
1/13

Edmund Brumaghin September 27, 2016

Threat Spotlight: GozNym
blog.talosintelligence.com/goznym/

By Edmund Brumaghin

Tuesday, September 27, 2016 10:09
This blog was authored by Ben Baker, Edmund Brumaghin and Jonah Samost.

Executive Summary

GozNym is the combination of features from two previously identified families of malware,
Gozi and Nymaim. Gozi was a widely distributed banking trojan with a known Domain
Generation Algorithm (DGA) and also contained the ability to install a Master Boot Record
(MBR) rootkit. Nymaim emerged in 2013 as malware which was used to deliver
ransomware and was previously distributed by the Black Hole exploit kit. The code had
various anti-analysis techniques, such as the obfuscation of Win32 API calls.

https://blog.talosintelligence.com/goznym/
https://blog.talosintelligence.com/author/edmund-brumaghin/


2/13

There have been multiple instances in which the source code of the Gozi trojan has been
leaked. Due to these leaks it was possible for the GozNym authors to make use of the ‘best
of breed’ methodologies incorporated into Gozi and create a significantly more robust piece
of malware which was now capable of utilizing strengthened persistence methods and
ultimately becoming a powerful banking trojan.

Given the recent success of the GozNym trojan and the number of targeted attacks seeking
to infect victims with this malware, Talos decided to take a deep look at the inner workings
of this particular malware family. Talos started by examining the binaries associated with
GozNym as well as the distribution mechanisms. Additionally, we were able to successfully
reverse engineer the DGA associated with a GozNym command and control (C2)
infrastructure and sinkhole that botnet. This gave Talos great visibility into the size and
scope of this threat and the number of infected systems beaconing to C2 servers under
adversarial control.

A Constantly Evolving Threat

In analyzing available telemetry data, Talos uncovered four different variants of GozNym
that exhibited slightly different characteristics with respect to the Domain Generation
Algorithms (DGAs) used to generate the list of C2 servers to connect to. However, it is
possible that they were all created and deployed by the same threat actor or group as there
are several overlaps in regards to the use of the same C2 infrastructure, where the binaries
were being distributed from, and the phishing campaigns associated with the distribution of
the samples. In several cases, samples using different variations of the DGA contacted the
same C2 servers. Likewise, servers used to distribute the malicious binaries were observed
serving up multiple variants of GozNym.

Initial Infection Vector

Talos identified several spear phishing campaigns which were used to distribute the
GozNym malware. The downloader was delivered via Microsoft Word documents containing
VBA macros which were responsible for executing HTTP GET requests to download and
execute a malicious binary. Analysis of the emails associated with these spear phishing
campaigns showed that the adversary was selective and actively attempting to stay under
the radar.

The theme of this spear phishing campaign was similar to others commonly seen in email-
based threats whereby messages will be directed to the recipient to open an attached "tax
invoice" or "payment document". The adversary took the time to profile each of the
organizations targeted in these campaigns. In many cases that Talos analyzed, a single
email was sent to each organization with the sole recipient being an employee in the

https://github.com/gbrindisi/malware/tree/master/windows/gozi-isfb


3/13

accounting or finance department of the targeted organization. Additionally, the contents of
each message were tailored to the organization and featured attachment names also
appropriately tailored.

Figure 1: Email with Subject: Invoice [Random Digits] for [Org Name] via Intuit
QuickBooks
In one such campaign we observed the attached MS Word documents containing the
malicious VBA macros were made to appear as legitimate payment invoices from Bank of
America. The actor also tried to further convince the user to enable macros within Microsoft
word by providing a notification prompt.



4/13

Figure 2: Example Attachment #1
In another campaign, the attachment was delivered as a "Tax Invoice", and images included
references to Intuit QuickBooks. The same notification was used again to try and coerce the
victim to enable macros.



5/13

Figure 3: Example Attachment #2 
In the event that macros are enabled by the victim, the VBA downloader is then used to
retrieve a malicious binary from an attacker controlled web server and executed locally on
the system. We extracted the VBA macros from a Microsoft Word document which resulted
in the following obfuscated code:



6/13

Figure 4: Example Obfuscated Downloader
The VBScript has been obfuscated using ROT substitution and different base values have
been used throughout to determine how to rotate. Once the obfuscation has been removed,
it is obvious exactly what this script intends to do, which is to download a binary and
execute it, thus infecting the system.



7/13

Figure 5: Example

Deobfuscated Downloader

Analyzing GozNym

Once the malicious binary has been executed, the malware unpacks itself and allocates a
buffer into the rundll32.exe process and copies its unpacked contents into it. More
specifically, it executes rundll32.exe using a fake command argument consisting of a
random command line option and a random DLL name. It must be noted that this is not the
standard way to call to rundll32.exe, and that the dll does not actually exist. The malware
will attempt to inject the main unpacked data into this process. If successful, it will begin
communications with the C2 servers.

