Remsec driver analysis

artemonsecurity.blogspot.com/2016/10/remsec-driver-analysis.html

Remsec or Cremes malware already was perfectly described by Kaspersky in their report.
Symantec also did a blog_post about it. This sophisticated malware toolkit refers to so-called
state-sponsored actor, which was named by KL as ProjectSauron or Strider by SYMC. There
are some similarities between Remsec and other serious state-sponsored projects like
EvilBunny (Animal Farm) or Flame (Equation Group). The toolkit contains a lot of modules
for cyberespionage. As already declared by the Russian special service (FSB), the attackers
have used unique malware files in case of each victim. This means that attacks were
implemented in highly targeted manner.

One of the malware componen‘ts was not described by KL or other AVers. This component is
a driver and it works into kernel mode (Ring 0). Frankly speaking, the driver has compact
size and is designed only for one purpose: execute Ring 3 code from kernel mode with
SMEP bypass. Nothing special, but...The quality of written code confirms for us the fact that
driver was written by skilled developers and intended to be hidden. These properties are
ideally suited to the task the malware should perform.

Below are listed the facts about the driver (aswfilt.dll).
It has small size and fits in one memory page (4KB).
¢ |t has the zeroed timestamp and one unnamed NONPAGED section.
« It has dynamic imports that is stored into special driver struct with ptr at DeviceObject-
>DeviceExtension.
e The code uses some sort of offsets obfuscation inside its body.
e The code is written in right way.

1/9

https://artemonsecurity.blogspot.com/2016/10/remsec-driver-analysis.html
https://securelist.com/analysis/publications/75533/faq-the-projectsauron-apt/
http://www.symantec.com/connect/blogs/strider-cyberespionage-group-turns-eye-sauron-targets
https://2.bp.blogspot.com/-WDoJu3I5dog/V_JVXtImWSI/AAAAAAAADec/scoWe_DPF3EO9-bXCiGhrExLlHbch9f9gCLcB/s1600/cv.jpeg

The driver is loaded into a system by the dropper that exploits vulnerability in Agnitum driver
called Sandbox.sys. The dropper contains inside itself driver file, file of Agnitum Sandbox.sys
and code for its exploitation. Below you can see part of the dropper that drops Sandbox.sys

to disk.
loc_18883C06:

After loading Agnitum Sandbox.sys, it sends to it a special IOCTL that forces it to load the

rootkit driver.

mou
lea
push
push
lea
push
push
mou
call

1ea

push
push
1ea

push
push
call

xor
push
mou
lea
mou
mou
call

add
test
jz

push
lea
mov
mou
call

pop
test

jz

mou
call

; CODE XREF: fnExploitAgnitumDriver+1E17j

edi_hSandboxDriver, ds:_snuwprintf

eax, [esp+2188h+Dest]

eax

offset asSandbox_sys ; “Esiisandbox.sys”
eax, [esp+Z11Bh+var_10868]

288h » Count

eax ; Dest
[esp+2118h+var_28FC], 183h
edi_hSandboxDriver ; _snwprintf

eax, [esp+Z2118h+var_1868]

eax

offset a?Globalroots ; "YVWAW2WAGLOBALROOT%S™
eax, [esp+212Bh+wszAgnitumDriverPath]

288h ; Gount

eax ; Dest

edi_hSandboxDriver ; _snwprintf

eax, eax ; AMIAB = Agnitum driver size
8A41ABh : nHumherﬂFBytesTuwrite

edx, offset AgnitumDriverStart ; lpBuffer

ecy, [esp+212Ch+wszAgnitumbriverPath] ; 1pFileHame
[esp+212Ch+var_C508], a=x

[esp+212Ch+var_428], a=x
fnCreateFileAndWriteContent

esp, 24h
eax, eax
jadjustPrivsAndDeleteFileAndCleanupResources

1 : int

edx, [esp+Z218Ch+var_1868]

ecx, offset asandbox ; “sandbox™
[esp+218Ch+var_28FC], 187h
fnCreateDriverService

