H1N1: Technical analysis reveals new capabilities

Josh Reynolds September 13, 2016

This blog is the first in a 3 part series that will provide an in-depth technical analysis on the
H1N1 malware. I'll be looking at how H1N1 has evolved, its obfuscation, analyzing its
execution including new information stealing and user account control bypass capabilities,
and finally exploring how we are both using and influencing security tools with this research.

Overview

Through the use of general characteristics exhibited by malware authors we are able to
broadly categorize and positively identify malicious samples. These characteristics,
discussed in The General Behavior of Ransomware are indexed in a database, which allows
us to identify patterns, outliers and obtain greater visibility and insight into various threats.

H1N1’s evolution: past and present

These data sets provide insight into the ever-growing attack vectors that affect our
customers, which include malware delivery mechanisms. In this blog series we highlight
newly added functionality to a malware variant that started out as being a ‘loader’ (strictly
provides capabilities of loading other more complex malware variants) known as H1N1, and
has now evolved into an information stealing variant.

Throughout the data mining exercises conducted by my colleagues and | on the AMP Threat
Grid Research & Efficacy Team (RET) we have observed a widely distributed campaign
using VBA macros to infect machines with a variant of information-stealing malware. Based
on the initial characteristics observed by AMP Threat Grid we believed these malicious
documents were distributing a Ransomware variant; however, we later found the dropped
executables to be a variant of the H1N1 loader. H1N1 is a loader malware variant that has
been known to deliver Pony DLLs and Vawtrak executables to infected machines. Upon
infection, H1N1 previously only provided loading and system information reporting
capabilities.’?

Key findings from our analysis include:

e Unique obfuscation techniques

* A novel DLL hijacking vulnerability resulting in a User Account Control bypass
o Added information stealing capabilities

o Self-propagation/lateral movement capabilities

1/12

https://blogs.cisco.com/security/h1n1-technical-analysis-reveals-new-capabilities
http://blogs.cisco.com/tag/h1n1-malware
https://blogs.cisco.com/security/the-general-behavior-of-ransomware
http://www.cisco.com/web/go/amptg

Background

H1N1 has added a plethora of new functionality in comparison to earlier reports. Throughout
this blog series we will be analyzing the capabilities of HIN1 including: obfuscation, a User
Account Control (UAC) bypass, information stealing, data exfiltration, loader/dropper, and
self-propagation/lateral movement techniques used by this variant.'2

Infection Vector

The use of Visual Basic macros is nothing new, however, in recent months they have
become one of the most popular infection vectors for all malware types, especially for
Ransomware campaigns. These macros vary in sophistication from performing the download
and execution of hosted binaries, to dropping the binaries themselves. In this campaign we
see the latter where the document ships an entire encoded binary within the text box of a
VBA macro form. All documents throughout this campaign have used a common naming
convention in the following formats:

[domain]_card_screenshot.doc

e confirmation_[random integers].doc

e bank_confirmation_[random integers].doc

e debit_request_[random integers].doc

o creditcard_statement_[random integers].doc
e jnsurance_[random integers].doc

e inventory_list_[random integers].doc

e debt_[random integers].doc

The domains for the first format observed include the financial, energy, communications,
military and government sectors. Unsurprisingly, these documents are delivered through
spear-phishing e-mail campaigns. A number of subject headings can be observed in
VirusTotal:

= Attached in emails

«| Hie: unkmown charge on my card | danise@chelspaciales.com” cdénise@chelspeciallies. com:s)
[+] Re: unknown charge on my card (“denise@chefspecialies. com® <denise@chefspecialties.com:)
[+] FW: Re: unknown change on my card (*Gayle Chaffey” <gaylec@skiwhitefish.com:)
[+] Re: unkmown charge on my card (“denise@chefapecialties. com® «denise@chefzpecialties.com:)
[+] Re: unkmown charge on my card (“denise@chefspecialties.com” <denise@chefspecialties.com:z)
[+] Be: unknown charge on my card (“denise@chefspecialiies com” <denise@chefspecialties.com:] Flgure 1 O
[+] Re: unknown charge on my card (“denise@chefspecialties. com® <denise@chalspecialties.com:)

:-| Rea: unknmown charge on my card (denise@chefspacialties.com” cdenisa@chalfspacialties.com:»)

& In-the-wild file nameas

au. bureauverilas. com_card_screenshol.doc

chicagodisplay.com_card_screenshol.doc

Attached e-mail subject headings in VirusTotal for identified documents

2/12

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig1.png

Although the specified domain in the filename differentiates between targets, the lure
message within the phishing e-mail does not vary drastically, for example:

What is this $351.20 charge on my credit card?

