
1/18

Jeff White August 30, 2016

Pythons and Unicorns and Hancitor…Oh My! Decoding
Binaries Through Emulation

researchcenter.paloaltonetworks.com/2016/08/unit42-pythons-and-unicorns-and-hancitoroh-my-decoding-binaries-
through-emulation/

By Jeff White

August 30, 2016 at 1:20 PM

Category: Malware, Unit 42

Tags: hancitor, LuminosityLink, Microsoft Word, Python, shellcode, Unicorn Engine, VB
Dropper, WildFire, XOR key

This post is also available in: 日本語 (Japanese)

This blog post is a continuation of my previous post, VB Dropper and Shellcode for Hancitor
Reveal New Techniques Behind Uptick, where we analyzed a new Visual Basic (VB) macro
dropper and the accompanying shellcode. In the last post, we left off with having successfully
identified where the shellcode carved out and decoded a binary from the Microsoft Word
document.

Often when analysts are faced with an embedded payload for which they want to write a
decoder, they simply re-write the assembly algorithm in their language of choice and process
the file. The complexity of these algorithms varies when attempting to translate from machine

https://researchcenter.paloaltonetworks.com/2016/08/unit42-pythons-and-unicorns-and-hancitoroh-my-decoding-binaries-through-emulation/
https://unit42.paloaltonetworks.com/author/jeff-white/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/hancitor/
https://unit42.paloaltonetworks.com/tag/luminositylink/
https://unit42.paloaltonetworks.com/tag/microsoft-word/
https://unit42.paloaltonetworks.com/tag/python/
https://unit42.paloaltonetworks.com/tag/shellcode/
https://unit42.paloaltonetworks.com/tag/unicorn-engine/
https://unit42.paloaltonetworks.com/tag/vb-dropper/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.com/tag/xor-key/
https://unit42.paloaltonetworks.jp/unit42-pythons-and-unicorns-and-hancitoroh-my-decoding-binaries-through-emulation/
https://blog.paloaltonetworks.com/2016/08/unit42-vb-dropper-and-shellcode-for-hancitor-reveal-new-techniques-behind-uptick/

2/18

code to a higher-level language. It can be quite frustrating at times, depending on the
amount of coffee you’ve had and complexity of the algorithms.

In this post, I’ll show how we can use an attacker’s own decoding algorithm combined with
CPU emulation to decode or decrypt payloads fairly easily by simply reusing the assembly in
front of us. Specifically, I’ll be focusing on using the Unicorn Engine module in Python to run
the attacker’s decoding functions within an emulated environment to extract our encoded
payloads. Our end goal is to identify the command and control (C2) servers being used by
the final Hancitor payload by running our Python script against the Microsoft Word document.

Now, you may ask, why even worry about this to begin with? In the last post we just let the
program run and the payload was written to disk for easy retrieval, so why bother? The main
answer to that is bulk-analysis automation. If we can write a program that we can point at a
directory full of documents, then we can quickly extract embedded payloads for C2 extraction
and parsing to form a more holistic view of what we’re dealing with. An example of such bulk
analysis was witnessed earlier this year in July when we looked at a large sample set of
LuminosityLink malware samples.

Decoding Routines

As a reminder, in the last blog post we were working with the following sample:

03aef51be133425a0e5978ab2529890854ecf1b98a7cf8289c142a62de7acd1a

We’ll continue where we left off after identifying the decoding routine, as seen in figure 1. The
function at loc_B92 added 0x3 to each byte and uses 0x13 to XOR the result. Once every
byte in the embedded binary has been processed, it pushes the location of the embedded
binary to the stack and calls function sub_827.

http://www.unicorn-engine.org/
https://blog.paloaltonetworks.com/2016/07/unit42-investigating-the-luminositylink-remote-access-trojan-configuration/

3/18

Figure 1 Start of decoding routine

Without going too far into detail on the decoding routine, know that there are five parts to it,
and that each one manipulates the bytes in some way before the overall function ends and
our payload is decoded.

Figure 2 Proximity view of decoding functions in IDA

https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_1.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_2.png

4/18

What we’re effectively going to do is copy the bytes from sub_8A6, sub_827, sub_7E7,
sub_7CA, and sub_7D7. These are the core functions that handle all of the decoding. In
addition to this, we’ll need our embedded payload, which can be located in the Word
document through the magic header of “POLA” as discussed in the previous blog.

Once we have the copied bytes, we’ll setup our emulation environment, adjust our assembly,
and run our own shellcode to retrieve the payload. In the context of this blog, I’m just going to
refer to the x86 instructions as shellcode to keep things straightforward.