Example: rundll32.exe -ya ngfk.dll

The GozNym samples Talos analyzed used several anti-analysis and obfuscation
techniques in an attempt to make analysis more difficult and time consuming. One
obfuscation technique employed by the authors of this malware is related to the way in



8/13

which API calls were obfuscated. The sample implements its own method for importing
functions, resolving their addresses in a custom way, at runtime. API calls are done by
pushing two hard coded values to the stack, then jumping to a complex function that is
responsible for resolving the API call.

All of the function calls are done from the same instruction: a JMP located at a fixed
address in memory. The return address is not the real call point, but a randomly chosen
gadget in a library function that will always contain the instruction CALL EBX. EBX contains
a given address in the API resolution code. This code adjusts the stack then returns back to
the actual caller. By using this method, the malware obfuscates the address at which the
API function is called - the analyst will not be able to obtain the actual caller address when
the API function is called or when it returns back, because it will not reside in the stack.
Additionally, control flow is obfuscated, computing the target address of JMP/CALL
instructions at runtime. Similarly, constants are XORed, and decoded by calling a function
that accepts a parameter in EAX, then returns the deobfuscated constant into EAX.

Another control flow redirection obfuscation consists of creating a thread to execute a
gadget that returns into the address pointed by the parameter passed to the thread function,
that is itself a shellcode that jumps into a different function through a CALL EAX.

GozNym contains at least one encrypted memory region which is only decrypted on-
demand. The sample that was analyzed uses a function to copy individual data items to and
from this memory region, in such a way that all of the data inside this region is always
encrypted and the decrypted data resides in memory temporarily. The malware makes
heavy use of custom structures to store and pass data during execution, and well as to
implement custom thread synchronization mechanisms.

C2 Characteristics & Encryption

The malware initially attempts to determine if the infected system has internet connectivity
by performing a DNS to query for the A records of google.com and microsoft.com. Later, it
attempts to query for its pseudo-randomly generated domains using Google's DNS servers
(8.8.8.8 and 8.8.4.4). Once it has found a running C2 server, GozNym uploads system
survey information to the server via RC4 encrypted HTTP POST requests. The system
survey includes a Machine ID, Windows Version, as well as checksums of username,
computer name, and encryption keys stored in the sample. The RC4 encryption key is
generated using a partial key stored in the binary, followed by a randomly generated series
of bytes. GozNym builds a buffer containing the randomly generated part of the key, the
encrypted data, as well as the sizes of both of these byte arrays. It then Base64 encodes
this buffer, and sends it as HTTP POST data to a C2 server.



9/13

GozNym puts a lot of effort into being difficult to detect in network traffic. Every field in the
C2 communications is either randomly generated or encrypted using the partially-random
key. The URL arguments can be randomly generated with a random number of arguments
or can be hardcoded in the malware configuration data. The domains are randomly
generated and the User-Agent strings are generated by Windows API and therefore not
static.

Reversing the DGA

Talos discovered multiple DGA variants with differing configurations, and chose to report in-
depth on the most interesting one. We are actively working to sinkhole all of the botnets that
we find. GozNym supports two stages of operation in order to find a viable command and
control IP. Additionally, it supports two methods of querying domains: a simple
gethostbyname API call and a more complex custom DNS protocol implementation using
either 8.8.4.4 or 8.8.8.8 as its server. In the latter, it will send UDP packets and parse the
response to retrieve a DNS resolution.

Stage 1

In the first stage of DGA, a variation of the XORShift Pseudo-Random Number Generator
(PRNG) is used to create a list of fifteen domains. The PRNG is seeded with a bit-shifted
value of the current day, as well as two hard coded DWORDs. Each domain is between 5
and 12 lowercase letters long, followed by a randomly selected TLD of .net, .com, .in, or
.pw. GozNym then uses Google’s DNS server to query each domain, and checks if the IP
responses are publicly routable. Once it resolves 2 different IPs, it uses those in the second
stage of the DGA.

Stage 2

GozNym uses the same DGA functions, but this time replacing the hard coded DWORD
seeds with the IP addresses from the first stage DNS query. GozNym creates a new list of
128 domains ordered into a ‘semi-colon-separated-value’ string, but instead of resolving
them, it forces the first domain in the list to use the TLD of .com. In this process, it finds the
first “.” character and substitutes the next 4 characters by “com;”. Considering that the DGA
algorithm generates TLDs of both 2 or 3 characters as stated above, a single character
from the second domain may be overwritten.

