
1/12

Josh Reynolds September 13, 2016

H1N1: Technical analysis reveals new capabilities
blogs.cisco.com/security/h1n1-technical-analysis-reveals-new-capabilities

This blog is the first in a 3 part series that will provide an in-depth technical analysis on the
H1N1 malware. I’ll be looking at how H1N1 has evolved, its obfuscation, analyzing its
execution including new information stealing and user account control bypass capabilities,
and finally exploring how we are both using and influencing security tools with this research.

Overview

Through the use of general characteristics exhibited by malware authors we are able to
broadly categorize and positively identify malicious samples. These characteristics,
discussed in The General Behavior of Ransomware are indexed in a database, which allows
us to identify patterns, outliers and obtain greater visibility and insight into various threats.

H1N1’s evolution: past and present

These data sets provide insight into the ever-growing attack vectors that affect our
customers, which include malware delivery mechanisms. In this blog series we highlight
newly added functionality to a malware variant that started out as being a ‘loader’ (strictly
provides capabilities of loading other more complex malware variants) known as H1N1, and
has now evolved into an information stealing variant.

Throughout the data mining exercises conducted by my colleagues and I on the AMP Threat
Grid Research & Efficacy Team (RET) we have observed a widely distributed campaign
using VBA macros to infect machines with a variant of information-stealing malware. Based
on the initial characteristics observed by AMP Threat Grid we believed these malicious
documents were distributing a Ransomware variant; however, we later found the dropped
executables to be a variant of the H1N1 loader. H1N1 is a loader malware variant that has
been known to deliver Pony DLLs and Vawtrak executables to infected machines. Upon
infection, H1N1 previously only provided loading and system information reporting
capabilities.

Key findings from our analysis include:

Unique obfuscation techniques
A novel DLL hijacking vulnerability resulting in a User Account Control bypass
Added information stealing capabilities
Self-propagation/lateral movement capabilities

1,2

https://blogs.cisco.com/security/h1n1-technical-analysis-reveals-new-capabilities
http://blogs.cisco.com/tag/h1n1-malware
https://blogs.cisco.com/security/the-general-behavior-of-ransomware
http://www.cisco.com/web/go/amptg


2/12

Background

H1N1 has added a plethora of new functionality in comparison to earlier reports. Throughout
this blog series we will be analyzing the capabilities of H1N1 including: obfuscation, a User
Account Control (UAC) bypass, information stealing, data exfiltration, loader/dropper, and
self-propagation/lateral movement techniques used by this variant.

Infection Vector

The use of Visual Basic macros is nothing new, however, in recent months they have
become one of the most popular infection vectors for all malware types, especially for
Ransomware campaigns. These macros vary in sophistication from performing the download
and execution of hosted binaries, to dropping the binaries themselves. In this campaign we
see the latter where the document ships an entire encoded binary within the text box of a
VBA macro form. All documents throughout this campaign have used a common naming
convention in the following formats:

[domain]_card_screenshot.doc
confirmation_[random integers].doc
bank_confirmation_[random integers].doc
debit_request_[random integers].doc
creditcard_statement_[random integers].doc
insurance_[random integers].doc
inventory_list_[random integers].doc
debt_[random integers].doc

The domains for the first format observed include the financial, energy, communications,
military and government sectors. Unsurprisingly, these documents are delivered through
spear-phishing e-mail campaigns. A number of subject headings can be observed in
VirusTotal:

Figure 1.0:

Attached e-mail subject headings in VirusTotal for identified documents

1,2

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig1.png


3/12

Although the specified domain in the filename differentiates between targets, the lure
message within the phishing e-mail does not vary drastically, for example:

Figure 2.0:

Example phishing message within attached e-mail
The remaining formats appear to simply seem enticing enough to open being related finance,
corporate or personal information.