Starting with offset 0xB92, we’ll copy the bytes for the two blocks, ending just after our call
since the payload will be decoded by that point.

Figure 3 Decoding function and associated bytes

Next we’ll copy the bytes from sub_827, which are all of the bytes from offset 0x827 to
0x8A5.

Figure 4 Additional decoding functions and associated bytes

Last, we’ll collect the bytes from the three smaller functions. If you note their location, you
can see they are contiguous. Keeping the bytes in order is convenient but not necessary. If
they don’t line up, you’ll simply need to adjust the operands for the calls or jumps so that they
go where they should.

https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_3.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_4.png

5/18

Figure 5 Additional decoding functions and associated bytes

Once all of the bytes have been saved, we can write them to a file and open it up in a
disassembler to see what issues we need to correct, if any.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

sub_8A6
sc = b'\x8A\x04\x0F\x04\x03\x34\x13\x88\x04\x0F\x41\x81\xF9\xAC\x3A\x01\x
00\x72\xED\x57\xE8\x7C\xFC\xFF\xFF\x83\x7D\xFC\x01'
sub_7CA
sc += b'\x6B\xC0\x06\x99\x83\xE2\x07\x03\xC2\xC1\xF8\x03\xC3'
sub_7D7
sc +=
b'\x6B\xC0\x06\x25\x07\x00\x00\x80\x79\x05\x48\x83\xC8\xF8\x40\xC3'
sub_7E7
sc +=
b'\x8D\x48\xBF\x80\xF9\x19\x77\x07\x0F\xBE\xC0\x83\xE8\x41\xC3\x8D\x
48\x9F\x80\xF9\x19\x77\x07\x0F\xBE\xC0\x83\xE8\x47\xC3\x8D\x48\xD0\x
80xF9\x09\x77\x07\x0F\xBE\xC0\x83\xC0\x04\xC3\x3C\x2B\x75\x04\x6A\x
3E\x58\xC3\x3C\x2F\x75\x04\x6A\x3F\x58\xC3\x33\xC0\xC3'
sub_827
sc +=
b'\x55\x8B\xEC\x51\x51\x8B\x45\x08\x83\x65\xFC\x00\x89\x45\xF8\x8A\x
00\x84\xC0\x74\x68\x53\x56\x57\xE8\xA3\xFF\xFF\xFF\x8B\xD8\x8B\x45\x
FC\xE8\x7C\xFF\xFF\xFF\x8B\x4D\xF8\x8D\x14\x08\x8B\x45\xFC\xE8\x7B\x
FF\xFF\xFF\x8B\xF8\x8B\xF0\xF7\xDE\x8D\x4E\x08\xB0\x01\xD2\xE0\xFE\x
C8\xF6\xD0\x20\x02\x83\xFF\x03\x7D\x09\x8D\x4E\x02\xD2\xE3\x08\x1A\x
EB\x15\x8D\x4F\xFE\x8B\xC3\xD3\xF8\x8D\x4E\x0A\xD2\xE3\x08\x02\xC6\x
42\x01\x00\x08\x5A\x01\xFF\x45\x08\x8B\x45\x08\x8A\x00\xFF\x45\xFC\x
84\xC0\x75\x9E\x5F\x5E\x5B\xC9\xC3'

Looking at our shellcode, only one major issue appears, which is the initial call to the
decoding function being at a different address.

https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_5.png

6/18

Figure 6 Broken call within shellcode

As we want to call to our previous function sub_827, which is at the end of our shellcode, we
can adjust this call to point to the start of that function. Looking at our code in a hex editor,
the start of the function is exactly 97 bytes (0x61) into our shellcode, so we can change the
instruction 0xE87CFCFFFF to 0xE861000000.

Figure 7 Correcting the previously broken call

Next, we can validate our change worked as expected within the disassembler and that our
functions are now all correctly linked.

Figure 8 Validating correction of call

Embedded Payload

https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_6.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_7.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_8.png

7/18

We know that our embedded payload address is located on the EDI register that gets
pushed onto the stack through our previous dynamic analysis. For the initial validation of this
method, we’ll go ahead and manually copy the bytes, starting with the magic header of
“POLA” and a size of 0x13AAAC bytes, to our Python script. At the end of the blog, I’ll
include a full script that will automatically extract this binary from the Word Document.

1
2
3

POLA 0x504F4C41
encoded_binary =
b'\x50\x4F\x4C\x41\x08\x00\xFF\xFF\xAC\x3A\x01[truncated]’

Enter the Unicorn

As we now have all of the data we need to decode the binary, the last step for this part is to
build the emulation environment for our code to run on. To accomplish this, I’ll use the open-
source Unicorn Engine.

