Third time (un)lucky — improved Petya is out

blog.malwarebytes.com/threat-analysis/2016/07/third-time-unlucky-improved-petya-is-out/

Malwarebytes Labs July 18, 2016

UU$$$$$$$$$$$UU
b4

u $u

u$u
$4% usssu £ %
‘$$$$UU$$$ $$$UU$$$$*

uuu

_U$$$$

So far we dedicated several articles to the interesting, low-level ransomware called Petya,
hijacking the boot sector. You can read about it here:

 https://blog.malwarebytes.com/threat-analysis/2016/05/petya-and-mischa-ransomware-
duet-p1/ — Green Petya (version 2)

« https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/ — Red
Petya (version 1)

Each of those versions was using Salsa20 algorithm to encrypt Master File Table and make
disk inaccessible. However, due to the implementation bugs the intended algorithm was
weakened — giving a chance to recover data.

Unfortunately, as always in such cases, it is just a matter of time when cybercriminals get
their cryptography fixed. Petya’s authors got it right at the third attempt. The currently
launched wave of this ransomware finally seems to have the proper Salsa20.

sample: ¢8623aaa00f82b941122edef3b1852e3

Behavioral analysis

Behavior of Petya didn’t changed — we can see exactly the same Ul like in the previous
green edition:

1/5

https://blog.malwarebytes.com/threat-analysis/2016/07/third-time-unlucky-improved-petya-is-out/
https://blog.malwarebytes.com/?s=Petya
https://blog.malwarebytes.com/threat-analysis/2016/05/petya-and-mischa-ransomware-duet-p1/
https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/
https://www.malwarebytes.com/ransomware
https://www.virustotal.com/en/file/ecc5cc62c8200954079191e586123522f88aa1414ae98908380176d75d2e7eab/analysis/
https://blog.malwarebytes.com/threat-analysis/2016/05/petya-and-mischa-ransomware-duet-p1/

Inside

Let’s take a look at differences in the code. Using BinDiff we can spot, that not many
functions have changed. However, those that were giving weak points to the previous edition
are modified.

00009822 s20_littleendian . 0000984E sub _O84E 74

0.66 0.95 -I--E--
0.65 0.90 -I--E-- 00008AAC reboot_disk 00003ADA sub_BADA 51
Salsa20

First of all, let’s take a look the function s20_littleendian that was causing the major bug in
the last release. Due to it’s invalid implementation, only 8 out of 16 characters of the key
were meaningful and brutforcing the key was easier (working solution has been implemented
by procrash). Detailed explanation of this bug you can find in the updated post about the
previous Petya — under the section “New Petya, new bug”.

On the left — you can see the implementation of the buggy function (from the previous
edition). On the right — current, fixed implementation:

2/5

https://twitter.com/procrash
https://blog.malwarebytes.com/threat-analysis/2016/05/petya-and-mischa-ransomware-duet-p1/

00009822 s20_littleendian : sub_984E 0000984E
{0 " SECoNAR)
00009822 =20 _littleendian | ’ 0000984E sub 984E
00008822 push b2 bp 220_littlesndiar i 0000984E push b2 bp
ooopeaza mov b2 bp, b2 sp oooo9s4ar mov b2 bp, b2 sp
00003825 push b2 el B 00009851 push b2 =i
00009826 mov bz si, b2 ss:|sitarg 0 i 00009852 mov L2 8i, b2 ss8:[sitarg 0
00003229 =sub Rl e i 00009855 sub bl ah, bl ah
0000982 mov bl ah, bl ds:|sptl i 00009857 mov bl al, bl ds:|sp+2

& 00009854 shl b2 ax, bl Ox10
B 00009850 cwd
D00D32E mov bl cl, bl ds:|si i 0DD0985E mow b2 cx, b2 ax
- 00009860 mov bl ah, bl ds:[sp+l
oooogaio sub bl ch, bl ch oooo9asd sub bl al, bl al
i 00009865 mow b2 bx, b2 dx
i 00009867 cwd
00008832 add b2z ax, b2 cx i 00009868 add b2 ax, h2 cx
k 00009864 adc b2 dx, b2 bx
0000986C mov b2 cx, b2 ax
ooo0986E mov bl ah, bl ds:[sp+
00009871 shl bl ah, bl Ox10
00009874 sub Bl-al, hl al
i 00009876 mow b2 bx, b2 dx
00008834 cwd E 0ooo9s7s cwd
i 00009879 add b2 ax, b2 ex
oooo9sdE ade b2 dx, t bx
ooooeatn mow bl cl, bl ds:|[si
oooo9sir sub bl ch, bl ch
00009881 add b2 ax, b2 cx
i 00009883 ade BZ dy,hl
pop b2 ei B 00009386 pop b2 =i
o0oo02a3s leave oooo9aart leave
00009837 retn = 00009388 retn