ecx
eax, eax
jadjustPrivsAndDeleteFileAndCleanupResources

[esp+2188h+var_28FC], 18Fh
fnLoadAgnitumDriver

2/9

https://3.bp.blogspot.com/-vEzrflgjwbA/V_Jd7UDBySI/AAAAAAAADe4/rbk8cPAqQsAtzH1lZL-rWpxN7ytS92ayACLcB/s1600/hn.png

lea

push
push
call

=or
add
lea
mou
mou
call

test
jz

or
push
lea
mou
call

pop
test

]Z

or
push
lea

push
push
lea

push
push
lea

push
push
push
call

test
jz

or

loc_100083E48:
call

The rootkit driver creates device with name \Device\rwx and the client uses path

eax, [esp+212Bh+fileHame]
288h ; Count
eax ; Dest
ds:_snuprintf

eax, eax
esp, 208h

ecx, [esp+2188h+fileMame] ; fileMame
[esp+2188Bh+var_1480], ax
[esp+218Bh+var_1868], ax
fnCreateFileAndWriteContentFromSection

pax, eax
loc_10883EBE

[esp+218Bh+var_28FC], 28h

a : int

ed:, [esp+218Ch+var_1898]

ec®, ofFfset afswfFilt ; “aswFilt"
fnCreatebriverService

ecx
eax, eax
short loc_10082ESBE

[esp+218Bh+var_28FC], 48h

g : lpOverlapped
eax, [esp+218Ch+BytesReturned]
eax : lpBytesReturned
4 : nOutBuffFersize
eax, [esp+2114h+0utBuffer]

eax : lpOutBuffer

BCh : nInBuffersSize
eax, [esp+211Ch+InBuffer]

eax : 1pInBuffer

; duwloControlCode
edil_hSandboxDriver ; hDevice
ds:DeviceloControl

eax, eax
short loc_10082ESBE

[esp+2188Bh+var_28FC], 28h

; CODE XREF: fnExploitAgnitumDriver+8CTj

fnTestOpenedDeviceRux

\W.\GLOBALROOT\Device\rwx to communicate with it.

To disable SMEP, the client should sent to driver IOCTL with code 0x1173000C.

3/9

https://2.bp.blogspot.com/-8IKpZ7yY84s/V_J0A54r3mI/AAAAAAAADfM/V-dHIM-a9NE8UhpHsCLkcxkotFDylhEBQCEw/s1600/wq.png

jCheckOnSHEPBypass :
cmp

; CODE KREF: fnlispatchbDeviceloControl+7FTj

eax, 1T173ABACH

jne short loc 4WAAIED
call [Eqi_ﬂnnfkifﬂfrurflRnnfki+R+run+.pHPﬂnPanufiUFPrnananq]
lea cds, dsiBFFFFFFFFR[eax=2]
and cdx, cax
push edx
call [esi_RootkitStruct+Rootkititruct plesetSystenaffinityThread]
(NI pex, [ebprDevicedbject])
call fnbisahleSHEP
now edi, eax
test edi, edi
js short loc lHB3BE
push disord pte [ebx_InputlUserBuffer+1Ch]
call duord pte [ebx_InputUserBuffer+18h] ; execule funclion wilh SHEP bypass
o e, [ehx_TnputlserBuffers20h)
o edi, edi
now [ecx], cax
loc_WBB3EH: ; CODE KREF: fnbDispatchDeviceloControl+D27]
all [esi_RootkitStruct+Rootkititruct _plefevertTollserAfFinityThread]
jmp short jeleanupfndRet

Note that unlike developers of Capcom.sys driver, authors of Remsec disables SMEP in right

way.

Next structure describes DeviceContext that is used by rootkit as storage for run-time global

data.
struct RootkitStruct {

PVOID ExAllocatePool;
PVOID ExFreePool;

PVOID loCompleteRequest;
PVOID loCreateDevice;
PVOID loDeleteDevice;
PVOID KeAcquireSpinLock;
PVOID KeCancelTimer;
PVOID KelnitializeEvent;
PVOID KelnitializeSpinLock;
PVOID KelnitializeTimer;
PVOID KeQuerylInterruptTime;
PVOID KeReleaseSpinLock;
PVOID KeSetEvent;

PVOID KeSetTimer;

PVOID KeWaitForMultipleObjects;
PVOID ObfReferenceObject;
PVOID ObDereferenceObject;