The first thing we’ll want to do is assign the address space we’ll be working within, along with
initializing Unicorn for the architecture we want to emulate (x86), and map some memory to
use. Next we’ll write our shellcode and encoded binary to our memory space and initialize
some values. Finally, we’ll output the decrypted data to STDOUT.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

ADDRESS = 0x1000000
mu = Uc(UC_ARCH_X86, UC_MODE_32)
mu.mem_map(ADDRESS, 4 * 1024 * 1024)

Write code to memory
mu.mem_write(ADDRESS, X86_CODE32)
Start of encoded data + offset to binary, pushed to Stack at
start
mu.reg_write(UC_X86_REG_EDI, 0x10000F9 + 0x0C)
Initialize ECX counter to 0
mu.reg_write(UC_X86_REG_ECX, 0x0)
Initialize Stack for functions
mu.reg_write(UC_X86_REG_ESP, 0x1300000)

print "Encrypt: %s" % mu.mem_read(0x10000F9,150)
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32))
print "Decrypt: %s" % mu.mem_read(0x10000F9,150)

Figure 9 Successful decoding

Success! We can write that section of memory to a file and see what we have.

http://www.unicorn-engine.org/
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_9.png

8/18

1
2
3

f = open("demo.exe", "w")
f.write(mu.mem_read(0x10000F9 + 0x0C, 0x13AAC))
f.close()

Figure 10 Decoded binary properties

Unfortunately we find ourselves with a packed binary that may have our actual Hancitor
sample, so we’ll need to try and decode yet another payload.

https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_10.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_11.png

9/18

Attack of the Binaries

This binary has a fair amount of functions and code, but very early on we see the binary
lookup the address for the same API we discussed in our earlier blog post,
RtlMoveMemory(), and then copy what we presume is our encoded payload.

Figure 11 RtlMoveMemory() being called

Figure 12 Encoded payload

Continuing to debug the program, just three instructions later it returns to what looks like our
next decoding routine.

https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_12.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_13.png

10/18

Figure 13 Decoding function

Letting these blocks complete a few times validates we’re in the right spot, as we quickly
identify the MZ executable header.

Figure 14 Validation of decoding

We’ve now found the location of the encoded binary, due to RtlMoveMemory(), and the
location of our function that we need to emulate.

Function Copying

Analyzing this function, it’s much less complex than the last one, but takes a different
approach of iterating over a 12-byte key, located at 0x40743C in our example, and using it to
XOR the encoded payload.

https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_14.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_15.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_16.png

11/18

Figure 15 12-byte XOR key

We’ll follow the same methodology as previous to add it into our program.

Starting at loc_406442, we’ll copy all of the bytes for the three blocks in the picture below,
which is the decoding loop.

Figure 16 Decoding loop and associated bytes

Next we’ll copy the XOR key and encoded payload into our script and build a test file so that
it follows the following order of operation:

shellcode -> key -> payload

1
2
3
4
5
6
7
8
9

loc_406442
sc =
b'\x85\xC9\x7C\x29\x8B\x35\x40\x90\x40\x00\xB8\x67\x66\x66\x66\xF
7\xE9\xC1\xFA\x02\x8B\xC2\xC1\xE8\x1F\x03\xC2\x8D\x04\x80\x03\xC0
\x8B\xD1\x2B\xD0\x8A\x82\x3C\x74\x40\x00\x30\x04\x0E\x41\x3B\x0D\
x4C\x90\x40\x00\x72\xCA'
XOR Key
sc += b'\x48\x45\x57\x52\x54\x57\x45\x57\x45\x54\x48\x47'
encoded_binary = b'\x05\x1F\xC7\x52\x57\x57\x45\x57[truncated]’

Looking at the code in the disassembler, we can tell there are a few values we’ll have to prep
before we can make this code run in our emulated environment. Specifically, we’ll need to
edit two MOV instructions and a CMP instruction that reference locations that don’t exist in
our code.

https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_17.png

12/18

Based on our dynamic analysis, we know that the lpBuffer is a pointer to the address of the
encoded payload, so we can change this instruction to move the starting location, where our
payload will reside, into the ESI register. The current instruction is referencing an address in
the data segment that holds the address to the payload. We’ll replace it with an immediate
MOV instruction by changing 0x8B3540904000 to 0xBE42000190, where 0x100042 is the
start of our buffer. Since we changed the opcode, the length of our new instruction was one
byte short and I padded it with a 0x90 – NOP to keep everything aligned.