It shows this amount charged by cchsfs.com.

Please check the screenshot i have attached and tell me what is this about?
Thank you

Denise Allen

Chef Specialties

P: B14 82006435

F: 814, 8784486

Figure 2.0:

From nobody Thu Jun 16 2@:29:02 2016
Content-Type: application/msword;

names="cchsfs. com_card_screenshot. doc”

Example phishing message within attached e-mail
The remaining formats appear to simply seem enticing enough to open being related finance,
corporate or personal information.

Upon opening the document, the attacker attempts to social engineer the user into executing
the malicious macro content by stating it will adjust to their version of Microsoft Word:

3/12

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig2.png

Home Insert Page Layout References Mailings Review WView

e

__=] -) Times NewRom = 12 = A" A" Aa- &, ZT-i=-%z- EE 4] AaBbCel AaBh(| AaBbCel | AaBhCel
Paste . s B AL [E= ==t | By
e Fromatrainter B 4 U T e X X Z-A-|IE=E=2 = A E Emphasis Headingl | 1 Nomal Strong
Clipboard a | Font Al Paragraph

I SOMETHING WENT WRONG Enable Content to load the document.

Enable content to adjust this document
to your version of Microsoft Word™

MOFf@ tisp W 0zO0E"S & M-fw.CUE~dg(B31i JR*;¥2% A21G1
3fRI-f_<*kROOz,_#mil, e 0Ce-
E ,Enmlr—:sinml §2671" _wGOE CAA: m:* [CE [?8NE_1_~Ye¥piM 4Pi°&a ri1/
C4*RaEACK, °_—WRewet+_ HOAAB\E-CB+ w°P
<BEOIE,—.r&; B4 b, 11 Ir¢ efs3 \died) "t §_ -
CnloaXLi - vZ0=71izav sewq_;_zmmz 6; 0+wW__i0Q,0e8 ~ &=(& »SETZZ,/—
+Exh_©77,84-n"2YY _OB«!/azéX~
, *VEE, 1. »—a‘byzl SESEVe«® f_X6X_; 94icO;, S«U'RWM/H°"1.8VCFiPl ':j5']5R
"E%: 8H *fd[8™1 MASAM&\ B”.;OIEvi“< ‘A L[QS- —
&924f, dozu EY s xf -
EWE+ga™ 11,30 _.Re"8¢~Z_«diiviAa~! Bb;B=0-* 0§z dxi;dan"72&_0j_e-
*~fizEh oiMig EIE_9°'R1BX@N-ad Ff_UPe_ > § 1-
tc0*® 4,9 S@¢_) 8% h~ _~46(;0([a_ T:E= U#qo"'(ﬂb?ﬁiéﬁ - _fik-;€ 7t
_YdoRib¢® ubk_L¥d—"@D) 65 "I

s/é13a01_2_sAI_ ¢BIi_ud:ME_$30Ue]F %" _#14Ri_ :p_-_Blmc>ols|
u_eldS_& ekv”)_Z_RaSE*n _>usbd
L -
VG__R1 (UcEHIG;Cc IngE-, A" Sta?0sul_*4:3-Miz8|evR_w<®i (UAHR_EwWAE nris\
»za48-Upsc__ABA" “0Ex-LveN|DL_aj--4- 8jnl_+ =~ (=¥fi BI-»EQ&xME
.QP; [_51-
ul 8 13 mD 82.% diefosirvid:Uu'P "+ (B#igde<RB*cUA +:U*Va™ ¥id

Figure 3.0: Social engineering content of document to open macros

Dropper Obfuscation

The VBA macro is highly obfuscated, making use of many VBA tricks to hide its true intent.
These include the use of string functions: StrReverse, Ucase, Lcase, Right, Mid, and Left.
For example, the following gets the %temp% path:

4/12

https://storage.googleapis.com/blogs-images/ciscoblogs/1/H1N1-fig-3.png

Fumccion bBackjyearsd()

If tan(63) > 73 Then
foolishness = emcathedra
Else

Dim nocemigonus Rs Byre
Die napssacing As Variant
user = Mid(*"witiumScrmoidezr®, 7, 3) & Hid("nappyiptinloam®, 6, %) & Hid("clovisg.biology®, 7, 2)
End If

misanchrope = 28 + 40
Selece Cass missanthrops
Case 28 To 313

Dim herbivorous As Variant

Figure 4.0:

