
1/25

Reversing GO binaries like a pro
rednaga.io/2016/09/21/reversing_go_binaries_like_a_pro/

2016-09-21
GO binaries are weird, or at least, that is where this all started out. While delving into some
Linux malware named Rex, I came to the realization that I might need to understand more
than I wanted to. Just the prior week I had been reversing Linux Lady which was also written
in GO, however it was not a stripped binary so it was pretty easy. Clearly the binary was
rather large, many extra methods I didn’t care about - though I really just didn’t understand
why. To be honest - I still haven’t fully dug into the Golang code and have yet to really write
much code in Go, so take this information at face value as some of it might be incorrect; this
is just my experience while reversing some ELF Go binaries! If you don’t want to read the
whole page, or scroll to the bottom to get a link to the full repo, just go here.

To illistrate some of my examples I’m going to use an extremely simple ‘Hello, World!’
example and also reference the Rex malware. The code and a Make file are extremely
simple;

Hello.go

package main

import "fmt"

func main() {

 fmt.Println("Hello,
World!")

}

Makefile

all:

GOOS=linux GOARCH=386 go build -o hello-stripped -ldflags "-s"
hello.go

GOOS=linux GOARCH=386 go build -o hello-normal hello.go

https://rednaga.io/2016/09/21/reversing_go_binaries_like_a_pro/
https://rednaga.io/2016/09/21/reversing_go_binaries_like_a_pro/
http://securityaffairs.co/wordpress/50556/malware/linux-rex-1-botnet.html
https://news.drweb.com/news/?i=10140&lng=en
https://github.com/strazzere/golang_loader_assist

2/25

Since I’m working on an OSX machine, the above GOOS and GOARCH variables are
explicitly needed to cross-compile this correctly. The first line also added the ldflags
option to strip the binary. This way we can analyze the same executable both stripped and
without being stripped. Copy these files, run make and then open up the files in your
disassembler of choice, for this blog I’m going to use IDA Pro. If we open up the unstripped
binary in IDA Pro we can notice a few quick things;

Well then - our 5 lines of code has turned into over 2058 functions. With all that overhead of
what appears to be a runtime, we also have nothing interesting in the main() function. If
we dig in a bit further we can see that the actual code we’re interested in is inside of
main_main ;

3/25

4/25

This is, well, lots of code that I honestly don’t want to look at. The string loading also looks a
bit weird - though IDA seems to have done a good job identifying the necessary bits. We can
easily see that the string load is actually a set of three mov s;

String load

mov ebx, offset aHelloWorld ; "Hello, World!"

mov [esp+3Ch+var_14], ebx ; Shove string into
location

mov [esp+3Ch+var_10], 0Dh ; length of string

This isn’t exactly revolutionary, though I can’t off the top of my head say that I’ve seen
something like this before. We’re also taking note of it as this will come in handle later on.
The other tidbit of code which caught my eye was the runtime_morestack_context call;

morestack_context

loc_80490CB:

call
runtime_morestack_noctxt

jmp main_main

This style block of code appears to always be at the end of functions and it also seems to
always loop back up to the top of the same function. This is verified by looking at the cross-
references to this function. Ok, now that we know IDA Pro can handle unstripped binaries,
lets load the same code but the stripped version this time.

5/25

Immediately we see some, well, lets just call them “differences”. We have 1329 functions
defined and now see some undefined code by looking at the navigator toolbar. Luckily IDA
has still been able to find the string load we are looking for, however this function now seems
much less friendly to deal with.

6/25

7/25

We now have no more function names, however - the function names appear to be retained
in a specific section of the binary if we do a string search for main.main (which would be
repesented at main_main in the previous screen shots due to how a . is interpreted by
IDA);

.gopclntab

.gopclntab:0813E174 db
6Dh ; m

.gopclntab:0813E175 db
61h ; a

.gopclntab:0813E176 db
69h ; i

.gopclntab:0813E177 db
6Eh ; n

.gopclntab:0813E178 db
2Eh ; .