Figure 17 Change location of payload

The first MOV is for our encoded payload, the second MOV is for our XOR key. The second
MOV uses a different opcode that plays more favorably to our needs, so we’ll simply change
the existing address to the location of the key by modifying 0x8A823C744000 to a value of
0x8A8236000001.

Figure 18 Change location of the XOR key

The final item to change is the compare instruction. Based off dynamic analysis, we know it’s
looking for the value 0x5000, so we’ll change the opcode to support an immediate operand
and modify 0x3B0D4C904000 to a value of 0x81F900500000.

Figure 19 Hard-set compare value

Emulation

https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_18.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_19.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_20.png

13/18

To set up our environment for this sample, the only value we need to worry about is EDX,
which needs to be a pointer to our encoded payload, and gets moved into the EAX register
during the loop. Similar to before, we’ll setup our address space, define the architecture, map
memory, and configure some initial register values.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

ADDRESS = 0x1000000
mu = Uc(UC_ARCH_X86, UC_MODE_32)
mu.mem_map(ADDRESS, 4 * 1024 * 1024)

Write code to memory
mu.mem_write(ADDRESS, X86_CODE32)
Start of encoded data
mu.reg_write(UC_X86_REG_EDX, 0x1000042)
Initialize ECX counter to 0
mu.reg_write(UC_X86_REG_ECX, 0x0)
Initialize Stack for functions
mu.reg_write(UC_X86_REG_ESP, 0x1300000)

print "Encrypt: %s" % mu.mem_read(0x1000042,250)
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32))
print "Decrypt: %s" % mu.mem_read(0x1000042,250)

This yields the following result:

Figure 20 Decrypted payload after running Python script

If we take a look at this binary and peer at the strings, we can see that we’re finally at the
end of the road.

Figure 21 Hancitor C2 URLs, external IP check, and Google remote check

https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/Hancitor_unicorn_21.png
https://blog.paloaltonetworks.com/wp-content/uploads/2016/08/fig-21.png

14/18

To recap the process:

Started with a Microsoft Word document
Extracted base64 encoded shellcode
Extracted encoded payload
Emulated decoding function from shellcode to decode payload (binary)
Extracted XOR key from new binary
Extracted next encoded payload from new binary
Emulated decoding function from new binary to decode Hancitor (binary)

Our last step is to put everything together into a nice package that we can use to scan
thousands of Microsoft Word documents containing Hancitor and identify all of the C2
communications. Here’s a link to the Hancitor decoder script we created.

https://github.com/pan-unit42/public_tools/blob/master/hancitor/hancitor_decrypt.py

15/18

For the purpose of this test, I took a small sample set of 10,000 unique Microsoft Word
documents that were first seen on August 15, 2016 and observed by Palo Alto Networks
WildFire as creating a process with a name of “WinHost32.exe”. This, coupled with a few
other criteria, gives me a corpus of testing samples that we know will be Hancitor and that I
can run this script against.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[+] FILE: fe23150ffec79eb11a0fed5e3726ca6738653c4f3b0f24dd9306f6460131b34c
 #### PHASE 1 ####
 [-] ADD: 0x3
 [-] XOR: 0x13
 [-] SIZE: 80556
 [!] Success! Written to disk as
fe23150ffec79eb11a0fed5e3726ca6738653c4f3b0f24dd9306f6460131b34c_S1.exe
 #### PHASE 2 ####
 [-] XOR: HEWRTWEWETHG
 [!] Success! Written to disk as
fe23150ffec79eb11a0fed5e3726ca6738653c4f3b0f24dd9306f6460131b34c_S2.exe
 ### PHASE 3 ###
 [-] http://api.ipify.org
 [-] http://google.com
 [-] http://bettitotuld.com/ls3/gate.php
 [-] http://tefaverrol.ru/ls3/gate.php
 [-] http://eventtorshendint.ru/ls3/gate.php
[+] FILE:
fe7d4a583c1ae380eff25a11bda4f6d53b92d49a7a4d72c775b21488453bbc96
 #### PHASE 1 ####
 [-] ADD: 0x3
 [-] XOR: 0x13
 [-] SIZE: 80556
 [!] Success! Written to disk as
fe7d4a583c1ae380eff25a11bda4f6d53b92d49a7a4d72c775b21488453bbc96_S1.exe
 #### PHASE 2 ####
 [-] XOR: HEWRTWEWETHG
 [!] Success! Written to disk as
fe7d4a583c1ae380eff25a11bda4f6d53b92d49a7a4d72c775b21488453bbc96_S2.exe
 ### PHASE 3 ###
 [-] http://api.ipify.org
 [-] http://google.com
 [-] http://bettitotuld.com/ls3/gate.php
 [-] http://tefaverrol.ru/ls3/gate.php
 [-] http://eventtorshendint.ru/ls3/gate.php
[+] FILE: fea98cc92b142d8ec98be6134967eacf3f24d5e089b920d9abf37f372f85530d
 #### PHASE 1 ####
 [-] ADD: 0x3
 [-] XOR: 0x14
 [-] SIZE: 162992
 [!] Success! Written to disk as
fea98cc92b142d8ec98be6134967eacf3f24d5e089b920d9abf37f372f85530d_S1.exe
 #### PHASE 2 ####
 [-] XOR: ð~ð~ð~
 [!] Detected Nullsoft Installer! Shutting down.