Dim debatable ks Lang

actempered = lncompeCent

Case= 58

synoglossidas = Dease ("Fi%) + Stchleverse ("cceiblimetsySel™)
south = wser + cynoglosaidae

Dim corner As Long

End Select

Set sung = VBL.CreateObject (sooth)

iea = 75 + 5 - B3

backgeared = CallByName [sung, "GetSpecialFolder™, iea, Z7 = 21 - 4) I
End Funcrison

String obfuscation mechanisms to get %temp%
Mid is used here to produce “. Scripting”, Ucase and StrReverse are used to produce

“FlleSystemObiject”, which is used to create a VBA FileSystemObiject, that is then used with

GetSpecialFolder, and some basic arithmetic resulting in “2” to get %temp%.As mentioned,
the binary to be executed is extracted from a VBA form text box:

VBA form containing obfuscated PE within text box

The text box content is set into a variable, which is then passed off to a de-obfuscation
function. The core de-obfuscation functionality is a two steps process. The first is an XOR
loop with a fixed byte key of OXE, which produces a base64 encoded portable executable
(PE):

For winesap = 0 To UBound (asatas)

aestas (winesap) = aestas(winesap) Xor 14 Figure 6.0: XOR decoding/de-obfuscation loop
NHext winesap

The second is a VBA implementation of base64 that decodes it to produce a final Portable
Executable (PE):

5/12

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig4.png
https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig5.png
https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig6.png

kahikatea = 3trConvasatas, vblUnicode)
schoolmiscress = 1

For omnipresence = 0 To 288

Selmot Case amnipressnoe

Cass 65 To #0

adaptability ([omnipresence) = omnipressnce - 65

Case 97 To 122

adaptabilicy [omnipressnce) = gmnipresence = T1

Cazs 48 Ta 57

adaptability [omnipressnce] = cmnipressnce = 4

Case 43

adaprtabilicy [omnipresence) = &2

Case 47

adaprabilicy [omnipressnce) = §3

End Select

Mext omnipresence

For omnipresence = 0 To &3

ulva(omnipressnos) = amnipressnos T SWwap

crooimeck (oEnipresence) = oEnipresencs * siasats Flgure 7 0
lepisoateus (omnipresence) = genipresence * gallancly b
Hext ornipresencs

crestfallen = Strlonvikahikatea, vbFromUnicode)

exact = 81 - 47

ReDim sheath|[((UBound (crescfallen]) + 1) % sxacc) * 3) = 1)

Far fisf = 0 Te UBsund (srestfallsn) Scep 4

frugal = lepiscsteus (adaptability|crestfallen(fiefj}} + crookneck|adaptability(crestfallen|fief + 1})) +
ulvae(adaptability{orestfallen(fief + 2))) + adaptabilityiorestfallen(fief + 3))
omnipresence = frugal And dicIoSTORYX

aheach (compatible) = amniprasence ' SCSTARY

emfipressnce = frogal hnd peticsle

sheath (compatible + 1) = cmnipresence % daisylike

sheach (compatible = 2) = frugel And kacliang

compatible = compacible + 3

Hext fief

coptia = Strionv(sheath; vhinicode)

If schoolmistress Then copcis = Lefrs (copris, Len|copris) sohoolnd stress)
vorstellen = copris

End Functiono

VBA Base64 implementation

The de-obfuscated executable is then written to %temp% and executed. We can follow the
execution flow through the use of process visualization in AMP Threat Grid. What this
provides is graphed process interactions (child-parent relationships) for the entirety of the
run. In the case of the H1N1 malicious document, it is very apparent that WINWORD.EXE is
executing a separate binary:

6/12

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig7.png

Process Tree for Sample f8a31d66bced034372c3485dfd491c71

Legend

Procesa with additional activity
B
=y ach
- Figure 8.0:
—
1n|n--:r—|—D
|m-|:qu-mo
|m-mﬂnmo m-mﬁ' Hu-m-uz'a am-pum-o m--ﬂ—tnc'

Process graph showing execution of dropped executable from Microsoft Word

Unpacking

The binary has a total of three routines responsible for unpacking and injection. The first
routine injects via the following steps:

Unpacking algorithm unpacks code to be written

Creates a suspended process of the executable written to %temp% from the document
with CreateProcessA