Upon opening the document, the attacker attempts to social engineer the user into executing
the malicious macro content by stating it will adjust to their version of Microsoft Word:

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig2.png


4/12

Figure 3.0: Social engineering content of document to open macros

Dropper Obfuscation

The VBA macro is highly obfuscated, making use of many VBA tricks to hide its true intent.
These include the use of string functions: StrReverse, Ucase, Lcase, Right, Mid, and Left.
For example, the following gets the %temp% path:

https://storage.googleapis.com/blogs-images/ciscoblogs/1/H1N1-fig-3.png


5/12

Figure 4.0:

String obfuscation mechanisms to get %temp%
Mid is used here to produce “.Scripting”, Ucase and StrReverse are used to produce
“FIleSystemObject”, which is used to create a VBA FileSystemObject, that is then used with
GetSpecialFolder, and some basic arithmetic resulting in “2” to get %temp%.As mentioned,
the binary to be executed is extracted from a VBA form text box:

Figure 5.0:

VBA form containing obfuscated PE within text box
The text box content is set into a variable, which is then passed off to a de-obfuscation
function. The core de-obfuscation functionality is a two steps process. The first is an XOR
loop with a fixed byte key of 0xE, which produces a base64 encoded portable executable
(PE):

Figure 6.0: XOR decoding/de-obfuscation loop

The second is a VBA implementation of base64 that decodes it to produce a final Portable
Executable (PE):

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig4.png
https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig5.png
https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig6.png


6/12

Figure 7.0:

VBA Base64 implementation
The de-obfuscated executable is then written to %temp% and executed. We can follow the
execution flow through the use of process visualization in AMP Threat Grid. What this
provides is graphed process interactions (child-parent relationships) for the entirety of the
run. In the case of the H1N1 malicious document, it is very apparent that WINWORD.EXE is
executing a separate binary:

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig7.png


7/12

Figure 8.0:

Process graph showing execution of dropped executable from Microsoft Word

Unpacking

The binary has a total of three routines responsible for unpacking and injection. The first
routine injects via the following steps:

Unpacking algorithm unpacks code to be written

Creates a suspended process of the executable written to %temp% from the document
with CreateProcessA

Writes to that image with WriteProcessMemory

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig8.png
https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/Unpack.png


8/12

Uses GetThreatContext, SetThreadContext and ResumeThread to execute at the EP
of the unpacked executable. On the call to WriteProcessMemory we see the lpBuffer
address points to a complete PE, as is indicated by the MZ header:

9.0: First MZ

from WriteProcessMemory lpBuffer argument
We can then dump this to disk for analysis of the next unpacking stage. The next routine
makes use of the injection method used by Duqu to write its unpacked image :

CreateProcessW is called to create a suspended ‘Explorer.exe’ process
Use the handle from PROCESS_INFORMATION produced by CreateProcessW with
ZwQueryInformationProcess to get Explorer.exe PEB and ImageBaseAddress
Allocate and write up to 500 bytes of of the Explorer.exe process using
ReadProcessMemory
Get actual image size from PE header, allocated this size, and write entire Explorer.exe
image into memory
Use UnMapViewOfSection with ImageBaseAddress and process handle of
Explorer.exe from step 2 to un-map the current section in order to avoid
STATUS_CONFLICTING_ADDRESSES upon mapping of the new section

3

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig9.png
https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/CreateProcessW.png


9/12

Overwrite image sections of Explorer.exe with unpacked (of the current step)
executable code
Use MapViewOfSection to map the manipulated Explorer.exe using the process handle
from step 2
Call ResumeThread to start execution of unpacked code (of the current step)

In order to continue to trace the execution of this code (to what we discovered was more
unpacking code) we wrote 0xEBFE (relative JMP to offset 0) to the entry point of the newly
written Explorer.exe. This causes Explorer.exe to spin until we can attach to this process with
a debugger.