4/9

https://2.bp.blogspot.com/-HT0ZLkndRNI/V_JcVyrLdvI/AAAAAAAADes/Xh8hZHH2RvEsdftT0ciJy-AEDqoT-aOpACLcB/s1600/bvc.png
https://twitter.com/TheWack0lian/status/779397840762245124

PVOID PsCreateSystemThread;
PVOID PsGetVersion;

PVOID PsTerminateSystemThread;
PVOID ZwClose;

PVOID ZwCreateKey;

PVOID ZwDeleteKey;

PVOID ZwEnumerateKey;

PVOID ZwOpenKey;

PVOID ZwSetValueKey;

PVOID ZwUnloadDriver;

PVOID KeQueryActiveProcessors;
PVOID KeSetSystemAffinityThread;
PVOID KeRevertToUserAffinityThread;
ULONG Flag;

KEVENT Event;

ULONG dwkField1;

KTIMER Timer;

KSPIN_LOCK SpinLock;

ULONG dwField2;
LARGE_INTEGER IntervalTime;
UNICODE_STRING unDriverRegistryPath;

|

The driver supports an interesting method of unloading. It creates additional thread in
DriverEntry and supports timer object for unloading from this thread. As there are two
possible threads which can compete for the possession of the object, the driver supports
special spinlock object. This object is captured each time when function wants to get access
to timer. The timer interval can be set by client with special IOCTL code 0x117300CC. Timer
guarantees the client that driver will unload as soon as possible.

5/9

jsetTimerInterval:
cmp
jnz

lea

push
push
call

cmp
setnz
mou
mou
imul
mou
mou

jReleaseSpinLock:
push
push

call

iile

jmp

; CODE XREF: fnDispatchDeviceloControl+EBTj
eax, 117386CCh
short loc_488421

eax, [ebp+var_i4]

eax

edi
[esi_RootkitStruct+RootkitStruct.pleficquireSpinLock]

dword ptr [ebx_InputlUserBuffer+28h], @

al

byte ptr [esi_Rootkit3truct+(RootkitStruct.Flag+1)], al
eax, BFF6769806h

dword ptr [ebx_InputUserBuffer+28h]
[esi_RootkitStruct+RootkitStruct.Interval.LowPart], eax
[esi_RootkitStruct+RootkitStruct.Interval _HighPart], edx

CODE XREF: fnDispatchDeviceloControl+FD7j
fnbispatchDeviceloControl+1107j
[ebp+uvar_4]

edi

[esi_RootkitStruct+RootkitStruct.pKeReleaseSpinLock]

edi, edi
short jCleanupAndRet

Driver plays with spinlock in next manner. Before executing code in
IRP_MJ_DEVICE_CONTROL handler, the rootkit cancels timer and set it again before

exiting from it.

KeAcquireSpinLock();

Flag1 = DeviceExtension->Flag1;
Flag2 = DeviceExtension->Flag2;

if(Flag1 & Flag2) {
KeSetTimer();
}

KeRelaseSpinLock();
And

KeAcquireSpinLock();

Flag1 = DeviceExtension->Flag1;
Flag2 = DeviceExtension->Flag2;

if(Flag1 & Flag2) {
KeCancelTimer();

Y
KeRelaseSpinLock();

6/9

https://2.bp.blogspot.com/-YugT2xoI0t4/V_J6dmUOImI/AAAAAAAADfc/1A1vp_XascYYlLyXsE28KbW-RTGJ4qrpgCEw/s1600/ghj.png

jCleanuphAndRet: ; CODE XREF: fnbDispatchDeviceloControl+987j
; fnDispatchDeviceloControl+AATj ...
lea eax, [ebp+var_u]
push eax
lea ebx_InputUserBuffer, [esi_RootkitStruct+BBSh]
push ebx_InputlUserBuffer
call [esi_RootkitStruct+RootkitStruct.pKeficquireSpinLock]
cmp byte ptr [esi_RootkitStruct+RootkitStruct.Flag], @
jz short loc_488458
cmp byte ptr [esi_RootkitStruct+{RootkitStruct.Flag+1}], @
jz short loc_488458
push g
push [esi_RootkitStruct+RootkitStruct.Interval.HighPart]
lea eax, [esi_RootkitStruct+98h]
push [esi_RootkitStruct+RootkitStruct.Interval.lLowPart]
push eax
call [esi_RootkitStruct+RootkitStruct.pKelSetTimer]
loc_4@08458: CODE XREF: fnDispatchDeviceloControl+1617j