Next it creates a CRC32 hash of the entire domain list, and a second hash based on XOR
and bit rotation, to finally sum up the two hashes. It looks for the result in a table of 360
hashes embedded in the binary, which means the developers have already calculated
which seeds and second stage domains they intend to use for at least 360 days. If the hash



10/13

is inside the table, gethostbyname is used to query the first domain in the list. By default,
gethostbyname returns a single IP address that a domain resolves to but may return
several. The second stage domains we’ve observed used four IP addresses for this stage.

GozNym then uses XOR and SUB operations to transform the IPs from the DNS response
to usable IPs. One of the IPs correspond to a checksum of the rest. In order to validate the
checksum, it iterates every IP to check if it corresponds to the checksum of the rest. When it
finds this checksum, it removes it from the IP list and returns back the list of IPs. If it cannot
verify the IP list checksum, it will return no IP.

The last check is performed after the first initial contact. The server will return an encrypted
list of 4 hashes corresponding to the domain resolved in the second stage. If the checksum
does not match, the sample will not continue processing the contents of the response.

Sinkholing the Unsinkable

GozNym’s DGA authentication can seem daunting at first, with 32 bits from a transformed
version of the date, followed by 64 bits of entropy from IPs received from the first DNS
response. Those 96 bits are used for seeding the random number generator, then
constructing a string with 128 randomly generated domains and verifying the checksum of
the result. The critical flaw in this authentication is the fact that the final checksum is only 32
bits, which is relatively easy to brute force. Brute forcing scales exponentially with length, so
trying all possible seed IPs (64 bits of entropy) would take over 4 billion times as long as
brute forcing any seeds that matches the 32 bit hash.

Talos developed scripts to replicate GozNym’s DGA and brute force valid IP ranges to find
valid Second Stage DGA seeds. The date is non-trivially incorporated in the seeding
process, so we had to brute force a new set of seed IPs for each day we wanted to
sinkhole. Each attempt required around 1000 calls to the PRNG to generate each character
in the domain list, as well as CRC32 hashing the domain list. The probability of any random
set of seed IPs causing a hash collision is about 1 in 11 million. We were able to generate
one hash collision per 5 hours using a pretty beefy desktop computer. Each hash collision
meant that for a single day, we had found a working set of seed IPs and the domain
GozNym would attempt to contact after receiving those seed IPs.

Another big mistake in GozNym’s DGA was in the way it treated the list of first stage
domains. If the first domain in the list returned a valid set of seed IPs, GozNym would never
attempt to contact any other domains in that list. By using a hash collision on the first
domain, we could prevent GozNym victims from attempting to contact any of the other
domains in the list. The machines infected with GozNym would beacon to our sinkhole
server once, then get stuck in a loop with lots of sleeping and occasionally querying
Google’s DNS for our sinkholed domains.



11/13

Profiling the Botnet

Our sinkhole server received 23,062 beacons within the first 24 hours of sinkholing
GozNym. Each infected machine would only send one beacon before realizing we weren’t
responding, so that roughly corresponds to one beacon per victim. The most notable
exception would be sandboxes, which may beacon out several times from a small set of
IPs. We received beacons from 1854 unique IPs.

Here is a breakdown of the top countries from which beacons were received:

Figure 6: GozNym Unique IPs by Country

Conclusion

As can be seen from the characteristics associated with the spam campaigns used to
distribute GozNym to potential victims, a good deal of effort was spent determining who to
target within organizations and spear phishing was used in an effort to evade detection and
avoid alerting administrators. Additionally, the anti-analysis and evasion techniques
employed by the malware indicate that the malware authors were concerned with making
analysis by security analysts more difficult and time consuming. Spear phishing attacks
continue to be used by threat actors attempting to infect organizations. This is likely due to
the continued success of these types of attacks. GozNym highlights the dangers of phishing
campaigns and the importance of ensuring that organizations are protected from these
types of threats. As shown by our analysis, GozNym is a constantly evolving threat that will
likely continue to morph moving forward as attackers seek to add additional features and
improve upon the ones currently present within the trojan.



12/13

Talos is also releasing the following scripts that can be used to perform analysis of GozNym
samples:

DGA_release.py which simulates the DGA used by GozNym.
Extract_parameters_from_http_post.py which extracts parameters from the HTTP
POST requests that are sent to C2 servers.
Decrypt_response.py which allows for a decryption of the response payload. These
tools are available in the Talos Github repository located here.

Coverage

Additional ways our customers can detect and block this threat are listed below.

Advanced Malware Protection (AMP) is ideally suited to prevent the execution of the
malware used by these threat actors.