Breaking on the first VirtualAlloc performed by the injected process enabled us to see a large
allocation occur, and setting a breakpoint on writing to this memory location makes it
apparent that an entire DLL is written to this memory location by the (current) unpacking
code:

Figure 10.0: Upack MZ to be injected

Looking at the PE header the string “UpackByDwing” is apparent which indicates that this
packer is being used on the final binary. Opening up this code with a disassembler (in this
case IDA Pro) showed the following jump that could not be followed when the functions were
graphed:

https://storage.googleapis.com/blogs-images/ciscoblogs/1/fig10.png


10/12

Figure 11.0:

Function graph for final Upack unpacking stage
There is an infamous POPAD prior to this jump, which for those seasoned unpackers, is
indicative of leading to the OEP of an unpacked binary due to restoring of the register state
prior to the unpacked code being called. If a breakpoint is set on the OEP identified and we
continue to trace through the injected code within Explorer.exe, it becomes clear that this
address is eventually called from the unpacking code. At this point, once the breakpoint is
hit, we can dump the unpacked binary to disk.

One final hurdle is required in order to get an independent executable that can be debugged.
When the binary is written and jumped to, a pointer argument is passed on the stack that is
later dereferenced within the binary. This is provided when the binary is unpacked from the
injected Explorer.exe, however a null pointer is passed when the binary is executed
independently. This argument points to a size value of 0x31DB used for a call to VirtualAlloc.
We can edit the unpacked code in-line to point to a known address with this value:

Figure 12.0: In-

line edits to allow independent binary execution

Analysis

I’m only going to cover the obfuscation techniques used by H1N1 in this blog. The remaining
analysis of H1N1 will be posted in my next blog.

Obfuscation

Upon opening the binary in a disassembler (in this case IDA Pro) we see that imports are
resolved dynamically using hashing of DLLs and exports, and a string obfuscation technique
used throughout the binary.

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig11.png
https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig12.png


11/12

String Obfuscation

The string obfuscation technique makes use of SUB, XOR, and ADD with fixed DWORD
values, and the result of each step using is stored using STOSD. The result of each
operation is then used as the input (within EAX) for each subsequent step. For example:

Figure 13.0:

String obfuscation technique example
The result of these operations produces the path to the WOW64 version of svchost.exe.
We’ve written an IDAPython script to automatically decode these strings from a provided
address starting with the XORing of EAX, performing operations on the DWORDs involved
up to a certain “depth” (as strings vary in length), and adding the resulting string as a
comment next to the next instruction head.

Import Obfuscation (via Import Hashing)

Hashed imports can be resolved by hashing the library export names ourselves. Import
name strings are obfuscated using the technique mentioned above, and export names from
each library are hashed by walking the export table and performing a simple XOR and ROL
loop over each name:

for(i = 0; i < strlen(export_name); i++) {

r = rol32(r, 7);

r ^= export_name[i];

}

We’ve replicated the hashing algorithm and all exports can be hashed from a given DLL.
These hash values can be mapped within IDA using a C header file generated by our python
script.

4

5

https://alln-extcloud-storage.cisco.com/Cisco_Blogs:ciscoblogs/fig13.png


12/12

To be continued…

In the next blog I’ll provide the analysis of H1N1’s execution. Stay tuned!

[1] https://www.proofpoint.com/tw/threat-insight/post/hancitor-ruckguv-reappear

[2] https://www.arbornetworks.com/blog/asert/wp-content/uploads/2015/06/blog_h1n1.pdf

[3] http://blog.w4kfu.com/tag/duqu

[4] https://communities.cisco.com/docs/DOC-69444

[5] https://communities.cisco.com/docs/DOC-69443

 
Share:
 

https://www.proofpoint.com/tw/threat-insight/post/hancitor-ruckguv-reappear
https://www.arbornetworks.com/blog/asert/wp-content/uploads/2015/06/blog_h1n1.pdf
http://blog.w4kfu.com/tag/duqu
https://communities.cisco.com/docs/DOC-69444
https://communities.cisco.com/docs/DOC-69443

