TADAQUEOUS moments

laanwj.github.io/2016/09/01/tadaqueos.html

Laanwj's blog

Randomness

Blog About

The one mystery module in the BLATSTING rootkit/malware/implant/... in the Equation
Group dump is m12000000 , or TADAQUEQOUS. There is only one mention of it in the
various documentation and scripts:

If you are putting up tadaqueous, there will be Ip error due to a missing files, there is no
LP for this module.

What is meant here is that there is no Listening Post, or LP module for it. “Listening Post” is
what the Equation Group calls its command-and-control programs. It can only be loaded and
unloaded through this interface, not controlled, and it will spit an error message. Well, that
tells us nothing.

At first sight the module looks sort of boring. It packages a kernel module and a user-space
executable, but looking at the imported symbols and (open) strings, what it does is
something with Linux processes and system calls.

However, after delving a bit deeper, | stumbled on a function that hooks a whole series of
kernel calls, whose names are obfuscated in the binary:

1/4

https://laanwj.github.io/2016/09/01/tadaqueos.html
https://laanwj.github.io/
https://laanwj.github.io/
https://laanwj.github.io/
https://laanwj.github.io/about

(fcn) hook_kernel_functions 153
; CALL XREF from 0x08001673 (fcn.080015a8)

F
|
| 0x08000f54 57
hooks up to 14 kernel functions
| 0x08000f55 56
| 0x08000f56 53
| 0x08000f57 83ec10
| 0x08000f5a 31co
| 0x08000f5¢C C744240c0000.
| 0x08000f64 89c7
| 0x08000f66 31f6
| —> 0x08000768 80bed4030000.
.data
| —< 0x08000f6f 7517
function?
| —> 0x08000f71 47
forward
| ||| ©xe08000f72 83c618
0x18 bytes
| ||| 0x08000f75 83ffoe
| | | < 0x08000f78 76ee
| | | 0x08000f7a 89c2
| r—r—> ox08000f7c 83c410
| [1|]|] oxe8000f7f 5b
| [|]]|] ©x08000f80 5e
| [[]]|] ©x08000f81 89d0
| [|]|]|] ©x08000f83 5f
| |Il|]|] ©xo8e00f84 c3
[|1]|] ©x08000f85 8d7600
| ||]|—> ox08000f88 C744240c0000.
| ||l | ©x08000f90 51
| [|| | ©x08000f91 6a05
| [|] | ©x08000f93 ffb6c8030000
; kernel function to hook
| [|] | ©x08000f99 8d442418
| ||| | ©xo8000fad 50
| ||| | ©xo8000f9e 2100000000
the_interface
| ||l | oxe8000fa3 ff5054
is kernel function hookable?
| || | ©xo08000fa6 83c410
| || | ©x08000fa9 85c0
| [|] | ©xe8000fab 8d9ec0030000
| ||| | ©x08000fb1 baffffffff
| L——< 0x08000fb6 74c4
| [| | ©x08000fbs 8b54240c¢
| [| | ©x08000fbc 85d2
| | | —< 0x08000fbe 7526
| ||| ©x08000fcO 83ecOc
| ||| ©xe8000fc3 6200
| ||| ©xe8000fc5 50
from core.54
| ||| ©x08000fc6 ff730c
function to redirect to
| [||]| ©x08000fc9 ff7308

push edi

push esi
push ebx
sub esp, 0x10
X0r eax, eax

mov dword [esp + Oxc], ©

mov edi, eax
xor esi, esi

cmp byte [esi + 0x3d4], ©

jne Ox8000f88
inc edi
add esi, 0x18

cmp edi, Oxe
jbe 0x8000f68
mov edx, eax
add esp, 0x10
pop ebx

pop esi

mov eax, edx
pop edi

ret

lea esi, [esi]
mov dword [esp + Oxc], ©

push ecx
push 5

push dword [esi + 0x3c8]

lea eax, [esp + 0x18]

push eax

mov eax, dword [0]

call dword [eax + 0x54]

add esp, 0x10
test eax, eax

lea ebx, [esi + 0x3cO]
mov edx, OXffffffff

je 0x8000f7c

mov edx, dword [esp + Oxc]

test edx, edx
jne Ox8000fe6
sub esp, Oxc
push ©

push eax

push dword [ebx + 0xc]

push dword [ebx + 8]

4

4

4

r

0 args -

[ra - 0x10]

RELOC 32

hook this
advance
records are

count to 14
the end?