; fnDispatchDeviceloControl+1671]
push [ebp+var_4]

push ebx_InputUserBuffer

call [esi_RootkitStruct+RootkitStruct.pKeReleaseSpinLock]

mou eax, [ebp+IRF]
mou ec®, [ebp+var_8]
push 8

push eax

moy [eax+18h], edi
mou [eax+1Ch], ecx

call [esi_RootkitStruct+RootkitStruct.ploCompleteRequest]

mou eax, edi

pop edi

pop esi_RootkitStruct
pop ebx_InputlUserBuffer
leave

retn 8

The thread waits on timer and executes cleanup after time has elapsed.

7/9

https://2.bp.blogspot.com/-SQiLouYK5J8/V_J7bUsq5iI/AAAAAAAADfg/wo5ca_jI1TYTCx-Tw6_NMCKaNOzAtNcDwCLcB/s1600/oiu.png

loc_40870F:

push
push
push
push
push
push
lea

push
push
call

test
jnz

mou
call

loc_48872A:
mou
mou
mou
mou
mou
mou
mou
lea
retn

; CODE XREF: fnThreadStartFunction+267j
ebx
ebx
ebx
ebx
ebx
Waitany
eax, [ebp+Timer]
eax
2
[esi+RootkitStruct. pKeWaitForMultipleObjects]

eax, eax
short loc_4@e78a ; time is elapsed

ecx, edi_DeviceODbject ; DeviceDbject
fnCreateDdriverReqKey0rRemovelt

; CODE XREF: fnThreadStartFunction+2571j
eax, [esi+RootkitStruct.pObDereferencedbject]
[ebp+uvar_28], eax
eax, [esi+RootkitStruct.pPsTerminateSystemThread]
[ebp+var_1C], eax
[ebp+var_18], edi_DeviceObject
[ebp+uvar_14], ebx
[ebp+uvar_18], ebx
esp, [ebp-28h]

fnThreadStartFunction endp

Driver also has function with name fnRemoveRegKeyTree that recursively removes registry

key.

As it became clear from the analysis, the driver is intended for one purpose: execute function

from user mode address space and next, unload as fast as possible. Driver's code uses

spinlock and this is reason why authors are forced to use nonpaged section, that's untypical

for such type of drivers.

UPDATE

| noticed interesting thing in procedure of driver unloading that looks like mistake for
me. Let's look at this situation in more detail.

As | already mentioned above, the driver supports unloading procedure when some
conditions were triggered. It is waiting for timer object in fnThreadStartFunction and when

time elapses, the code calls fnCreateDriverRegKeyOrRemovelt. Below you can see a chart

of this process.

8/9

https://1.bp.blogspot.com/-zpl9BNW5ZkM/V_TGvgy32nI/AAAAAAAADg4/azwfepoWHxgE-_XUqWWFsa-T3iAgufifQCEw/s1600/xz.png

Thread is waiting for timer

fnThreadStartFunction

1) Time has elapsed

fnCreateDriverRegKeyOrRemovelt

Performs cleanup & call
ZwlUnloadDriver

2) Initiates driver unloading

ZwlnloadDriver

Calls fnDriverUnload and triggers 4] Code returns to invalid memory

lopDeleteDriver

3) Unload driver from| memory (ref count==0}

lopDeleteDriver

Unmaps driver memory pages

As you can see, when system thread has returned from ZwUnloadDriver, there is a high
probability that page with driver's code is already invalid, because lopDeleteDriver

calls MmUnloadSystemimage for mark virtual memory page which belong to driver as free
for further using.

9/9

https://2.bp.blogspot.com/-4nkhCDSloOc/V_TP_HJSr8I/AAAAAAAADhM/KO-XSSam6FoKoji3-5I4FXmOz-t1FfQkwCLcB/s1600/ui.png

