
1/8

September 5, 2016

Umbreon Linux Rootkit Hits x86, ARM Systems
blog.trendmicro.com/trendlabs-security-intelligence/pokemon-themed-umbreon-linux-rootkit-hits-x86-arm-systems/

The Trend Micro Forward Looking Threat Research team recently obtained samples of a
new rootkit family from one of our trusted partners. We are providing a detailed analysis of
the rootkit, and also making the samples available to the industry to help others block this
threat. This rootkit family called Umbreon (sharing the same name as the Pokémon) targets
Linux systems, including systems running both Intel and ARM processors, expanding the
scope of this threat to include embedded devices as well. (An aside: the rootkit does appear
to be named after the Pokémon of the same name. This Pokémon is known for hiding in the
night, which is an appropriate characteristic for a rootkit.) We detect Umbreon under
the ELF_UMBREON family. The development of Umbreon began in 2011, and we’ve seen
discussions about it in the cybercriminal underground since at least 2013. It has been
claimed in underground forums and IRC channels by several underground actors that
Umbreon is very hard to detect. Our research shows how this rootkit works, and how it is
tries to achieve stealth within a Linux environment. Umbreon is manually installed onto an
affected device or server by the attacker. This can be done either physically or remotely (if
the attacker has obtained remote access to the device). Once installed, it can be used by the
attacker to take control of the affected device. What is a ring 3 rootkit? Rootkits are
persistent threats intended to be hard to detect/observe. Its main purpose is to keep itself
(and other malware threats) stealthed and totally hidden from administrators, analysts, users,
scanning, forensic, and system tools. They may also open a backdoor and/or use a C&C
server and provide an attacker ways to control and spy on the affected machine. There are
various execution modes where code can run, with corresponding levels of access. These
are:

User mode (ring 3)

http://blog.trendmicro.com/trendlabs-security-intelligence/pokemon-themed-umbreon-linux-rootkit-hits-x86-arm-systems/
http://www.trendmicro.com/vinfo/us/security/threat-intelligence-center/deep-web/

2/8

Kernel mode (ring 0)
Hypervisor (ring -1)
System Management Mode – SMM (ring -2)

Research on running rookits within certain chips on motherboards or other devices has been
carried out; such a rootkit would run in ring -3. The lower the level a piece of code runs, the
harder it is to detect and mitigate. However, this does not mean a ring 3 rootkit is simple or
easy to remove. A ring 3 rootkit (or usermode rootkit) does not install kernel objects onto the
system, but hooks functions from core libraries that are used by programs as interfaces to
system calls that run important operations in a system such as reading/writing files,
spawning processes, or sending packets over the network. It is perfectly possible to spy on
and change the way things are done within an operating system, even from user mode. On
Linux, when a program calls the printf() function there are other cascaded functions called by
this one like _IO_printf() and vprintf() that are in the same library. All of these end up calling
the write() system call. While a ring 0 rootkit would hook this system call in kernel mode (and
this require the insertion of a kernel object/module into the system), a ring 3 rootkit would
hook one of the intermediary library functions in userland, removing the need for native code
in the kernel (something which would be fairly difficult to achieve). Cross-platform features
We were able to successfully get Umbreon running on three different platforms: x86, x86-64
and ARM (Raspberry Pi). The rootkit is very portable because it does not rely on platform-
specific code: it is written in pure C, except for some additional tools that are written in
Python and Bash scripting. Our analysis indicates that this was by design: Umbreon's did
this intentionally so that it could easily support the three platforms noted above. Backdoor
authentication During installation, Umbreon creates a valid Linux user that the attacker can
use with a backdoor into the affected system. This backdoor account can be accessed via
any authentication method supported by Linux via pluggable authentication modules (PAMs),
including SSH. This user has a special GID (group ID) that the rootkit checks to see if the
attacker is attempting to access the system. It is not possible to see this user in files
like /etc/passwd because libc functions are hooked by Umbreon. The picture below shows
the welcome screen shown when this backdoor account is accessed via SSH:

Figure 1. SSH login screen (Click to enlarge)

Espeon backdoor component This is a non-promiscuous libpcap-based backdoor written
in C that spawns a shell when an authenticated user connects to it. (The attackers also
named this component after a Pokémon - this time Espeon, which has pronounced ears.) It
can be instructed to establish a connection to an attacker machine, functioning as a reverse
shell to bypass firewalls. Espeon captures all TCP traffic that reaches the main Ethernet
interface of the affected computer. Once it receives a TCP packet with some special field
values, it then connects back to the source IP of this TCP packet. These are the values that
Espeon watches out for:

Sequence number (SEQ) is 0xc4
Acknowledgement number (ACK) is 0xc500

http://blog.trendmicro.com/trendlabs-security-intelligence/files/2016/08/umbreon2.png

3/8

IP Identification (ID) is 0x0fb1

These conditions would all be set by the attacker in a packet he would send to the affected
machine. If all three values match, the backdoor connects back to the sending IP
address. Here is the disassembled of got_packet() function, where this comparison is
performed:

Figure 2. Code sample (click to enlarge)