[ra - 6x10]

RELOC 32 .data

4

4

32

4

r

[ra - 6x10]
outptr

call core.54

RELOC 32 .data

[ra - 0x10]

FATL

return value
local

kernel

2/4

function to hook

| ||| ©oxes8eeefcc 8d4304 lea eax, [ebx + 4]

| ||| oxeseeefcf 50 push eax ; outptr
| ||| ©xe8000fdo 2100000000 mov eax, dword [0] ; RELOC 32
the_interface

| [|||] ©xe8000fd5 ff5058 call dword [eax + 0x58] ; call
core.58: hook kernel function

| [|||] ©xo8000fds 83c420 add esp, 0x20

| ||| ©oxe8ee0fdb 85c0 test eax, eax

| |||| 0x08000fdd baffffffff mov edx, Oxffffffff

| | ——< 0x08000fe2 748d je 0x8000f71

| L————< 0x08000fe4 eb96 jmp 0x8000f7c

| L—> 9x08000fe6 baffffffff mov edx, Oxffffffff

E L< Ox08000feb eb8f jmp Ox8000f7c

Summarizing the data structure at .data+0x3co :

Offset Flag Target symbol Redirected to
0x000003cO0 0x0001 __add_ipsec_sa .text+0x00000c60
0x000003d8 0x0002 asic_init_cmd_block .text+0x00000e8c
0x000003f0 0x0004 __del ipsec_sa .text+0x00000da0
0x00000408 0x0008 get_random_bytes 0x00000000
0x00000420 0x0010 cipher_des 0x00000000
0x00000438 0x0020 cipher_3des 0x00000000
0x00000450 0x0040 cipher_aes 0x00000000
0x00000468 0x0080 cipher_null 0x00000000
0x00000480 0x0100 hmac_null 0x00000000
0x00000498 0x0200 hmac_md5_96 0x00000000
0x000004b0 0x0400 hmac_shal_96 0x00000000
0x000004c8 0x0800 cipher_dev_in_use 0x00000000
0x000004e0 0x1000 asic_xxcrypt .text+0x00000f18
0x000004f8 0x2000 cpx_read_rand .text+0x00000e50

It looks like this is a noteworthy module after all:

» Most of the symbols are not standard Linux symbols but specific to the TOS/Fortinet
implementation. Their meaning, however is clear from the name.

3/4

e Some of the functions are redirected to a local function, others to 0x00000000, which
likely means that they are disabled completely.

It does give a huge hint at what the goal of this module is: cripple or disable IPsec! It appears
it can be used to selectively disable ciphers, HMAC algorithms, and random number
generation. It is obvious how this is useful to anyone trying to either intercept or insert
themselves into a target’s VPN network.

Shunting the function get_random_bytes will have the effect of disabling all random
number generation in the kernel. Not just for IPsec, but also for e.g. TCP sequence numbers,
enabling IP spoofing. It is not used for /dev/[u]random however, SO user space processes
cannot easily detect this.

nohats.ca writes, in the conclusion of an artice about IPsec and the Snowden revelations:

| read this to mean that the hardware or software of the system running IPsec was
compromised, causing it to send valid protocol ESP packets, but creating those in such
a way that these could be decrypted without knowing the ESP session keys (from IKE).
Possibly by subverting the hardware number generator, or functions related to IV /
ICV’s / nonces that would appear to be random but were not.

We've found out one of the ways how. This targets a specific series of routers, but I'd be
surprised if it was the only one, and other instances may be similar to this implementation, or
based on it: there are various hints that BLATSTING is the oldest generation of implants in
the EQGRP dump.

Written on September 1, 2016

Tags: eqgrp malware
Filed under Reverse-engineering

4/4

https://nohats.ca/wordpress/blog/2014/12/29/dont-stop-using-ipsec-just-yet/
https://gist.github.com/laanwj/9e5e404266a8956beabde522f97c421b#file-blatsting-txt-L551
https://laanwj.github.io/tags/#eqgrp
https://laanwj.github.io/tags/#malware
https://laanwj.github.io/categories/#reverse-engineering