.gopclntab:0813E179 db
6Dh ; m

.gopclntab:0813E17A db
61h ; a

.gopclntab:0813E17B db
69h ; i

.gopclntab:0813E17C db
6Eh ; n

Alright, so it would appear that there is something left over here. After digging into some of
the Google results into gopclntab and tweet about this - a friendly reverser George
(Egor?) Zaytsev showed me his IDA Pro scripts for renaming function and adding type
information. After skimming these it was pretty easy to figure out the format of this section so
I threw together some functionally to replicate his script. The essential code is shown below,
very simply put, we look into the segment .gopclntab and skip the first 8 bytes. We then
create a pointer (Qword or Dword dependant on whether the binary is 64bit or not). The
first set of data actually gives us the size of the .gopclntab table, so we know how far to
go into this structure. Now we can start processing the rest of the data which appears to be

https://twitter.com/groke1105
https://gitlab.com/zaytsevgu/goutils

8/25

the function_offset followed by the (function) name_offset). As we create pointers to
these offsets and also tell IDA to create the strings, we just need to ensure we don’t pass
MakeString any bad characters so we use the clean_function_name function to strip

out any badness.

renamer.py

def create_pointer(addr, force_size=None):

 if force_size is not 4 and (idaapi.get_inf_structure().is_64bit() or
force_size is 8):

 MakeQword(addr)

return Qword(addr), 8

 else:

MakeDword(addr)

return Dword(addr), 4

STRIP_CHARS = ['(', ')', '[', ']', '{', '}', ' ', '"']

REPLACE_CHARS = ['.', '*', '-', ',', ';', ':', '/', '\xb7']

def clean_function_name(str):

 # Kill generic 'bad' characters

 str = filter(lambda x: x in string.printable, str)

 for c in STRIP_CHARS:

 str = str.replace(c, '')

 for c in REPLACE_CHARS:

 str = str.replace(c, '_')

 return str

def renamer_init():

 renamed = 0

 gopclntab = ida_segment.get_segm_by_name('.gopclntab')

 if gopclntab is not None:

 # Skip unimportant header and goto section size

 addr = gopclntab.startEA + 8

 size, addr_size = create_pointer(addr)

 addr += addr_size

9/25

 # Unsure if this end is correct

 early_end = addr + (size * addr_size * 2)

 while addr < early_end:

 func_offset, addr_size = create_pointer(addr)

 name_offset, addr_size = create_pointer(addr + addr_size)

 addr += addr_size * 2

 func_name_addr = Dword(name_offset + gopclntab.startEA + addr_size) +
gopclntab.startEA

 func_name = GetString(func_name_addr)

 MakeStr(func_name_addr, func_name_addr + len(func_name))

 appended = clean_func_name = clean_function_name(func_name)

 debug('Going to remap function at 0x%x with %s - cleaned up as %s' %
(func_offset, func_name, clean_func_name))

 if ida_funcs.get_func_name(func_offset) is not None:

 if MakeName(func_offset, clean_func_name):

 renamed += 1

 else:

 error('clean_func_name error %s' % clean_func_name)

 return renamed

def main():

 renamed = renamer_init()

 info('Found and successfully renamed %d functions!' % renamed)

10/25

The above code won’t actually run yet (don’t worry full code available in this repo) but it is
hopefully simple enough to read through and understand the process. However, this still
doesn’t solve the problem that IDA Pro doesn’t know all the functions. So this is going to
create pointers which aren’t being referenced anywhere. We do know the beginning of
functions now, however I ended up seeing (what I think is) an easier way to define all the
functions in the application. We can define all the functions by utilizing
runtime_morestack_noctxt function. Since every function utilizes this (basically, there is

https://github.com/strazzere/golang_loader_assist

11/25

an edgecase it turns out), if we find this function and traverse backwards to the cross
references to this function, then we will know where every function exists. So what, right? We
already know where every function started from the segment we just parsed above, right?
Ah, well - now we know the end of the function and the next instruction after the call to
runtime_morestack_noctxt gives us a jump to the top of the function. This means we

should quickly be able to give the bounds of the start and stop of a function, which is
required by IDA, while seperating this from the parsing of the function names. If we open up
the window for cross references to the function runtime_morestack_noctxt we see there
are many more undefined sections calling into this. 1774 in total things reference this
function, which is up from the 1329 functions IDA has already defined for us, this is
highlighted by the image below;

After digging into mutliple binaries we can see the runtime_morestack_noctext will
always call into runtime_morestack (with context). This is the edgecase I was referencing
before, so between these two functions we should be able to see cross refereneces to ever
other function used in the binary. Looking at the larger of the two functions,
runtime_more_stack , of multiple binaries tends to have an interesting layout;