Hiding pre-loaded configuration files from system call tracing System call tracing is a
technique used by a very popular Linux command line tool called strace. It uses the ptrace()
syscall to inspect the syscall parameters and return values of other executable files. As
Umbreon uses an /etc/ld.so.<random> file to instruct the loader to load itself before any other
library used by ELF binaries, it can disguise itself from administrators that use strace by
hooking vprintf(), __vfprintf_chk(), and fputs_unlocked(). These are used by different
versions of strace to write to a given file descriptor. The following screenshot shows the code
that does this for vprintf() in the strace.so component:

Figure 3. Code sample(click to enlarge)

wrapper_200da0_6b0 ends up in the strstr() function. Here, the pre-loaded configuration file
is /etc/ld.so.NfitFd2 so if any argument passed to vprintf() function contains this text, it will be
replaced by /etc/ld.so.preload. An analyst may then believe that this is the file being used by
the loader. The screenshot below shows the strings used by this routine:

Figure 4. Code sample

This component also unsets the LD_PRELOAD environment variable so analysts can’t hook
the malicious functions. Hiding packets Umbreon also hooks the libpcap functions
got_packet() and pcap_loop() and prevents them from returning any information about TCP
packets with ports between the lowest port number and highest port number specified in its
configuration file. An analyst capturing network traffic with tools like tcpdump on the
machine wouldn't be able to capture any backdoor traffic. Umbreon's implementation
Umbreon acts as a library that imitates the glibc (GNU C Library). It creates a file called
/etc/ld.so.<random> that, according to the official documentation, has the following function:

/etc/ld.so.preload File containing a whitespace-separated
list of ELF shared objects to be loaded before the program.

Originally, the ELF loader will look for a /etc/ld.so.preload file as the documentation clearly
states. However, we found that Umbreon also patches the loader library (/lib/x86_64-linux-
gnu/ld-2.19.so as an example) to use /etc/ld.so.<random> instead, where <random> is a 7-
character-string, matching the length of "preload". Every library path in this file will be loaded

http://blog.trendmicro.com/trendlabs-security-intelligence/files/2016/08/umbreon3.png
http://blog.trendmicro.com/trendlabs-security-intelligence/files/2016/08/umbreon4.png
http://man7.org/linux/man-pages/man8/ld.so.8.html

4/8

before any other ELF program is launched. Inside this file, Umbreon puts the path for its own
main library, which contains lots of functions matching the names
of glibc functions. The location of this main library is:

/usr/share/libc.so.<random>.${PLATFORM}.ld-2.22.so

${PLATFORM} is replaced by the loader with one of the following highlighted values,
depending on the target architecture:

/usr/share/libc.so.<random>.v6l.ld-2.22.so (for ARM)
/usr/share/libc.so.<random>.x86_64.ld-2.22.so (for x86-64)
/usr/share/libc.so.<random>.i686.ld-2.22.so (for x86)

However, because Umbreon is manually installed onto a compromised machine, this default
path may vary. The functions hooked and implemented by the main Umbreon library are:

__fxstat
__fxstat64
__lxstat
__lxstat64
__syslog_chk
__xstat
__xstat64
access
audit_log_acct_message
audit_log_user_message
audit_send
chdir
check_and_fix_ldso
checkpw
chmod
chown
cleanup
dlinfo
dlsym
esh
execve
execvp
fake_preload_fail
fchmod
fchown
fchownat
fdopendir
filesize
find_dlsym
find_sym

5/8

fopen
fopen64
fstat
fstat64
get_hideports
get_my_procname
get_procname
getpath
getpgid
getpriority
getpwnam
getpwnam_r
getpwuid
getsid
getspnam
is_dynamic
is_hideport
is_ldso32
is_ldso64
is_really
kill
lchown
link
login
lstat
lstat64
netstat
open
open64
openat
opendir
pam_acct_mgmt
pam_authenticate
pam_open_session
pam_prompt
pam_vprompt
pcap_loop
procstatus
procstatus_o
pututline
pututxline
rclocal

6/8

read
readdir
readdir64
readlink
recover_dirname
recover_filename
reinstall_self
rename
rmdir
sched_getaffinity
sched_getparam
sched_getscheduler
sched_rr_get_interval
setgid
setregid
setresgid
socket
spoof_maps
spoof_smaps
stat
stat64
sxor
symlink
sysinfo
syslog
unfuck_linkmap
unlink
unlinkat
write

Many of these function names match existing libc function names. As Umbreon's library is
loaded before any other user library when an executable in launched, the loader will resolve
these functions' addresses instead of the ones in libc. This way ,an executable will call the
malicious functions invisibly. These malicious functions then inspect the arguments they
receive before calling the real ones. Similarly, the output of every command may have been
modified before the user sees it. It effectively functions as an in-the-middle attack, modifying
both the input and output of system functions. Users cannot trust the outputs of system
commands like ps, ls, top, and pstree (among others). Because they all use these libc
functions, they will all produce modified outputs. How to detect Umbreon Most of the tools
you will find in Linux are written in C. Even programs written in Perl, Python, Ruby, PHP and
other scripting languages end up calling GNU C Library wrappers as their interpreters are
also written in C. Because Umbreon library hooks glibc functions, creating a reliable tool to
detect Umbreon would require a tool that doesn't use glibc. One way is to develop a small