16/18

46
47
48
49
50
51
52
53
54

[+] FILE:
feb58e18dd320229d41d5b5932c14d7f2a26465e3d1eec9f77de211dc629f973
 #### PHASE 1 ####
 [-] ADD: 0x3
 [-] XOR: 0x13
 [-] SIZE: 80556
 [!] Success! Written to disk as
feb58e18dd320229d41d5b5932c14d7f2a26465e3d1eec9f77de211dc629f973_S1.exe
 #### PHASE 2 ####
 [-] XOR: HEWRTWEWETHG
 [!] Success! Written to disk as
feb58e18dd320229d41d5b5932c14d7f2a26465e3d1eec9f77de211dc629f973_S2.exe
 ### PHASE 3 ###
 [-] http://api.ipify.org
 [-] http://google.com
 [-] http://bettitotuld.com/ls3/gate.php
 [-] http://tefaverrol.ru/ls3/gate.php
 [-] http://eventtorshendint.ru/ls3/gate.php

Analysis

The results were fairly unimpressive, however you win some and you lose some. It still
provides some interesting observations.

For our sample set, there were only 3 C2 URLs across all 8,851 Hancitor payloads we
successfully decoded:

1
2
3

hxxp://bettitotuld[.]com/ls3/gate.php
hxxp://tefaverrol[.]ru/ls3/gate.php
hxxp://eventtorshendint[.]ru/ls3/gate.php

Looking at the stage 1 payloads, we decoded 9,967, which is almost the entire set.
Reviewing the metadata for the PE files, 8,851 exhibited the following characteristics, which
are included in a YARA rule at the end of this document.

CompanyName: 'SynapticosSoft, Corporation.'
 OriginalFilename: 'MpklYuere.exe'

 ProductName: 'ngqlgdA'

Additionally, we identified three XOR keys being used in stage 1:

1
2
3

13 [-] XOR: 0xe
1103 [-] XOR: 0x14
8851 [-] XOR: 0x13

17/18

After correlating the data, each of the keys corresponded to a different stage 2 dropper and
our script was designed to target and decoded the most heavily used. General observations
for the other two decoders are that the one with key 0xE uses the same XOR key for the
second stage Hancitor payload “HEWRTWEWETHG” and would likely be straightforward to
add to the decoding script. The 1,103 other files with key 0x14 were identified as Nullsoft
Installers.

For the 8,851 that successfully decoded their stage 2 payload, I did not note any PE’s with
any file information; however, a YARA rule is included which matches them all. The last thing
I’ll mention regarding the stage 2 files is the different file sizes.

1
2
3
4

3 [-] SIZE: 114688
10 [-] SIZE: 109912
1103 [-] SIZE: 162992
8851 [-] SIZE: 80556

This data is pulled from the variable in our shellcode and we can see that there is a slight file
size variation in the 13 that used the XOR key 0xE, which might imply slightly modified
payloads.

Conclusion

Hopefully this was an educational demonstration using the extremely powerful Unicorn
Engine to build a practical malware decoder. These techniques can be applied to many
different samples of malware and can free you up from the more tedious process of figuring
out how to program a slew of bitwise interactions and focus more on analysis and
countermeasures.

Indicators

At the following GitHub repository, you will find 3 YARA rules, listed below, which can be
used to detect the various pieces described throughout these two blogs, and the script that
was built throughout this blog for decoding Hancitor.

hancitor_dropper.yara – Detect Microsoft Word document dropper
 hancitor_stage1.yara – Detect first PE dropper

 hancitor_payload.yara – Detect Hancitor malware payload

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

https://github.com/pan-unit42/public_tools/tree/master/hancitor

18/18

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