12/25

13/25

The part which stuck out to me was mov large dword ptr ds:1003h, 0 - this appeared
to be rather constant in all 64bit binaries I saw. So after cross compiling a few more I noticed
that 32bit binaries used mov qword ptr ds:1003h, 0 , so we will be hunting for this
pattern to create a “hook” for traversing backwards on. Lucky for us, I haven’t seen an
instance where IDA Pro fails to define this specific function, we don’t really need to spend
much brain power mapping it out or defining it outselves. So, enough talk, lets write some
code to find this function;

find_runtime_morestack.py

def create_runtime_ms():

 debug('Attempting to find runtime_morestack function for hooking on...')

 text_seg = ida_segment.get_segm_by_name('.text')

 # This code string appears to work for ELF32 and ELF64 AFAIK

 runtime_ms_end = ida_search.find_text(text_seg.startEA, 0, 0, "word ptr
ds:1003h, 0", SEARCH_DOWN)

 runtime_ms = ida_funcs.get_func(runtime_ms_end)

 if idc.MakeNameEx(runtime_ms.startEA, "runtime_morecontext", SN_PUBLIC):

 debug('Successfully found runtime_morecontext')

 else:

 debug('Failed to rename function @ 0x%x to runtime_morestack' %
runtime_ms.startEA)

 return runtime_ms

After finding the function, we can recursively traverse backwards through all the function
calls, anything which is not inside an already defined function we can now define. This is
because the structure always appears to be;

golang_undefined_function_example

14/25

.text:08089910 ; Function start - however
undefined currently according to IDA Pro

.text:08089910 loc_8089910: ; CODE XREF:

.text:0808994B

.text:08089910 ; DATA XREF:
sub_804B250+1A1

.text:08089910 mov ecx, large gs:0

.text:08089917 mov ecx, [ecx-4]

.text:0808991D cmp esp, [ecx+8]

.text:08089920 jbe short loc_8089946

.text:08089922 sub esp, 4

.text:08089925 mov ebx, [edx+4]

.text:08089928 mov [esp], ebx

.text:0808992B cmp dword ptr [esp], 0

.text:0808992F jz short loc_808993E

.text:08089931

.text:08089931 loc_8089931: ; CODE XREF:

.text:08089944

.text:08089931 add dword ptr [esp], 30h

.text:08089935 call sub_8052CB0

.text:0808993A add esp, 4

.text:0808993D retn

.text:0808993E ; --

.text:0808993E

.text:0808993E loc_808993E: ; CODE XREF:

.text:0808992F

.text:0808993E mov large ds:0, eax

.text:08089944 jmp short loc_8089931

.text:08089946 ; --

.text:08089946

.text:08089946 loc_8089946: ; CODE XREF:

.text:08089920

15/25

.text:08089946 call runtime_morestack ; "Bottom" of function,
calls out to runtime_morestack

.text:0808994B jmp short loc_8089910 ; Jump back to the "top"
of the function

The above snippet is a random undefined function I pulled from the stripped example
application we compiled already. Essentially by traversing backwards into every undefined
function, we will land at something like line 0x0808994B which is the call
runtime_morestack . From here we will skip to the next instruction and ensure it is a jump
above where we currently are, if this is true, we can likely assume this is the start of a
function. In this example (and almost every test case I’ve run) this is true. Jumping to
0x08089910 is the start of the function, so now we have the two parameters required by
MakeFunction function;

traverse_functions.py

def is_simple_wrapper(addr):

 if GetMnem(addr) == 'xor' and GetOpnd(addr, 0) == 'edx' and GetOpnd(addr, 1)
== 'edx':

 addr = FindCode(addr, SEARCH_DOWN)

 if GetMnem(addr) == 'jmp' and GetOpnd(addr, 0) == 'runtime_morestack':

 return True

 return False

def create_runtime_ms():

 debug('Attempting to find runtime_morestack function for hooking on...')

 text_seg = ida_segment.get_segm_by_name('.text')

 # This code string appears to work for ELF32 and ELF64 AFAIK

 runtime_ms_end = ida_search.find_text(text_seg.startEA, 0, 0, "word ptr
ds:1003h, 0", SEARCH_DOWN)

 runtime_ms = ida_funcs.get_func(runtime_ms_end)

 if idc.MakeNameEx(runtime_ms.startEA, "runtime_morestack", SN_PUBLIC):