7/8

tool to list the contents of the default Umbreon rootkit folder using Linux kernel syscalls
directly. This bypasses any malicious C library installed by Umbreon. If the output contains
one or more files with names starting with libc.so followed by a random integer, this is the red
flag that suggests Umbreon is installed in the machine. We have also created YARA rules
that detect Umbreon, which can be downloaded here. Removal Instructions Umbreon is a
ring 3 (user level) rootkit, so it is possible to remove it. However, it may be tricky and
inexperienced users may break the system and put it into an unrecoverable state. If you are
brave enough to proceed, the easiest way is to boot the affected machine with Linux LiveCD
and follow the steps:

1. Mount the partition where the /usr directory is located; write privileges are required.
2. Backup all the files before making any changes.
3. Remove the file /etc/ld.so.<random>.
4. Remove the directory /usr/lib/libc.so.<random>.
5. Restore the attributes of the files /usr/share/libc.so.<random>.<arch>.*.so and remove

them as well.
6. Patch the loader library to use /etc/ld.so.preload again.
7. Umount the partition and reboot the system normally.

Here is a real-life example (please notice file names will vary as they are randomly chosen
by the malware). In the following case, /dev/sda1 is the partition containing the /usr directory.

mount /dev/sda1 /mnt # rm -f /mnt/etc/ld.so.khVrkEQ # rm -rf
/mnt/usr/lib/libc.so.41762810374176281037/ # chattr -ai
/mnt/usr/share/libc.so.4176281037.* # rm -f
/mnt/usr/share/libc.so.4176281037.* # sed -i
's:/etc/ld\.so\.khVrkEQ:/etc/ld.so.preload:' /lib/x86_64-linux-gnu/ld-
2.19.so # umount /mnt # reboot

In this case, the chattr command is necessary because Umbreon libraries have a (append-
only) and i (immutable) attributes set. Indicators of Compromise The following file samples
are tied to this threat:

b5e68f8e23115bdbe868d19d09c90eb535184acd — /.bashrc
73ddcd21bf05a9edc7c85d1efd5304eea039d3cb — /bin/pkg
48a6e43af0cb40d4f92b38062012117081b6774e — /bin/espeon-shell (detected
as BKDR_UMREON.A)
88aea4bb5e68c1afe1fb11d55a190dddb8b1586f —/bin/unhide-self
73ddcd21bf05a9edc7c85d1efd5304eea039d3cb — /bin/zypper and ./bin/emerge
42802085c28c0712ac0679c100886be3bcf07341 — /bin/umbreon.py
66d246e02492821f7e5bbaeb8156ece44c101bbc — /bin/espeon (detected
as ELF_UMREON.A)
73ddcd21bf05a9edc7c85d1efd5304eea039d3cb —/bin/yum
4f6c6d42bdf93f4ccf68d888ce7f98bcd929fc72 — /bin/spytty
73ddcd21bf05a9edc7c85d1efd5304eea039d3cb — /bin/apt-get
1f1ab0a8e9ec43d154cd7ab39bfaaa1eada4ad5e — /bin/.x

http://documents.trendmicro.com/assets/20160905-umbreon-yara.txt

8/8

81ad3260c0fc38a3b0f65687f7c606cb66c525a8 — /.init-append
7b10bf8187100cdc2e1d59536c19454b0c0da46f — /.umbreon-ascii
96d5e513b6900e23b18149a516fb7e1425334a44 — /.profile
851b7f07736be6789cbcc617efd6dcb682e0ce54
— /usr/share/libc.so.2284441204.i686.ld-2.22.so (detected as ELF_UMREON.A)
e2bc8945f0d7ca8986b4223ed9ba13686a798446
— /usr/share/libc.so.2284441204.x86_64.ld-2.22.so (detected as ELF_UMREON.A)
17b42374795295f776536b86aa571a721b041c38 — /.ldso/strace.so (detected
as ELF_UMREON.A)
394fae7d40b0c54c16d7ff3c3ff0d247409bd28f —/promptlog
738ac5f6a443f925b3198143488365c5edf73679 —/hideports
022be09c68a410f6bed15c98b63e15bb57e920a9 — espeon (ARM version, detected
as ELF_UMREON.B)
3762c537801c21f68f9eac858ecc8d436927c77a — pkg (ARM version, detected as
ELF_UMREON.B)
2cd24c5701a7af76ab6673502c80109b6ce650c6 — strace.so (ARM version, detected
as ELF_UMREON.B)
358afd4bd02de3ce1db43970de5e4cb0c38c2848 — umbreon.so (ARM version,
detected as ELF_UMREON.B)

Update as of September 15, 2016, 8:00 PM PDT The developer of Umbreon has been in
touch with us since the publication of this post. He told us that he started work on Umbreon
in 2011, basing it off three existing rootkits: Jynx, Jynx2, and Azazel. All three are publicly
known Linux rootkits. He has expressed his sadness and displeasure at how his code has
since been abused by various malicious threat actors.

