
1/5

The curious case of BLATSTING's RSA implementation
laanwj.github.io/2016/09/13/blatsting-rsa.html

Laanwj's blog

Randomness

Blog About
Among BLATSTING’s modules is one named crypto_rsa . According to the name one’d
expect it to implement the well-known asymmetric cryptosystem going under that name.

RSA

One’d expect an encryption operation

o = m^e (mod n)

and a matching decryption operation

o = m^d (mod n)

where m is the message, n is the RSA modulus (p times q), and e and d are the encryption
and decryption exponent respectively, parameters computed during key generation and
stored in a public or private key structure.

The interface

crypto_rsa offers four functions:

https://laanwj.github.io/2016/09/13/blatsting-rsa.html
https://laanwj.github.io/
https://laanwj.github.io/
https://laanwj.github.io/
https://laanwj.github.io/about
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

2/5

i01020000 crypto_rsa

 + 0x14: 2 args create_ctx(keyblock,size)
 Allocates a context, endian-swaps and copies the key data.

 + 0x18: 4 args encrypt(ctx, inptr, outptr, inlen)
 Performs (supposedly) RSA encryption using a fixed exponent e=65537

 + 0x1c: 0 args dummy()
 Unimplemented, just "ret"

 + 0x20: 1 args free_ctx(ctx)
 Frees the context ctx

Apparently the interface only offers encryption, likely used for signature verification. The
keyblock is a structure of 544 bytes containing a (up to 1024 bit) RSA key, with various
bignum parameters represented by arrays of 32-bit integers;

struct key_block {
 uint32_t n[32]; // modulus
 uint32_t unk0[32]; // Unused
 uint32_t x[32]; // ?
 uint32_t unk1[32]; // Unused
 uint32_t unk2; // Unused
 uint32_t fudge; // ?
 uint32_t padding[6];
};

The fixed exponent e is not encoded in this structure.

But what are those extra fields for, x and fudge?

Curioser and curioser

Here’s a Python version of what encrypt does:

3/5

def weirdmod(a, b, fudge): # function at 0x08000cd4
 # tally: 32 integer multiplications, 32 bn_muls, 32 bn_adds, 1 bn_compare, 1
bn_sub
 v = a
 for i in range(32):
 v = ((((fudge * (v&0xffffffff))&0xffffffff) * b) + v) >> 32
 if v > b:
 v -= b
 return v

RSA according to BLATSTING
def bs_rsa_encrypt(ctx, temp): # function factored out for clarity
 # pre-multiplication
 temp = weirdmod(temp * ctx.x, ctx.n, ctx.fudge)

 # m ** 65537 mod n
 to = temp
 for i in range(16):
 to = weirdmod(to * to, ctx.n, ctx.fudge)
 temp = weirdmod(temp * to, ctx.n, ctx.fudge)

 return weirdmod(temp, ctx.n, ctx.fudge)

def bs_rsa_encrypt_outer(ctx, inptr, outptr, len): # function at 0x08000170
 temp = memcpy_bswap4_in(inptr, len)
 temp = bs_rsa_encrypt(ctx, temp)
 memcpy_bswap4_out(outptr, temp, len)

Broadly it looks like a RSA encrypt operation with a hard-coded exponent of 65537 (which
is standard), except that an unconventional pre-multiplication with x is done. After each
operation a mod is applied to bring the result back within the range [0..n-1].

But wait: note that weird_mod does not actually, as would be first expected, implement a
modulus operator. I’m honestly not sure what it is. Unlike mod, applying it repeatedly to a
value does not yield the same result, applying it to 1 does not yield 1. What use would they
have for such a a mutilated version of RSA?

Call site

The only place where this module is used from is TADAQUEOUS, from the hooked function
__add_ipsec_sa . It supplies the following parameters:

http://www.ietf.org/rfc/rfc4871.txt
https://laanwj.github.io/2016/09/01/tadaqueos.html

4/5

class Context:
 n =
0xd257c42f17e16815bef4c2f3fede55b5b7ed35fa4ae040aac0515a7bc662f564ac4e98272b61c24b6665

 unk0 =
0x2da83bd0e81e97ea410b3d0c0121aa4a4812ca05b51fbf553faea584399d0a9b53b167d8d49e3db4999a

 x =
0x76bc66dabca44047215cedfe4b6182cee4a9af38201d5b83ea8b3ab5ad7a05e835327be2337d8c302adb

 unk1 = 0
 unk2 = 1
 fudge = 0xbb4d023f

Surprise

So imagine my surprise when I tried it out and compared, using the above parameters:

Conventional RSA
def rsa_encrypt(ctx, m):
 return pow(m, 65537, ctx.n)

Try with random 1024-bit value
ctx = Context()
m = random.randint(0, (1<<1024)-1)

Compare results
assert(rsa_encrypt(ctx, m) == bs_rsa_encrypt(ctx, m))

The result matches convential RSA without pre-multiplication and with a normal expmod
operator! So it is some kind of optimization, but I had not seen it before, which doesn’t say
that much, but it’s not part of e.g. OpenSSL. Edit: it is, according to k240df and martins_m on
reddit this is Montgomery reduction which is in OpenSSL under crypto/bn/bn_mont.c .
The thought came up when writing this that it was Montgomery reduction but I did not
recognize it as such.

I’m not up to date with the state of the art is with regard to efficient bignum arithmetic.
Assuming 1024-bit numbers: A naive modulus implementation based on long division would
take up to 1024 bignum comparisons and 1024 bignum subtractions, whereas the
weird_mod operation takes 32 integer multiplications, 32 bignum muls, 32 bignum adds, 1

bignum compare, and 1 bignum sub. Whether it is a win depends on how bignum
multiplication is implemented. A naive bignum multiplication would take up to 32*32 integer
multiplications and 32 bignum adds in which case it would not really help. I have not studied
the particular bn_mul implementation in BLATSTING (address 0x080004a0 *).

Independent of the performance characteristics, I think this alternative implementation is
worth highlighting, as it is in things like this that the Equation Group keeps true to their name.
It looks like a form of Barrett reduction, turning divisions into multiplies, and precomputing a

https://www.reddit.com/r/ReverseEngineering/comments/52kr47/the_curious_case_of_blatstings_rsa_implementation/
https://en.wikipedia.org/wiki/Barrett_reduction

5/5

multiplicant over the exact number of modular reductions required. Edit: apparently this is a
well-known optimization called Montgomery Reduction. Disappointing, I had hoped to catch
at least some crypto magic in the act.

* All mentioned memory addresses are as shown by radare2, which loads the ELF part of
Firewall/BLATSTING/BLATSTING_201381/LP/lpconfig/m01020000/m01020000.impmod at 0x08000000.

Written on September 13, 2016

Tags: eqgrp malware cryptography
Filed under Reverse-engineering

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
https://laanwj.github.io/tags/#eqgrp
https://laanwj.github.io/tags/#malware
https://laanwj.github.io/tags/#cryptography
https://laanwj.github.io/categories/#reverse-engineering