16/25

 debug('Successfully found runtime_morestack')

 else:

 debug('Failed to rename function @ 0x%x to runtime_morestack' %
runtime_ms.startEA)

 return runtime_ms

def traverse_xrefs(func):

 func_created = 0

 if func is None:

 return func_created

 # First

 func_xref = ida_xref.get_first_cref_to(func.startEA)

 # Attempt to go through crefs

 while func_xref != 0xffffffffffffffff:

 # See if there is a function already here

 if ida_funcs.get_func(func_xref) is None:

 # Ensure instruction bit looks like a jump

 func_end = FindCode(func_xref, SEARCH_DOWN)

 if GetMnem(func_end) == "jmp":

 # Ensure we're jumping back "up"

 func_start = GetOperandValue(func_end, 0)

 if func_start < func_xref:

 if idc.MakeFunction(func_start, func_end):

 func_created += 1

 else:

 # If this fails, we should add it to a list of failed
functions

 # Then create small "wrapper" functions and backtrack
through the xrefs of this

 error('Error trying to create a function @ 0x%x - 0x%x' %
(func_start, func_end))

 else:

 xref_func = ida_funcs.get_func(func_xref)

17/25

 # Simple wrapper is often runtime_morestack_noctxt, sometimes it
isn't though...

 if is_simple_wrapper(xref_func.startEA):

 debug('Stepping into a simple wrapper')

 func_created += traverse_xrefs(xref_func)

 if ida_funcs.get_func_name(xref_func.startEA) is not None and 'sub_'
not in ida_funcs.get_func_name(xref_func.startEA):

 debug('Function @0x%x already has a name of %s; skipping...' %
(func_xref, ida_funcs.get_func_name(xref_func.startEA)))

 else:

 debug('Function @ 0x%x already has a name %s' %
(xref_func.startEA, ida_funcs.get_func_name(xref_func.startEA)))

 func_xref = ida_xref.get_next_cref_to(func.startEA, func_xref)

 return func_created

def find_func_by_name(name):

 text_seg = ida_segment.get_segm_by_name('.text')

 for addr in Functions(text_seg.startEA, text_seg.endEA):

 if name == ida_funcs.get_func_name(addr):

 return ida_funcs.get_func(addr)

 return None

def runtime_init():

 func_created = 0

 if find_func_by_name('runtime_morestack') is not None:

 func_created += traverse_xrefs(find_func_by_name('runtime_morestack'))

 func_created +=
traverse_xrefs(find_func_by_name('runtime_morestack_noctxt'))

 else:

 runtime_ms = create_runtime_ms()

 func_created = traverse_xrefs(runtime_ms)

 return func_created

18/25

19/25

That code bit is a bit lengthy, though hopefully the comments and concept is clear enough. It
likely isn’t necessary to explicitly traverse backwards recursively, however I wrote this prior to
understanding that runtime_morestack_noctxt (the edgecase) is the only edgecase that I
would encounter. This was being handled by the is_simple_wrapper function originally.
Regardless, running this style of code ended up finding all the extra functions IDA Pro was
missing. We can see below, that this creates a much cleaner and easier experience to
reverse;

20/25

This can allow us to use something like Diaphora as well since we can specifically target
functions with the same names, if we care too. I’ve personally found this is extremely useful
for malware or other targets where you really don’t care about any of the framework/runtime
functions. You can quiet easily differentiate between custom code written for the binary, for
example in the Linux malware “Rex” everything because with that name space! Now onto the
last challenge that I wanted to solve while reversing the malware, string loading! I’m honestly
not 100% sure how IDA detects most string loads, potentially through idioms of some sort?
Or maybe because it can detect strings based on the \00 character at the end of it?
Regardless, Go seems to use a string table of some sort, without requiring null character.
The appear to be in alpha-numeric order, group by string length size as well. This means we
see them all there, but often don’t come across them correctly asserted as strings, or we see
them asserted as extremely large blobs of strings. The hello world example isn’t good at
illistrating this, so I’ll pull open the main.main function of the Rex malware to show this;

https://github.com/joxeankoret/diaphora

21/25

I didn’t want to add comments to everything, so I only commented the first few lines then
pointed arrows to where there should be pointers to a proper string. We can see a few
different use cases and sometimes the destination registers seem to change. However there
is definitely a pattern which forms that we can look for. Moving of a pointer into a register,
that register is then used to push into a (d)word pointer, followed by a load of a lenght of the
string. Cobbling together some python to hunt for the pattern we end with something like the
pseudo code below;

string_hunting.py

Currently it's normally ebx, but could in theory be anything - seen ebp

VALID_REGS = ['ebx', 'ebp']