Writes to that image with WriteProcessMemory

712

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig8.png
https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/Unpack.png

Uses GetThreatContext, SetThreadContext and ResumeThread to execute at the EP
of the unpacked executable. On the call to WriteProcessMemory we see the IpBuffer
address points to a complete PE, as is indicated by the MZ header:

Address

aalDea1a
aa1Dee2a
aaiDaaza
aa1Dead4a
@E'I] |:|F:1|-35l;1
2a10e8ca
palbeaya
0@106850
aa10ea9a
aal1Deare
aalDasps
A1 08ace
BialDadDa
a1088ES
a1D88Fe8
aalDales
aaibe11e

fen L
-

ooo

a1 DEsnE

.
@
i
28R =888 BNNESERE
S3B2EBIRLIBALTREES
S2282328EEERNCEEE

@8 10 eo ee 18

from WriteProcessMemory IpBuffer argument
We can then dump this to disk for analysis of the next unpacking stage. The next routine
makes use of the injection method used by Duqu to write its unpacked image?:

CraaleP rosass\y

S23838 28RS TLE888

1IIIIIIIEIIIIIII
IIIIIIIII’III&III
AY|A.4.=10L=tTh
is program Canno
t be run in DODS
MOOdEseesfuannnas
BE L RN
gllsétusER ich+usd
e e T B O
-“w----....ﬁ.ﬂﬂ
d04..0...0..000
B e e B
Iblll"'l l*lll!lll
. B et FE

e el e R

IIIII ses s Ew Foss

o CreateProcessW is called to create a suspended ‘Explorer.exe’ process
» Use the handle from PROCESS_INFORMATION produced by CreateProcessW with
ZwQuerylnformationProcess to get Explorer.exe PEB and ImageBaseAddress
 Allocate and write up to 500 bytes of of the Explorer.exe process using
ReadProcessMemory
o Get actual image size from PE header, allocated this size, and write entire Explorer.exe
image into memory
¢ Use UnMapViewOfSection with ImageBaseAddress and process handle of
Explorer.exe from step 2 to un-map the current section in order to avoid
STATUS _CONFLICTING_ADDRESSES upon mapping of the new section

9.0: First MZ

8/12

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig9.png
https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/CreateProcessW.png

o Overwrite image sections of Explorer.exe with unpacked (of the current step)

executable code

* Use MapViewOfSection to map the manipulated Explorer.exe using the process handle
from step 2
o Call ResumeThread to start execution of unpacked code (of the current step)

In order to continue to trace the execution of this code (to what we discovered was more
unpacking code) we wrote OXEBFE (relative JMP to offset 0) to the entry point of the newly
written Explorer.exe. This causes Explorer.exe to spin until we can attach to this process with
a debugger.

Breaking on the first VirtualAlloc performed by the injected process enabled us to see a large
allocation occur, and setting a breakpoint on writing to this memory location makes it
apparent that an entire DLL is written to this memory location by the (current) unpacking

code:

Address

1Baaaaa6a

it“UHHHEE:

IEEEIEIEISa TS

Looking at

graphed:

ASCII

MZKERHEL
S2.DLL. .
LoadlL ibr
arvH. ...
GetProcA
ddress. .
UpackBuD
Wwing@®, ..
FE..LB&,

B
;F- -« @.. Figure 10.0: Upack MZ to be injected

the PE header the string “UpackByDwing” is apparent which indicates that this
packer is being used on the final binary. Opening up this code with a disassembler (in this
case IDA Pro) showed the following jump that could not be followed when the functions were

9/12

https://storage.googleapis.com/blogs-images/ciscoblogs/1/fig10.png

, BCx g fhnr“‘ pir [esi+1Bh]

I:I pir [esi+30h]

b
= ! Figure 11.0:
i — ahp F!.rﬁfl 2l 4
add eche , [r.-: +EH'|] E B . e Ben] Eay Bl , BCx
call dhord ptr (esivdtn]| [0 S Lol inp ohord pur [esisitn]
Bt
chiger

Function graph for final Upack unpacking stage

There is an infamous POPAD prior to this jump, which for those seasoned unpackers, is
indicative of leading to the OEP of an unpacked binary due to restoring of the register state
prior to the unpacked code being called. If a breakpoint is set on the OEP identified and we
continue to trace through the injected code within Explorer.exe, it becomes clear that this
address is eventually called from the unpacking code. At this point, once the breakpoint is
hit, we can dump the unpacked binary to disk.

