of code to know which domains they should buy.)
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After | successfully reversed the DGA algorithm and could recreate it myself, we sinkholed one of the generated domains for the next domains
cycle, and managed to find pretty interesting statistics about this family over a period of 5 days:

DGA Characteristics
Type Dictionary based
Seed Current date

Change frequency

5 days period

Domains Per Cycle 15

Top level domains

.ru, .xyz, .club

Total infected machines 6,893

On the analyzed sample, the DGA’s dictionary (word list) is generated from this url:
http://opensource.apple.com/source/Security/Security-29/SecureTransport/LICENSE..txt

The interesting part of this DGA is the fact it can change the file from which the wordlist is generated, thus making it very easy to create
different versions of the DGA for different purposes.

An example of actual domains generated from the dictionary:

thiscrevmscllevelfak.club
levelignorethenind.ru
mtabaddresslocked.xyz
consseriflistyleleft.club
aresymbolparamspan.ru
respondslemsonmsonum.club
senddatalistenpython.xyz
numfalseandyspan.ru
maxsemihiddenmsosymbol.club
cllockedlevelnbsple.club
nbspserliststthelist.xyz
symbolcontacttype.ru
intoaddedprio.ru
stylesendnblisprestval.xyz
indentlspthatmcan.ru

Analyzed Samples:

¢ 9b38f10fd425b37115¢81ad07598d930
¢ b60c97d22f0ae301€916d61f79162b78
o f50bd1585f601d41244c7e525b8bd96a
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