CWS or WSA web scanning prevents access to malicious websites and detects malware
used in these attacks.

The Network Security protection of IPS and NGFW have up-to-date signatures to detect
malicious network activity by threat actors. ESA can block malicious emails sent by threat
actors as part of their campaign.

 

Indicators of Compromise 
 

Maldocs (SHA256): 
 

bf1601d89f816312278ac09b0c21acdc854c4d21e1443f5170b49c5f64ffcc11
 4b2cda69112b4d25c25da0df18cad55dd78fed78e9525c1f48ff5b86517af505
 48e7c4357cb3f19ca931951b502fcb4a50c18240d2b21c08e54f7086dde35637

 c31878e2250f105b1ac52f9584d9f3d67fd07f2795c20cd1fdbe738fa24f639b
 4b9f9894953843c5929885e7ca0bfc16fd6b718c7567f83f6cc6881b0c17fb48
 e00d90dea174fa51b07d2d991614630721c04d12810fe72a40dea8fd6edfa3f1

 fa4f949b0bd6c4f07aee82027c40521ccdc6f4f3d930335caa6dc9bc2fab5140

https://github.com/vrtadmin/goznym
http://www.cisco.com/c/en/us/support/security/amp-firepower-software-license/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
http://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
http://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
http://www.cisco.com/c/en/us/products/security/asa-next-generation-firewall-services/index.html
http://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html


13/13

a68cec90af59daa1e71b4a0c5cf07c62ddc5440e9b1d4303bd111526d0972881
7e42ec7809fd48590c1eb6c5f936187ce7c31177adff831837e9bcc7549ed440

 8ea0d38bd3857adc74eebafc548393ca982dbd7cb3a89a0499e453b05938cb6b
 aabd5d71c4251f8a56a0434c37ed88aba73d44bd45a66d054123c86665428778

361231d27c6fe4d3f9176c7c5ebfba96618d15ea29f52625ae522054f81115a0
 7b90dcf26d56cc4b6325675cb973f122c2d98904eff540afd917b0552aa9c68b
 169384f163eb14b23d2bab8a9269ebd8940b0ec51bcd1767d03c43052c0bb139

 443f5760fda53f19db6f483c2fcce5658bebaa3d40a9e535e7de4723f3b40e13
 212aded63a3af0996f183da175dbd69ad830299cf3b8d97c7e10535c50b29de9

 31c4ae8dbf12f4f9999929602cf24179011c30d1599d36db190af7d85ed2ac1b
 a56c177c39bfaa4c50d28b549f7b509299135e0bcd82fb694b21bcbde90a7c66
 328fa5803334650ac130105c08251d47a3f447f114ead9d012308e11769379cc
 06580e38fe29b2e7ce3a53df4c5ccb389eaa21b8a2f0f4e2dbd880b3c5c5a4cd

 c16036c5fc0c25970ba55e5e9d1bb0be8a4044f39495679deb4900c12c1e57e3
 46001cf7063cffc00f2fcea7828084f6537e7cc500f3372b2014ca42b21a0dcc

 cc86b2b5939ba56a33395121a618c61cfb7cde19fa76231a3a5e872bf1262f34

Malicious Binaries (SHA256)

17aa5711b59e389ffb65294b8281d3b5f39ca18ac1ac861327e7d8548f49a4d3
 eb10ec30f2fec3830daee6ad502e527ad6ef67e4591d545b1a84dde300b3edb5

55f9cd6cbed53ccc26d6d570807a18f91d9d8c10db352524df424f356d305a6e
 c58d987be377e4fa3d512a21fdb522bd894b8d91536330a9abebbb461fd093b7

 17aa5711b59e389ffb65294b8281d3b5f39ca18ac1ac861327e7d8548f49a4d3
 b98a835c6239c63a6ada26b92a4605264a9a36130bebe288b21c51edd750dea2

 87be9450f217180f09436d3307c7441d090ccfcedfcf6ce1275e8b0d2c9f4470
 9b52bd5194475d24b6f0e2d191a8e5bc943f80153a3768ce749dc5f93320e52f

 bac9c27a047a7fa4cb35f84fd7f63a87ce79e01c91944c48c35854cb891adf2c
 65a8909d4f61aff28a66ee4682c7722e68551fd2dc5fce2c8e160f89b2685971

3577f0b44ded3f0207910c5e624a7a2667fea4fff0416f8c3cc37995c494e9e2

Distribution Servers

morelikestoday[.]com
 carsi12[.]com

 sociallyvital[.]com

C2 Domains

mbcqjsuqsd[.]com
 kcrznhnlpw[.]com

 humzka[.]com