One final hurdle is required in order to get an independent executable that can be debugged.
When the binary is written and jumped to, a pointer argument is passed on the stack that is
later dereferenced within the binary. This is provided when the binary is unpacked from the
injected Explorer.exe, however a null pointer is passed when the binary is executed
independently. This argument points to a size value of 0x31DB used for a call to VirtualAlloc.
We can edit the unpacked code in-line to point to a known address with this value:

IF 10QE7T3I5S _BOSFOREE_men, | O0G;

B Figure 12.0: In-

00073 , i
fest= GOSFOOOD mem. 1BOOTIZE ’ POEOR246 (MO, HE, E,EE, NS,

L o 5 RRliE 2R EE A B81ZFCE4| L7PBEEED4| *illwl FETURH to ntdll.77BSEBED4

line edlts to allow mdependent blnary execution

Analysis

I’m only going to cover the obfuscation techniques used by H1N1 in this blog. The remaining
analysis of HIN1 will be posted in my next blog.

Obfuscation

Upon opening the binary in a disassembler (in this case IDA Pro) we see that imports are
resolved dynamically using hashing of DLLs and exports, and a string obfuscation technique
used throughout the binary.

10/12

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig11.png
https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig12.png

String Obfuscation

The string obfuscation technique makes use of SUB, XOR, and ADD with fixed DWORD
values, and the result of each step using is stored using STOSD. The result of each
operation is then used as the input (within EAX) for each subsequent step. For example:

Upack:100026A2 xoT Gax, Gax

Upack:100026A4 sub eax, OFFACFFAR4h

Upack:100026A9 stosd

Upack:100026AK x0T eax, 200025h

JUpack: 100026AF stosd

Upack: 10002680 add eax, OFFDBFFDEh

Upack:100026B5 stosd

sUpack: 10002686 xor eax, 790000h

Upack:100026B8 stosd

«Upack: 100026BC sub eax, OFFDAOO23h

Upack:100026C1 stosd

Upack:100026C2 x0T eax, 2A0047h . .
.Upack: 100026C7 stosd Figure 13.0:
Upack:100026C8 add eax, OFFFLFFFOh

Upack:100026CD stosd

sUpack:100026CE xor eax, 1BO0OCh

Upack:100026D3 stosd

«Upack:100026D4 sub eax, 44FFFBh

.Upack:100026D9 stosd

Upack:100026DA X0 eax, 560011k

«Upack: 100026DF stosd

Upack:100026E0 add eax, OFFEE0000h

Upack:100026E5 stosd

sUpack:100026E6 jmp short loc_l1000272C ; \SysWOWG4‘\svchost.exe

String obfuscation technique example

The result of these operations produces the path to the WOWG64 version of svchost.exe.
We’ve written an IDAPython script to automatically decode these strings from a provided
address starting with the XORing of EAX, performing operations on the DWORDs involved
up to a certain “depth” (as strings vary in length), and adding the resulting string as a
comment next to the next instruction head.*

Import Obfuscation (via Import Hashing)

Hashed imports can be resolved by hashing the library export names ourselves. Import
name strings are obfuscated using the technique mentioned above, and export names from
each library are hashed by walking the export table and performing a simple XOR and ROL
loop over each name:

for(i = 0; i < strlen(export_name); i++) {
r =rol32(r, 7);

r A= export_nameli];

}

We've replicated the hashing algorithm and all exports can be hashed from a given DLL.
These hash values can be mapped within IDA using a C header file generated by our python
script.®

11/12

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig13.png

To be continued...

In the next blog I'll provide the analysis of H1N1’s execution. Stay tuned!

[1] https://www.proofpoint.com/tw/threat-insight/post/hancitor-ruckguv-reappear

[2] https://www.arbornetworks.com/blog/asert/wp-content/uploads/2015/06/blog_h1n1.pdf

[3] http://blog.w4kfu.com/tag/duqu

[4] https://communities.cisco.com/docs/DOC-69444

[5] https://communities.cisco.com/docs/DOC-69443

Share:

12/12

https://www.proofpoint.com/tw/threat-insight/post/hancitor-ruckguv-reappear
https://www.arbornetworks.com/blog/asert/wp-content/uploads/2015/06/blog_h1n1.pdf
http://blog.w4kfu.com/tag/duqu
https://communities.cisco.com/docs/DOC-69444
https://communities.cisco.com/docs/DOC-69443