22/25

Currently it's normally esp, but could in theory be anything - seen eax

VALID_DEST = ['esp', 'eax', 'ecx', 'edx']

def is_string_load(addr):

 patterns = []

 # Check for first part

 if GetMnem(addr) == 'mov':

 # Could be unk_ or asc_, ignored ones could be loc_ or inside []

 if GetOpnd(addr, 0) in VALID_REGS and not ('[' in GetOpnd(addr, 1) or
'loc_' in GetOpnd(addr, 1)) and('offset ' in GetOpnd(addr, 1) or 'h' in
GetOpnd(addr, 1)):

 from_reg = GetOpnd(addr, 0)

 # Check for second part

 addr_2 = FindCode(addr, SEARCH_DOWN)

 try:

 dest_reg = GetOpnd(addr_2, 0)[GetOpnd(addr_2, 0).index('[') +
1:GetOpnd(addr_2, 0).index('[') + 4]

 except ValueError:

 return False

 if GetMnem(addr_2) == 'mov' and dest_reg in VALID_DEST and ('[%s' %
dest_reg) in GetOpnd(addr_2, 0) and GetOpnd(addr_2, 1) == from_reg:

 # Check for last part, could be improved

 addr_3 = FindCode(addr_2, SEARCH_DOWN)

 if GetMnem(addr_3) == 'mov' and (('[%s+' % dest_reg) in
GetOpnd(addr_3, 0) or GetOpnd(addr_3, 0) in VALID_DEST) and 'offset ' not in
GetOpnd(addr_3, 1) and 'dword ptr ds' not in GetOpnd(addr_3, 1):

 try:

 dumb_int_test = GetOperandValue(addr_3, 1)

 if dumb_int_test > 0 and dumb_int_test < sys.maxsize:

 return True

 except ValueError:

 return False

def create_string(addr, string_len):

 debug('Found string load @ 0x%x with length of %d' % (addr, string_len))

 # This may be overly aggressive if we found the wrong area...

23/25

 if GetStringType(addr) is not None and GetString(addr) is not None and
len(GetString(addr)) != string_len:

 debug('It appears that there is already a string present @ 0x%x' % addr)

 MakeUnknown(addr, string_len, DOUNK_SIMPLE)

 if GetString(addr) is None and MakeStr(addr, addr + string_len):

 return True

 else:

 # If something is already partially analyzed (incorrectly) we need to
MakeUnknown it

 MakeUnknown(addr, string_len, DOUNK_SIMPLE)

 if MakeStr(addr, addr + string_len):

 return True

 debug('Unable to make a string @ 0x%x with length of %d' % (addr,
string_len))

 return False

24/25

The above code could likely be optimized, however it was working for me on the samples I
needed. All that would be left is to create another function which hunts through all the
defined code segments to look for string loads. Then we can use the pointer to the string and
the string length to define a new string using the MakeStr . In the code I ended up using,
you need to ensure that IDA Pro hasn’t mistakenly already create the string, as it sometimes
tries to, incorrectly. This seems to happen sometimes when a string in the table contains a
null character. However, after using code above, this is what we are left with;

25/25

This is a much better piece of code to work with. After we throw together all these functions,
we now have the golang_loader_assist.py module for IDA Pro. A word of warning though, I
have only had time to test this on a few versions of IDA Pro for OSX, the majority of testing
on 6.95. There is also very likely optimizations which should be made or at a bare minimum
some reworking of the code. With all that said, I wanted to open source this so others could
use this and hopefully contribute back. Also be aware that this script can be painfully slow
depending on how large the idb file is, working on a OSX El Capitan (10.11.6) using a 2.2
GHz Intel Core i7 on IDA Pro 6.95 - the string discovery aspect itself can take a while. I’ve
often found that running the different methods seperately can prevent IDA from locking up.
Hopefully this blog and the code proves useful to someone though, enjoy!

https://github.com/strazzere/golang_loader_assist/blob/master/golang_loader_assist.py

