
1/18

Hancitor (AKA Chanitor) observed using multiple attack
approaches

fireeye.com/blog/threat-research/2016/09/hancitor_aka_chanit.html

Breadcrumb

Threat Research

Ankit Anubhav, Dileep Jallepalli

Sep 23, 2016

5 mins read

Many threat actors use multiple attack vectors to ensure success. The individuals using
Hancitor malware (also known by the name Chanitor) are no exception and have taken three
approaches to deliver the malware in order to ultimately steal data from their victims. These
techniques include uncommon API abuse and PowerShell methods.

https://www.fireeye.com/blog/threat-research/2016/09/hancitor_aka_chanit.html

2/18

We recently observed Hancitor attacks against some of our FireEye Exploit Guard
customers. The malicious document used to deliver the Hancitor executable was observed
being distributed as an attachment in email spam. Once downloaded and executed, it drops
an intermediate payload that further downloads a Pony DLL and Vawtrak executable, which
perform data theft and connect to a command and control (C2) server.

Stage 1: Email Delivery

We observed a number of phishing emails that reference an invoice, as seen in Figure 1.
The attachment in these emails is a weaponized Microsoft Office document containing a
malicious macro that – when enabled – leads to the download of Hancitor.

Email with a malicious document attached

Figure 1: Email with a malicious document attached
Stage 2: Macro and Luring Mechanism

3/18

Upon opening the attachment, a typical luring mechanism is employed instructing the victim
to enable macros, as seen in Figure 2. FireEye has observed the attackers behind this
campaign using three different approaches.

Luring the victim to enable macros

Figure 2: Luring the victim to enable macros
First Approach

Unlike other malicious macros, this one is not using APIs directly to run the payload. Macros
can call APIs directly, but normally are not supposed to run shellcode. The macro used to
deliver Hancitor calls the native Windows API, “CallWindowProc”, which can be used to
interpret and execute shellcode, as depicted in Figure 3.

4/18

Code within the macro that uses the CallWindowProc API to execute shellcode

Figure 3: Code within the macro that uses the CallWindowProc API to execute shellcode
Second Approach

Recently, FireEye Exploit Guard captured Hancitor samples that leverage a new API
Callback function. In addition to “CallWindowProc”, Hancitor samples may use the function
EnumResourceTypesA to interpret and execute shellcode, as seen in Figure 4.

5/18

EnumResourceTypesA API declaration

Figure 4: EnumResourceTypesA API declaration
Third Approach

We also observed a third approach used by a malicious document file to deliver Hancitor.
Although the threat actor and command and control servers are similar to the second
Hancitor delivery approach, this one uses an alternate tactic to reach its goal of data theft.

With this approach, the luring message shown in the Figure 2 now serves another purpose.
Not only does it lure the victim into enabling the macros, but it also is assigned an alternate
text: “fkwarning”, as seen in Figure 5. The macro has code to check this attribute to make
sure the luring message shape object is present. If this object is not found, the macro will exit
without downloading additional payloads.

6/18

Code to ensure that the luring message is intact and the malicious document is
executed for the first time

Figure 5: Code to ensure that the luring message is intact and the malicious document is
executed for the first time
Even if it finds the luring message, it will run the macro once and will delete the shape so that
the macro will never be executed again, as seen in Figure 6.

7/18

Code to delete the shape that includes the lure message

Figure 6: Code to delete the

shape that includes the lure message
The malicious macro replaces the deleted image with another that displays the text “network
error” to reduce user suspicions, as shown in Figure 7. Note that text is always present in the
malicious macro, but it will only be made visible by the macro when it is executing for the first
time.

8/18

The hidden text that becomes visible once the macro is
executed for the first time

Figure 7: The hidden text that

becomes visible once the macro is executed for the first time
The macro then combines fragments of code to make a PowerShell command. However,
unlike in the other approaches, the malicious code is not hidden in the code or form or
metadata. We observed that the malware extracts malicious code fragments from within the
section_header of the embedded image and combines them into a PowerShell command on
the fly, as seen in Figure 8. This technique will evade some basic static methods of detection
applied to macros macro forms.

9/18

PowerShell command observed in header after increasing font size

Figure 8: PowerShell command observed in header after increasing font size
The malware authors have taken a very simple but interesting approach to obscure the
PowerShell command text. The font size is set to microscopic level 1, as seen in Figure 9.
This reduces the likelihood that a casual observer will notice something unusual.

10/18

Minimal font size to hide content of header

Figure 9: Minimal font size to hide content

of header
Using the “DownloadFile” method, PowerShell obtains a payload from an attacker-controlled
website in a ZIP archive format. PowerShell uses the “copyhere” function to unzip the
payload. The “.Item” attribute is also set to “16”, which ignores all warnings, as seen in
Figure 10.

11/18

Code to download archived payload and unzip it

Figure 10: Code to download archived payload and unzip it
Once the downloaded executable is extracted from the ZIP archive, the macro code deletes
the archive using the “Kill” function, as seen in Figure 11. After the executable is executed, it
downloads Pony and Vawtrak malware variants to steal data.

12/18

Code to delete the archive

Figure 11: Code to delete the archive

Different Approaches, Same Hancitor

Although there are differences between the second and third approaches to distributing
Hancitor, the objective of the threat actor is the same, as we found the same command and
control server being used in both approaches.

However, we can see a minor change in the second Hancitor approach command and
control servers when compared to the first Hancitor approach command and control servers,
with URLs ending with ls5/gate.php instead of ls4/gate.php, as seen in Figure 12.

13/18

Earlier and newer Hancitor gates

Figure 12: Earlier and newer

Hancitor gates
Stage 3: First stage payload

The file copies itself to “%system32%” and creates a registry run key entry for persistence.
Upon execution, it will communicate with an attacker-controller website to download a variant
of the Pony malware, “pm.dll” along with a standard Vawtrak trojan.

Stage 4: Second stage payload Pony data exfiltration capabilities

We observed a number of data theft capabilities in the second stage Pony variant, including:

1) Stealing autocomplete Intelliforms data, which may include user passwords, as seen in
Figure 13.

14/18

Stealing the content of the Intelliforms registry key

Figure 13: Stealing the content of the Intelliforms registry key
2) The unique GUID seen in Figure 14 helps to decrypt credentials from credential store.
There is a good amount of documentation on various forums on how to use this salted value
to access credentials.

15/18

Credential stealing

Figure 14: Credential stealing
3) Accessing Mozilla saved passwords from “signons.txt,” as seen in Figure 15.

16/18

Accessing Mozilla saved passwords

Figure 15: Accessing

Mozilla saved passwords
4) Figure 16 shows the malware code related to theft via accessing Microsoft OMI Email
configuration information. We can also see registry entries related to storing Outlook Profile,
which contains information about where emails and other data is stored being accessed.

17/18

Malware code for Outlook data theft via registry access

Figure 16: Malware code for Outlook data theft via registry access

Conclusion

The malware authors responsible for Hancitor have developed several capabilities within
malicious macros that support malware installation and data theft. These capabilities include
leveraging uncommon APIs and obscuring malicious PowerShell commands, tactics that
made detection more challenging.

FireEye Exploit Guard provides organizations with the ability to detect malicious shellcode in
the initial phase of the attack lifecycle, regardless of these evasion techniques.

FireEye recommends that organizations block macros in Microsoft Office documents that
originate from the Internet by Group Policy. In all cases, users should be cautious about

18/18

enabling macros and should practice vigilance about opening email messages from
untrusted sources.