Explanation
The old implementation was truncated — it didn’t used 32 bit values as it should — only added
a sign bit expansion to the 16 bit value:

static int16_t s20_littleendian(uint8_t *b)

{
return b[0] +

(b[1] << 8);

Now, authors got the proper implementation, using 32 bits. So, the last bug in Salsa20 got
finally fixed, making implementation complete.

Key

In the first (red) version of Petya authors used 32 byte long Salsa key — that was, however,
generated from the 16 byte long key, using a custom function to pre-process it and extend.

In the second — green edition, they gave up this idea and applied the original 16 byte long
key, without any modification.

This time, they changed mind and went back to the first solution of using 32 byte long key,
yet with some improvements. Again we can see expand32 in the code (instead of expand16
known from the previous edition):

3/5

A0809936
888089934
a888993B
a888993C
aeaaooLa
A0808994Y
A0800948
A8808994LC

A88089958
A888995C
Aeea996a
A0088994Y
A080a0948
A880899%246A
a88089924D
aaaa997a
aaaae972
A8889975%
fe0a997s8
a8aa097c

When the victim insert the key for the verification, before using it as a Salsa20 key, it is
preprocessed by a new algorithm (more complex than in case of Red Petya):

enter
push
push
moy
mowy
mou
mou
mou

mou
mow
moy
mou
mou
mou
mou
mou
mou
mow
moy
Hiilg

16h, @

di

si
[bp+var_11],
[bp+var_ 18],
[bp+var F],
[bp+uvar E],
[bp+var_ D],

[bp+uar_9],
[bp+var_8],
[bp+var 7],
[bp+var_ 6],

al, ; e’
[bp+var_12], al
[bp+uvar_ 5], al
al, .
[bp+uvar_C], al
[bp+var_4], al
[bp+var_ 2], 7 'k
di, di

i S
I
apaBaEsDS
0000884D8 loc_BuD8:
000884D8 push a
@e0as8aba push 16 ; size
000084DC lea ax, [bp+initial key]
888884DF push ax
BABBBAED lea ax, [bp+modified_key]
888884E3 push ax
B00084EL call process_key
000BB4EY add sp, 8
008084EA mov byte ptr [bp+counter+2], @
vy
il i =
000BBLEE
BO0B8B4EE process key loop_top:
BBBBBLEE push
BAPBBYF A push 32 ; size
800A8L4F2 lea ax, [bprmodified_key]
888084F5 push ax
888084F6 push ax ; key buffer
880084F7 call process Key
000884FA add sp, &
888884FD inc byte ptr [bp+counter+2]
08888588 cmp byte ptr [bp+counter+2], 128
8686885084 jb short process_key loop_top
I

Conclusion

New edition shows that the project is reaching maturity — however, as we can read on the
associated onion page — it is still a beta version and we can expect that it will keep evolving.

Below — fragment of Petya’s RaaS website:

4/5

Y ADMINISTRATION

Since this project is still in beta, we
are open for any bug-report or feature-request

We are not yet sure about the distribution method, but probability is high, that also this time it
is spam with a link leading to cloud storage. We strongly advise to be extra vigilant for the job
applications coming this days — it proven to be a common cover for Petya/Mischa dropper.
More information about it you can find in our previous articles about Petya.

Appendix

Petya and Mischa — Ransomware Duet (Part 1)

This video cannot be displayed because your Functional Cookies are currently disabled.
To enable them, please visit our privacy policy and search for the Cookies section. Select
“Click Here” to open the Privacy Preference Center and select “Functional Cookies” in the
menu. You can switch the tab back to “Active” or disable by moving the tab to “Inactive.”
Click “Save Settings.”

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https.://hshrzd.wordpress.com.

5/5

https://blog.malwarebytes.com/threat-analysis/2016/05/petya-and-mischa-ransomware-duet-p1/
https://www.malwarebytes.com/privacy/#how-we-collect-information
https://twitter.com/hasherezade
https://hshrzd.wordpress.com/

